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Abstract

For L a finite lattice, let C(L) ⊆ L2 denote the set of pairs γ = (γ0, γ1)
such that γ0 ≺ γ1 and order it as follows: γ ≤ δ iff γ0 ≤ δ0, γ1 6≤ δ0, and
γ1 ≤ δ1. Let C(L, γ) denote the connected component of γ in this poset.
Our main result states that C(L, γ) is a semidistributive lattice if L is
semidistributive, and that C(L, γ) is a bounded lattice if L is bounded.

Let Sn be the permutohedron on n letters and Tn be the associahedron
on n + 1 letters. Explicit computations show that C(Sn, α) = Sn−1 and
C(Tn, α) = Tn−1, up to isomorphism, whenever α is an atom.

These results are consequences of new characterizations of finite join
semidistributive and finite lower bounded lattices: (i) a finite lattice is
join semidistributive if and only if the projection sending γ ∈ C(L) to
γ0 ∈ L creates pullbacks, (ii) a finite join semidistributive lattice is lower
bounded if and only if it has a strict facet labelling. Strict facet labellings,
as defined here, are generalization of the tools used by Barbut et al. [4]
to prove that lattices of Coxeter groups are bounded.

1 Introduction

The set of covers of a finite lattice has a natural ordering given by transposition
of intervals. This is the main object investigated in this paper. The main result
we shall present is that C(L), the poset of covers of a finite semidistributive
lattice L, is the disjoint union of connected components each of which is again
a semidistributive lattice; moreover, if L is bounded, then each such component
is a bounded lattice as well. If γ is a cover of L, then we denote by C(L, γ)
the connected component of γ in C(L) and call it the lattice derived from L by
means of (or in the direction of) γ. Thus, if L is semidistributive, this process
of constructing derivatives may be iterated.

These results are consequences of new characterizations of finite join semidis-
tributive lattices and finite lower bounded lattices that strengthen well known
facts. On the side of join semidistributivity, it is well known that a lattice has
this property if and only if to each cover γ0 ≺ γ1 there corresponds a unique
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cover j∗ ≺ j such that j is join irreducible and the two covers are perspec-
tive. Following a suggestion of [4, Theorem 1], we observe that existence of
such a unique cover is due to the confluence property of a particular rewrite
system. Studying further this system we arrive to the following observation: a
finite lattice is join semidistributive if and only if the poset of covers has pull-
backs. On the side of lower bounded lattices, we build on ideas used in [4] to
prove that lattices arising from Cayley graphs of Coxeter groups are bounded.
With respect to that work, we move from a sufficient condition to a complete
characterization, and from boundedness to the weaker notion of being lower
bounded. The statement sounds as follows: a finite lattice is lower bounded if
and only if it is join semidistributive and has a strict facet labelling. A strict
facet labelling is a labelling of covers by natural numbers which is constant
on perspective covers. Moreover, such a labelling should be strictly increas-
ing at the interior of a minimal pentagon (i.e. a facet). The last condition
may be exemplified by the following picture, representing a pentagon where
(δ0, δ1), (δ−1, δ1), (γ0, γ1), (γ0, γ2), (ǫ0, ǫ1) are all covers.
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In labelling covers of such a pentagon, the label of the interior cover (ǫ0, ǫ1)
should be strictly greater than the labels of (δ0, δ1) and (γ0, γ1).

We shall do some explicit computations: we prove that for Sn the lattice
of permutation on n-letters – i.e. the weak Bruhat order – and Tn the Tamari
lattice on n+ 1-letters the relations

C(Sn, α) = Sn−1 , C(Tn, α) = Tn−1 ,

hold up to isomorphism, whenever α is of the form (⊥, α1) with α1 an atom. It
is also trivial to verify that, under the same conditions on α, the relation

C(Bn, α) = Bn−1

holds, where Bn is the Boolean algebra on n atoms. Therefore, these lattices
share with Boolean algebras1 a uniformity property: we call them regular mean-
ing that the shape of C(L,α) does not depend on the choice of the atom α1.

1Recall that finite Boolean algebras geonetrically are cubes.
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This use of terminology from combinatorial geometry is on purpose. Indeed,
with this work, we aimed at giving an algebraic and axiomatic ground to some
geometric intuitions. For example, an edge of a permutohedron (or associahe-
dron) can be seen as a cover, a facet, i.e. a two dimensional simplex, may be
seen as a cover between covers, and so on. We refrain from giving now a com-
plete account to these geometric intuitions, we are confident that the algebra
developed in this paper may help to shade some light on this topic in some
future.

Let us also stress that ideas and results presented here have their birth at the
intersection between order theory and the theory of rewriting systems, in the
spirit of [15] and [2]. We are not going to emphasize this point of view, however
we feel worth to give a rough idea. It was suggested in [4] that the transposition
relation between covers is a generated by a sort of rewrite system. In section 3
we make explicit such a rewrite system, namely, we define the pushdown relation
⇁ between covers. We also explicitly introduce the class of pushdown lattices,
as our proofs make heavy use its properties. Briefly, a lattice is pushdown if
the transposition order on covers is generated by the pushdown relation, thus
allowing a sort of local reasoning on the global structure of the covers.

The paper is structured as follows. We recall first the basic concepts concern-
ing finite lattices in Section 2 and we introduce pushdown lattices in Section 3.
We give in Section 4 our characterization of finite join semidistributive lattices,
and in Section 5 our characterization of lower bounded lattices. We define in
Section 6 lattices of the form C(L, γ), that is lattices derived from semidistribu-
tive lattices, and prove then that properties such semidistributivity and being
lower bounded lift from L to C(L, γ). Finally, in Section 7, we the exemplify
construction of derived lattices on Newman lattices.

2 Preliminaries

We begin by introducing standard definitions and notation on finite lattices.
Let P be a poset. A cover in P is an ordered pair (γ0, γ1) ∈ P 2 such that

γ0 ≤ γ1 and the closed interval {x ∈ L | γ0 ≤ x ≤ γ1 } is a two element set
{ γ0, γ1 } – in particular γ0 6= γ1. As usual, we shall write γ0 ≺ γ1 if (γ0, γ1) is a
cover and say that γ0 is a lower cover of γ1 and that γ1 is an upper cover of γ0.
We shall denote by C(P ) the set of covers of P and use Greek letters γ, δ . . . to
range on covers.

If L is a finite lattice, an element is join (resp. meet) irreducible iff it has
a unique lower (resp. upper) cover. We denote by J(L) (resp. M(L)) the set
of join (resp. meet) irreducible elements of L. If j ∈ J(L) then j∗ denotes the
unique element of L such that j∗ ≺ j. If m ∈M(L), then m∗ denotes the unique
element of L such that m ≺ m∗. Let us introduce the standard arrow relations
between join and meet irreducible elements. For j ∈ J(L) and m ∈ M(L), we
write j ր m iff j ≤ m∗ and j 6≤ m, and mց j if and only if j∗ ≤ m and j 6≤ m;
we write jրւm (or mցտj) iff j ր m and mց j.

We finally recall that a lattice is join semidistributive if it satisfies the Horn

3



sentence

x ∨ y = x ∨ z ⇒ x ∨ (y ∧ z) = x ∨ y . (SD∨)

A lattice is meet semidistributive if it satisfies the Horn sentence dual of (SD∨).
It is semidistributive iff it is both meet and join semidistributive.

Posets with pullbacks. These posets will play a central role in our devel-
opment. We introduce them now together with their elementary properties.
Recall from [4] that a hat in a finite poset P is a triple (u, v, w) such that u ≺ v,
w ≺ v, and u 6= w. An antihat in P is defined dually. A cospan in P is a
triple of elements (u, v, w) such that u ≤ v and w ≤ v; in particular a hat is a
particular kind of a cospan. We say that a cospan (u, v, w) has a pullback if the
meet u ∧ w exists.

Definition 2.1. We say that a finite poset P has pullbacks if every cospan in
P has a pullback. We say that f : P ✲ Q preserves pullbacks iff whenver
the pullback u ∧ w of the cospan (u, v, w) exists, then f(u ∧ w) is the pullback
of the cospan (f(u), f(v), f(w)).

Clearly, a poset has pullbacks iff every finite non empty set admitting an
upper bound has a meet. Notice that every meet semilattice is a poset with
pullbacks. The following diagram exhibits a poset with pullbacks which is not
a meet semilattice.

•

•

•
??

??
??

•

•

��
��

��
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The following Proposition is almost a reformulation of Definition 2.1.

Proposition 2.2. A poset P has pullbacks iff every principal ideal of P is a
lattice.

We state next, without proofs, some facts illustrating the specific role of
pullbacks of hats among all the pullbacks.

Lemma 2.3. A finite poset P has pullbacks iff every hat has a pullback.

Lemma 2.4. Let P,Q be finite posets with pullbacks. If f : P ✲ Q preserves
pullbacks of hats, then it preserves pullbacks.

The following observations will turn to be more interesting for our goals.

Proposition 2.5. If a finite poset P has pullbacks, then each connected com-
ponent of P has a least element.
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Proof. Since a principal ideal is a finite lattice, then it has a least element. Let
therefore ⊥x denote the least element of the principal ideal of x. We argue that
if x, y belong to the same connected component, then ⊥x = ⊥y. To this goal
it suffices to establish that ⊥x = ⊥y whenever z ≤ x, y for some z. We have
⊥x ≤ z ≤ y, and hence ⊥y ≤ ⊥x. By symmetry, ⊥x ≤ ⊥y.

Let us say that P has pushouts iff its dual poset P op has pullbacks.

Corollary 2.6. If a finite poset P has pullbacks and pushouts, then each con-
nected component of P is a lattice.

Proof. Since P has pushouts each connected component has a maximal element,
that is, it is a principal ideal. Since P has pullbacks, such an ideal is a lattice.

3 Pushdown Lattices

In the following L will denote a fixed finite lattice. Let us introduce an order
relation on the set C(L) of covers of L: for γ, δ ∈ C(L), let γ ≤ δ if and
only if γ0 ≤ δ0, γ1 6≤ δ0, and γ1 ≤ δ1, i.e. if the two covers are perspective
and δ transposes down to γ. This is an ordering on C(L) since L is a lattice:
if γ ≤ δ ≤ ǫ then clearly γi ≤ ǫi for i = 0, 1, and if γ1 ≤ ǫ0, then also
γ1 ≤ δ1 ∧ ǫ0 = δ0, a contradiction. Observe that a sufficient condition for such
a relation to be an ordering is that L has pullbacks. When referring to the
poset C(L) we shall mean the pair 〈C(L),≤〉. By C(L, γ) we shall denote the
connected component of γ in C(L). The two projections

( · )i : C(L) ✲ L , i = 0, 1 ,

sending γ to γi, are order preserving. They will play a key role in the rest of
the paper.

An order preserving map π : P ✲ Q is conservative if it strictly preserves
the order, i.e. x ≤ y and π(x) = π(y) imply x = y, or, equivalently x < y
implies π(x) < π(y). Our first remark is the following:

Lemma 3.1. In any lattice L the projections ( · )i, i = 0, 1, are conservative.

Proof. If γ ≤ δ and γ0 = δ0, then the relations δ0 = γ0 ≺ γ1 ≤ δ1 and δ0 ≺ δ1
imply δ1 = γ1.

An order preserving function π : Q ✲ P is a Grothendieck fibration if
for each δ ∈ Q the restriction of π to the principal ideal generated by δ is an
embedding. Spelled out, this means that γ, ǫ ≤ δ and π(γ) ≤ π(ǫ) implies δ ≤ ǫ.

Definition 3.2. Let us say that a lattice L is a pushdown lattice if the projection
( · )0 : C(L) ✲ L is a Grothendieck fibration.

We shall say that L is a pushup lattice if the dual Lop is pushdown. Spelled
out, L is pushdown iff γ, ǫ ≤ δ and γ0 ≤ ǫ0 implies γ ≤ ǫ, and L is pushup iff
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δ ≤ γ, ǫ and ǫ1 ≤ γ1 implies ǫ ≤ γ. These properties may be simplified even
more, for example L is pushdown iff γ, ǫ ≤ δ and γ0 ≤ ǫ0 implies γ1 ≤ ǫ1.

Examples of lattices having these properties arise from some form of semidis-
tributivity.

Lemma 3.3. If L is join semidistributive lattice, then it is both a pushdown
and a pushup lattice.

Proof. The proof is sketched in the two diagrams below:
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Let x, y, z as above on the left: if γ1 6≤ ǫ1, then z ∧ y = γ0 and consequently
x ∨ y = x ∨ z but x ∨ (y ∧ z) = x ∨ ǫ0 = x < x ∨ y.

Let x, y, z as above on the right: if γ0 6≥ ǫ0, then z∨y = γ1 and consequently
x ∨ y = x ∨ z but x ∨ (y ∧ z) = x ∨ δ0 = x < γ1 = x ∨ y.

By duality, it follows that meet semidistributive lattices are both pushdown
and pushup lattices.

To understand the relation of pushdown lattices to hats and antihats as
defined in Section 2, let us introduce the relation⇁ on C(L) as follows. Let us
write δ⇁u γ if u 6= δ0, γ0 = u ∧ δ0, and γ1 ≤ u ≺ δ1. Let us write δ⇁ γ if δ⇁u γ
for some u ∈ L. Observe that if δ ⇁u γ, then (u, δ1, δ0) is a hat and γ0 is its
pullback. The next Lemma states that in a pushdown lattice there corresponds
to a given hat a unique antihat.

Lemma 3.4. In a pushdown lattice, for each δ ∈ C(L) and u ∈ L such that
u ≺ δ1 and u 6= δ0, there exists a unique γ such that δ⇁u γ.

Proof. We must show that δ⇁u γ, ǫ implies γ = ǫ. This is an immediate conse-
quence of γ0 = u ∧ δ0 = ǫ0 and γ, ǫ ≤ δ, so that γ ≤ ǫ and ǫ ≤ γ.

Remark now that δ⇁ γ implies γ < δ, in any lattice.

Proposition 3.5. In a pushdown lattice L the order of C(L) is the reflexive
transitive closure of the relation converse of⇁ .

Proof. By the previous remark, if δ⇁∗ γ, then γ ≤ δ, in any lattice. Therefore
we shall focus on the converse implication, that is, if γ ≤ δ, then we can find a
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path of the⇁ relation from δ to γ. The proof is by induction on the height of
the interval [γ0, δ0]. If γ0 = δ0, then γ ≤ δ implies γ = δ.

Let us suppose that γ0 < δ0, so that γ1 < δ1 as well. Pick u such that
γ1 ≤ u ≺ δ1 with u 6= δ0. Such a lower cover exists, since γ1 6≤ δ0. Let ǫ be
determined by the property that δ ⇁u ǫ. Then γ0 ≤ u ∧ δ0 = ǫ0, and hence,
from the pushdown property, γ ≤ ǫ. Moreover, [γ0, ǫ0] ⊂ [γ0, δ0] and, by the
induction hypothesis, ǫ⇁∗ γ. It follows that δ⇁∗ γ.

We end this section with a characterization of pushdown lattices in terms of
the relation⇁ . This was actually our original definition of pushdown lattices:
if δ⇁u γ, then the cover δ has been lowered to the cover γ by means of the push
of u. This intuition is already present in [4].

Proposition 3.6. A lattice L is a pushdown lattice if and only if γ ≤ δ ⇁u ǫ
with γ0 ≤ u implies γ ≤ ǫ.

Proof. Clearly, if a lattice is pushdown and γ ≤ δ ⇁u ǫ and γ0 ≤ u, then γ0 ≤
u ∧ δ0 = ǫ0, so that γ ≤ ǫ.

Conversely, let us suppose that γ, ǫ ≤ δ with γ0 ≤ ǫ0 and that L has the
property stated in the Proposition. Observe that this property allows to con-
struct a path δ = θ0⇁u1 θ1 . . . θn−1⇁un θn = ǫ, as in the proof of Proposition 3.5.
Therefore we can inductively observe that if γ ≤ θi−1 and γ0 ≤ ǫ0 ≤ ui, then
γ ≤ θi. Therefore γ ≤ θn = ǫ.

4 Join Semidistributive lattices

Many characterizations of finite join semidistributive lattices are already avail-
able, see for example [1]. In this section we introduce one more characterization.
If we look more closely, we are refining a standard characterization of these lat-
tices [8, §2.56], stating that a finite lattice is join semidistributive if for each
meet irreducible element m there exists a unique join irreducible element j such
that mցտj. This characterization may be rephrased in terms of the poset C(L).
The correspondence sending a meet irreducible element m to the cover (m,m∗)
establishes a bijection between M(L) and maximal elements of C(L). A similar
bijection may be defined between J(L) and minimal elements of C(L). With
these bijections at hand, we can state the previous characterization as follows: a
finite lattice is join semidistributive iff each maximal element of C(L) has a least
element below it. We shall see next that, whenever L is join semidistributive,
the poset C(L) has a stronger property, concerning the existence of pullbacks.

An order preserving function π : P ✲ Q creates pullbacks if and only if
whenever x, y, z ∈ P are such that x, y ≤ z and π(x) ∧ π(y) exists in Q, then
there exists a unique u ≤ x, y such that π(u) = π(x)∧π(y); moreover u = x∧y.
For conservative order preserving maps this condition splits as the conjunction
of two conditions, as in the following Lemma.

Lemma 4.1. A conservative order preserving function π : P ✲ Q creates
pullbacks if and only if (i) it is a Grothendiek fibration and (ii) if x, y ≤ z ∈ P
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and π(x) ∧ π(y) exists in Q, then there exists u ≤ x, y such that π(u) = π(x) ∧
π(y).

Proof. Let us suppose that π creates pullbacks, so that (ii) certainly holds. If
x, y ≤ z and π(x) ≤ π(y), then π(x) = π(x)∧π(y), so that the meet of π(x), π(y)
exists in Q. Let u ≤ x, y be such that π(u) = π(x) ∧ π(y) = π(x). Since π is
conservative, then u = x, so that x ≤ y, exhibiting π as a Grothendieck fibration.

Conversely, let us suppose that (i) and (ii) hold. Let x, y ≤ z be such that
π(x)∧π(y) exists, and let u, u′ ≤ x, y be two preimages of such meet. Since π is
an embedding when restricted to the principal ideal of z and π(u) = π(u′), then
u = u′ as well. Let us show that u = x ∧ y: if w ≤ x, y, then π(w) ≤ π(x), π(y)
hence π(w) ≤ π(x) ∧ π(y) = π(u). Since w, u ≤ z, we deduce w ≤ u by the
pushdown property.

An obvious remark, worth recalling at this point, is that if π creates pullbacks
and Q has pullbacks, then P has pullbacks as well which are preserved by π.
We state next the main result of this section.

Theorem 4.2. A finite lattice is join semidistributive if and only if ( · )0 :
C(L) ✲ L creates pullbacks.

Proof. If ( · )0 creates pullbacks, then C(L) has pullbacks. If m ∈ C(L) is
maximal, then the ideal it generates is a finite meet semilattice and hence it has
a least element. Therefore L is join semidistributive.

Converserly, let us suppose that L is join semidistributive. Since ( · )0 is
conservative and a Grothendieck fibration by Lemma 3.3, it is enough by Lemma
4.1 to show that if γ, δ ≤ ǫ, then we can find β ≤ γ, δ such that β0 = γ0 ∧ δ0.

Observe that γ0 ∧ δ0 < γ1 ∧ δ1, since γ1 ∨ ǫ0 = δ1 ∨ ǫ0 = (γ1 ∧ δ1) ∨ ǫ0 = ǫ1.
Let β0 = γ0 ∧ δ0 and choose β1 such that β0 ≺ β1 ≤ γ1 ∧ δ1. We claim that
β1 6≤ γ0, otherwise β1 ≤ ǫ0 ∧ δ1 = δ0 and β1 ≤ γ0 ∧ δ0 = β0. It follows that
β ≤ γ and, similarly, β ≤ δ.

The rest of this section is devoted to characterizing join semidistributive
lattices among pushdown lattices.

Lemma 4.3. In a pushdown lattice γ ≺ δ implies δ ⇁ γ. In a join semidis-
tributive lattice δ⇁ γ implies γ ≺ δ.

Proof. By the pushdown property, if γ ≺ δ, then γ0 < δ0 and γ1 < δ1.
Since γ1 6≤ δ0, then we can find u such γ1 ≤ u ≺ δ1, and therefore iff δ⇁u ǫ,

then γ ≤ ǫ. Since ǫ < δ and γ ≺ δ, then γ = ǫ and δ⇁u γ.
Let us suppose that the underlying lattice is a join semidistributive lattice,

that γ < ǫ < δ, and that δ⇁v γ. It follows that γ1 < ǫ1 < δ1 and consequently
δ1 6≤ v (otherwise δ ≤ γ by the pushdown property). We have ǫ1∨v = ǫ1∨δ0 = δ1
and therefore δ1 = ǫ1 ∨ (v ∧ δ0) = ǫ1 ∨ γ0 = ǫ1, giving a contradiction.

Proposition 4.4. For a pushdown lattice L the following are equivalent:

1. If δ⇁ γ then γ ≺ δ,
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2. If v1 6= v2 and δ⇁vi γi for i = 1, 2, then γ1
0 , γ

2
0 form an antichain.

3. Every hat in C(L) has a pullback.

4. C(L) has pullbacks.

5. L is join semidistributive.

Proof. (1) implies (2). Let us suppose that v1 6= v2, δ ⇁
vi γi, i = 1, 2, and

γ1
0 ≤ γ2

0 . Then γi < δ and γ1
0 ≤ γ2

0 implies γ1 ≤ γ2. Either γ1 < δ is not a
cover. Otherwise γ1 ≺ δ, γ1 = γ2 and γ1

1 ≤ v1 ∧ v2. Let us write γ for γ1 = γ2.
In this case, however, (v1, δ1)⇁

δ0 ψ, where ψ0 = γ0 = v1 ∧ δ0, and (v1, δ1)⇁
v2 ξ,

where ξ0 = v1 ∧ v2 ≥ γ1 > γ0 = ψ0. It follows from the pushdown property and
ψ0 < ξ0 that ψ < ξ, thus implying that ψ ≤ (v1, δ1) is not a cover.

(2) implies (3). Let us suppose that γ, ǫ ≺ δ with γ 6= ǫ. As in every
pushdown lattice, we can write δ ⇁v γ and δ ⇁u ǫ, where u, v, δ0 are pairwise
distinct. We claim that, due to property (2), γ0∧ǫ0 < u∧v. For if u∧v ≤ γ0 then
(u, δ1)⇁

δ0 ψ, where ψ0 = u∧δ0 = γ0, and (u, δ1)⇁
v ξ, where ξ0 = u∧v ≤ γ0 = ψ0.

By our assumptions, this implies v = δ0, a contradiction.
Given that γ0 ∧ ǫ0 < u∧ v, let β0 = γ0 ∧ ǫ0 and pick β1 such that β0 ≺ β1 <

u ∧ v. If β1 ≤ δ0 then β1 ≤ δ0 ∧ u ∧ v = γ0 ∧ ǫ0 = β0. Thus β ≤ δ and β0 ≤ γ0

imply β ≤ γ. Similarly β ≤ ǫ. It is argued that β = γ ∧ ǫ as in Lemma 4.1.
(3) implies (4). By Proposition 2.3.
(4) implies (5). We claim that if C(L) has pullbacks, then they are preserved

by ( · )0. Consequently, using the fact that ( · )0 is conservative Grothendieck
fibration, ( · )0 also creates pullbacks. If π ≤ γ, ǫ ≤ δ and π0 < γ0 ∧ ǫ0, then
π1 6≤ γ0 ∧ ǫ0 and γ0 ∧ ǫ0 < π1 ∨ (γ0 ∧ δ0) ≤ γ1, ǫ1. Therefore γ0 ∧ ǫ0 < γ1 ∧ ǫ1 so
that, as in the proof of Theorem 4.2, there exists β ≤ γ, ǫ such that β0 = γ0∧ǫ0.

(5) implies (1). By Lemma 4.3.

5 Lower Bounded Lattices

We recall that a finitely generated lattice L is said to be lower bounded if there
exists a lattice morphism from a freely generated lattice f : F(X) ✲ L such
that, for each y ∈ L, the set {x | y ≤ f(x) } is either empty or has a least
element [13]. Upper boundedness is the dual notion of lower boundedness, and
a lattice is said to be bounded if it is both lower and upper bounded.

There are already many characterizations of finite lower bounded lattices [6,
7, 18] and this concept has also found applications within unexpected branches
of lattice theory [9]. In this section we develop further the tools used in [4] to
prove that lattices in the class HH are bounded. In this way we shall obtain a
new characterization of lower bounded lattices. Our starting point will be the
following classical result [8, §2.39]:

Theorem 5.1 (Johnsonn, Nation). A finite lattice is lower bounded if and
only the join dependency relation between join irreducuble elements contains no
cycles.
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In order to use of this result, we must define the join dependency relation,
hereby denoted D. The reader can find in [8, §2.3] its stadard definition. Again,
we shall use, as a definition, the characterization of the relation D in terms of
the arrows relations [8, §11.10]:

Definition 5.2. For j, k ∈ J(L) we let jDk iff j 6= k and, for some m ∈M(L),
j ր m and mց k.

Let us introduce some more relations beween join irreducible elements of a
finite lattice:

Definition 5.3. We let:

• jAk iff j 6= k and, for some m ∈M(L), j ր m and mցտk,

• jBk iff j 6= k and, for some m ∈M(L), jրւm and mց k.

• jCk iff either jAk or jBk.

Let us remark that these relations are already known for semidistributive
lattices [8, §2.5]. However, the definition presented here makes sense in any
finite lattice. The next Lemma shows that the D relation may be replaced by
the C relation defined above.

Lemma 5.4. The D relation has a cycle if and only if the C relation has a
cycle. Consequently a finite lattice is lower bounded if and only if the C relation
contains no cycle.

Proof. Let us suppose that jDk and let m ∈ M(L) be such that j ր m and
m ց k. Choose l ∈ J(L) such that mցտ l. If l ∈ { j, k }, then jAk or jBk.
If l 6= j, k, then jAl and lBk. Therefore one step of the relation D may be
replaced by at most two steps of the relation C. Conversely, since C ⊆ D, every
C-cycle gives rise to a D-cycle.

Let us introduce a number of relations. We shall need first the dual of the
relation ⇁ : let us write δ ⇀u γ if δ0 ≺ u ≤ γ0 and γ1 = u ∨ δ0. Also let us
write δ⇀ γ if δ⇀u γ for some u ∈ L. A remark is due now: if a lattice is join
semidistributive, then δ ⇁ γ implies γ ⇀ δ. Indeed, let us suppose that δ ⇁u γ
and let us choose w ∈ L such that γ0 ≺ w ≤ δ0. If w ∨ γ1 < δ1, then for
x = w∨γ1, y = u and z = δ0 the implication (SD∨) fails. In particular we have
that in a semidistributive lattice δ⇁ γ is equivalent to γ⇀ δ.

Definition 5.5. Le γ, δ ∈ C(L). We let γAδ if and only if there exists ǫ ∈ C(L)
and u ∈ L such that ǫ⇁u δ and δ1 ≤ γ0 ≺ γ1 ≤ u. The dual relation is defined
as follows: γBδ if and only if there exists ǫ ∈ C(L) and u ∈ L such that ǫ⇀u δ
and u ≤ γ0 ≺ γ1 ≤ δ1.

Intuitively, the A,B relations express the dependency relation of covers in
terms of minimal pentagons or, as they are called in [4], facets. The following
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picture illustrates this point with the A relation:
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ǫ1
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δ1
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��
��
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��

The next Lemmas exemplify the connections between the relations A and
A. The Lemmas apply to arbitrary finite lattices.

Lemma 5.6. Let j, k ∈ J(L) such that for some γ, δ ∈ C(L), γAδ, (j∗, j) ≤ γ
and (k∗, k) ≤ δ. Then jAk.

Proof. Let γ, δ such that γAδ so that ǫ ⇁u δ, for some u ∈ L and ǫ ∈ C(L).
Observe first that j 6= k, since k ≤ δ1 ≤ γ0 and j 6≤ γ0. Let µ = (m,m∗) be
maximal above ǫ, then j ≤ γ1 ≤ u ≤ ǫ1 ≤ m∗. Let us suppose that j ≤ m: then
j ≤ u ∧ ǫ1 ∧m = u ∧ ǫ0 = δ0 ≤ γ0. This is a contradiction since (j∗, j) ≤ γ. We
have shown that j ր m; since (k∗, k) ≤ δ ≤ ǫ ≤ (m,m∗), we have mցտk, and
therefore jAk.

Lemma 5.7. Let j ∈ J(L) and δ ∈ C(L) be such that δ1 = j ∨ δ0. Then there
exists n ≥ 0 and a sequence (δi, γi), i = 0, . . . , n, such that

1. γ0 = (j∗, j) and δn = δ,

2. δi1 = j ∨ δi0 and δi⇁∗ γi, for i = 0, . . . , n,

3. δi−1Aγi, for i = 1, . . . , n.

Proof. The proof is by induction on the height of the interval [j, δ1]. If j = δ1,
then δ1 is join irreducible so that δ0 = j∗ and the statement holds with n = 0
and γ0 = δ0 = δ.

Otherwise j < δ1: let u ∈ L be such that j ≤ u ≺ δ1. Since j 6≤ δ0, we have
u 6= δ0: let therefore γ0 = u∧ δ0 and recall in the following that γ0 < u, δ0. Let
δ′1 = j∨γ0 and observe that γ0 < δ′1: if γ0 = δ′1 = j∨γ0, then j ≤ γ0 ≤ δ0, which
is not the case. Let δ′0 ∈ L such that γ0 ≤ δ′0 ≺ δ′1. Since δ′1 ≤ u < δ1, we have
[j, δ′1] ⊂ [j, δ′1] and we use the inductive hypothesis to find a sequence (δi, γi),
i = 0, . . .m, satisfying (ii) and (iii) and such that γ0 = (j∗, j) and δm = δ′.

We distinguish now two cases. Case 1. If γ0 = δ′0 then δ ⇁ δ′, so that
we can we let n = m and append the pair (δ, γm) to the sequence (δi, γi),
i = 0, . . . ,m− 1 to obtain the desired sequence. Case 2. Otherwise γ0 < δ0 and
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we can chose γ1 such that γ0 ≺ γ1 ≤ δ0. We have δ⇁ γ and δ′Aγ. Therefore
we let n = m+ 1 and append the pair (δ, γ) to the sequence (γi, δi) to obtain a
sequence satisfying (i), (ii) and (iii).

Following [4], we are ready to introduce strict facet labellings.

Definition 5.8. A strict lower facet labelling of a lattice L is a function f :
C(L) ✲ N such that f(γ) = f(δ) if δ⇁ γ and f(γ) < f(δ) if δAγ. A strict
upper facet labelling is defined dually: it is a function f : C(L) ✲ N such
that f(γ) = f(δ) if δ⇀ γ and f(γ) < f(δ) if δBγ.

A strict facet labelling of a lattice L is a function f : C(L) ✲ N which is
both a strict lower facet labelling and a strict upper facet labelling.

Lemma 5.9. If L is a pushdown lattice, f is a strict lower facet labelling, and
γ ≤ δ, then f(γ) = f(δ).

Proof. If γ ≤ δ then by Lemma 4.3 we can find a path of the relation⇁ from
δ to γ. The statement follows since f is constant on the relation⇁ .

Lemma 5.10. Let L be a lattice with a strict lower facet labelling f . Let
j ∈ J(L) and δ ∈ C(L) be such that δ1 = j ∨ δ0. Then f(δ) ≤ f(j∗, j) and
f(δ) = f(j∗, j) implies (j∗, j) ≤ δ.

Proof. Let n ≥ 0 and (δi, γi), i = 0, . . . , n, be as in the statement of Lemma
5.7. We have f(δi) = f(γi), i = 0, . . . , n, and f(γi) < f(δi−1) for i = 1, . . . , n.
We deduce that f(δ) = f(δn) ≤ f(γ0) = f(j∗, j) and, f(δ) < f(j∗, j) if n ≥ 1.
Therefore, if f(δ) = f(j∗, j), then n = 0, δ⇁∗ (j∗, j) and (j∗, j) ≤ δ.

By duality, we obtain the following Corollary.

Corollary 5.11. Let L be a pushup lattice with an upper strict facet labelling
f . Let m ∈ M(L) and δ ∈ C(L) such that m ∧ δ1 = δ0. Then f(δ) ≤ f(m,m∗)
and f(δ) = f(m,m∗) implies δ ≤ (m,m∗).

We are ready to achieve the first goal of this section, Proposition 5.14.

Lemma 5.12. If L is a join semidistributive lattice with a strict lower facet
labelling, then jAk implies f(k∗, k) < f(j∗, j).

Proof. If jAk then for some m, j ր m and (k∗, k) ≤ (m,m∗). It follows
that f(k∗, k) = f(m∗,m) ≤ f(j∗, j). The latter is actually an inequality, since
otherwise j∗ ≤ m and, consequently, j = k by the uniqueness of j such that
jրւm.

The next Lemma is not a mere consequence of duality.

Lemma 5.13. If L is a join semidistributive lattice with a strict upper facet
labelling f , then jBk implies f(k∗, k) < f(j∗, j).
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Proof. Let j, k ∈ J(L) be such that jBk, that is, j 6= k and, for somem ∈M(L),
jրւm and m ց k. Then Lemma 5.9 f(j∗, j) = f(m,m∗), since L is a pushup
lattice by Lemma 3.3. Lemma 5.11 ensures that f(k∗, k) ≤ f(m,m∗) = f(j∗, j)
and (k∗, k) ≤ (m,m∗) if this is an equality. The latter case cannot happen,
since otherwise mցտ k and j = k by join semidistributivity. Hence f(k∗, k) <
f(m,m∗) = f(j∗, j).

Proposition 5.14. A join semidistributive lattice with a strict facet labelling
is lower bounded.

Proof. It is enough to show that the relation C has no cycles, for which we shall
argue that jCk implies f(k∗, k) < f(j∗, j). If jAk then we use Lemma 5.12. If
jBk then we can use Lemma 5.13.

Our next goal is to prove the converse of Proposition 5.14.

Lemma 5.15. Let L be a join semidistributive lattice. If j, k ∈ J(L) are such
that for some γ, δ ∈ C(L), γBδ, (j∗, j) ≤ γ and (k∗, k) ≤ δ, then jBk.

Proof. Let γ, δ be such that γBδ: for some u ∈ L and ǫ ∈ C(L), ǫ ⇀u δ and
ǫ0 ≺ u ≤ γ0 ≺ γ1 ≤ δ0. Let j, k as in the statement, and observe that j 6= k,
since j ≤ γ1 ≤ δ0 and k 6≤ δ0. Let µ = (m,m∗) be maximal above γ, so that
jրւm, and let l ∈ J(L) such (l∗, l) ≤ ǫ. We have m ≥ γ0 ≥ u ≥ ǫ0 ≥ l∗. If
m ≥ l, then m ≥ u∨ǫ0∨l = u∨ǫ1 = δ1; this is in turn implies that m ≥ δ1 ≥ γ0,
a contradiction. Hence m 6≥ l and m ց l. We have therefore jBl. It is now
easy to see that l = k, since (l∗, l) ≤ δ and (k∗, k) ≤ δ imply l = k by join
semidistributivity.

Proposition 5.16. A lower bounded lattice has a strict facet labelling.

Proof. If L is bounded then it is join semidistributive and the join dependency
relation D is acyclic. Let us denote by E its reflexive and transitive closure,
and let g : J(L) ✲ N be an antilinear extension of the poset 〈J(L),E〉.
That is, g is such that g(y) < g(x) whenever xDy. Define f : C(L) ✲ N

as follows: f(δ) = g(j(δ)) where j(δ) is the unique join irreducible such that
(j∗(δ), j(δ)) ≤ δ. Then f is a strict facet labelling. It is a lower facet labelling,
since if δ ⇁ γ then j(δ) = j(γ), and since δAγ, then j(δ)Aj(γ), by Lemma
5.6, so that f(γ) < f(δ). It is an upper strict facet labelling, since δ ⇀u γ
implies j(γ) = j(δ) and δBγ implies j(δ)Bj(γ), by Lemma 5.15. Thus again
f(γ) < f(δ).

We end this section collecting the observations presented so far into a main
result:

Theorem 5.17. A finite lattice is lower bounded if and only if it is join semidis-
tributive and has a strict facet labelling.
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Finally, we observe that from Theorem 5.17 it is quite immediate to derive
a standard result by Day, see [8, §2.64], stating that a semidistributive lower
bounded finite lattice is bounded. Recall now that in a semidistributive lattice
δ⇁ γ holds if and only if γ⇀ δ hold. Theorem (5.17) leads to a characterization
of bounded lattices, that we shall rephrase in a language closer to [4]. Call a
facet a quadruple of distinct covers (δ0, δ1, γ0, γ1) such that

δ01 = δ11 and γ0
0 = γ1

0 , δ0⇁δ
1
0 γ0 and δ1⇁δ

0
0 γ1 .

Say that ǫ is interior to the facet (δ0, δ1, γ0, γ1) if γ0
1 ≤ ǫ0 ≺ ǫ1 ≤ δ10 .

Theorem 5.18. A lattice is bounded if and only if it is semidistributive and
there exists a function f : C(L) ✲ N such that for each facet (δ0, δ1, γ0, γ1)
f(δ0) = f(γ0) and f(δ1) = f(γ1), and moreover f(δ1), f(γ0) < f(ǫ) whenever
ǫ is interior to such a facet.

6 Derived Semidistributive Lattices

The main result of this section is Theorem 6.5 stating that a poset of the form
C(L, γ), γ ∈ C(L), is a semidistributive lattice whenever L is a finite semidis-
tributive. Observe that if γ = (j∗, j) with j ∈ J(L) and L is join semidistribu-
tive, then C(L, γ) is the the set { δ ∈ C(L) | γ ≤ δ }. With this in mind we
observe:

Proposition 6.1. If L is a semidistributive lattice, then C(L, γ) is a lattice,
for each γ ∈ C(L).

Proof. C(L) has pullbacks and pushouts, hence C(L, γ) is a lattice by Corollary
2.6.

We shall call C(L, γ) the semidistributive lattice derived from L and γ. We
study next additional properties of the lattices of the form C(L, γ). We begin
with the following Lemma.

Lemma 6.2. Let L be a join semidistributive lattice, and let γ, δ, ǫ ∈ C(L)
such that γ ≤ δ, ǫ ≺ δ, and γ 6≤ ǫ. Then γ0 ∨ ǫ1 = δ1.

Proof. Clearly γ1 ∨ ǫ1 ≤ δ1 and we pretend that this is an equality. If this is
the case, then δ1 = γ1 ∨ ǫ1 = δ0 ∨ ǫ1 implies that δ1 = (γ1 ∧ δ0) ∨ ǫ1 = γ0 ∨ ǫ1.

Since ǫ ≺ δ in C(L), there exists u ∈ L such that δ ⇁u ǫ; recall also from
Proposition 4.4 that an u with this property is unique. Hence, if γ1 ∨ ǫ1 < δ1,
then there exists a w ∈ L such that γ1 ∨ ǫ1 ≤ w ≺ δ1, and from ǫ1 ≤ w ≺ δ1 we
deduce w = u. Hence it also follows that γ0 ≤ γ1 ≤ u and, by the equivalent
pushdown property stated in Proposition 3.6, γ ≤ ǫ.

In the following, we shall use capital Greek letters to range on elements
of C(C(L, γ)). Observe that the next Propositions make sense: if L is join
semidistributive then C(L, γ) is a finite poset with pullbacks, which is enough
to ensure that the relation ≤ on C(C(L, γ)) is a partial ordering.
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Proposition 6.3. If L if a join semidistributive lattice then the projection

( · )0 : C(C(L, γ)) ✲ C(L, γ)

is a Grothendieck fibration.

Proof. Let Γ,Ψ,∆ ∈ C(C(L, γ)) be such that Γ,Ψ ≤ ∆ and Γ0 ≤ Ψ0. We shall
prove that Γ1 ≤ Ψ1, thus implying that Γ ≤ Ψ.

By definition, ∆0 ≺ ∆1, Γ1 ≤ ∆1, Γ1 6≤ ∆0 and similarly Ψ1 ≤ ∆1 but
Ψ1 6≤ ∆0. Let in the statement of Lemma 6.2 γ = Γ1 (γ = Ψ1), δ = ∆1, ǫ = ∆0,
and deduce Γ1,0 ∨∆0,1 = ∆1,1 = Ψ1,0 ∨∆0,1. Hence (Γ1,0 ∧Ψ1,0)∨∆0,1 = ∆1,1

and (Γ1,0 ∧ Ψ1,0) 6≤ ∆0,1. Suppose on the other hand that (Γ1 ∧ Ψ1)0 = Γ1,0 ∧
Ψ1,0 < Γ1,0: it follows then that Γ0 ≤ Γ1 ∧ Ψ1 < Γ1 Γ0 = Γ1 ∧ Ψ1, since
Γ0 ≺ Γ1. In particular (Γ1 ∧ Ψ1)0 = Γ0,0 ≤ ∆0,1, a contradiction. We have
therefore Γ1,0 ∧Ψ1,0 = Γ1,0, that is, Γ1,0 ≤ Ψ1,0. Considering that Γ1,Ψ1 ≤ ∆1

we can use pushdown property (of L) to deduce Γ1 ≤ Ψ1.

Proposition 6.4. If L is join semidistributive, then the projection ( · )0 creates
pullbacks.

Proof. Since the projection ( · )0 is a Grothendieck fibration, by Lemma 4.1 it
is enough to prove that if Γ,Ψ ≤ ∆, then there exists a Υ ≤ Γ,Ψ such that
Υ0 = Γ0 ∧ Ψ0.

To this goal, we observe first that Γ0 ∧ Ψ0 < Γ1 ∧ Ψ1: as in proof the
previous Proposition, we have (Γ1 ∧Ψ1)0 ∨∆0,1 = ∆1,1, (Γ1 ∧Ψ1)0 6≤ ∆0,1, and
consequently Γ1 ∧ Ψ1 6≤ ∆0 since ( · )0 is conservative.

Therefore we can choose (Υ0,Υ1) such that Γ0 ∧ Ψ0 = Υ0 ≺ Υ1 ≤ Γ1 ∧ Ψ1

and observe that Υ1 ≤ Γ0 iff Υ1 ≤ ∆0 iff Υ1 ≤ Ψ0 iff Υ1 ≤ Γ0 ∧ Ψ0, which is
not the case. We have therefore Υ ≤ Γ,∆ with Υ0 = Γ0 ∧ ∆0.

Using Proposition 6.4, also in its dual form, we arrive to the first achievement
of this section.

Theorem 6.5. If L is a semidistributive lattice, then C(L, γ) is a semidistribu-
tive lattice, for each γ ∈ C(L).

We shall use next the characterization of bounded lattice of Theorem 5.18
to obtain the second main result of this section.

Theorem 6.6. If L is a finite bounded lattice, then so is C(L, γ), for each
γ ∈ C(L).

Proof. Let f : C(L) ✲ N be a strict facet labelling. Since a cover in C(L) is
of the form (Γ0,Γ1) with Γ1⇁

u Γ0 for a unique u lower cover of Γ1,1, we define
a function F : C(C(L, γ)) ✲ N by

F (Γ) = f(u,Γ1,1) .
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Observe that if Γ0 ⇀w Γ1, then f(Γ0,0, w) = f(u,Γ1,1) = F (Γ). Let us prove
that this is a strict facet labelling. To this goal, let us suppose that Γ⇁υ ∆ and
Γ1 ≤ Υ0 ≺ Υ1 ≤ υ, as sketched in the next diagram:

Γ10

Γ11

−

Γ00

Γ01

−

∆00

∆01

−

∆10

∆11

−

υ0

υ1

−

Υ10

Υ11

−

Υ00

Υ01

−
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OOOOOOOOOOOO
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u/

z
/

w/

Let us also suppose that Γ1 ⇁
u Γ0, ∆0 ⇀z ∆1, and Υ0 ⇀w Υ1, so that F (Γ) =

f(u,Γ1,1), F (∆) = f(∆0,0, z), and F (Υ) = F (Υ0,0, w).
Recall that ∆0 = υ∧Γ0 and therefore ∆0,0 = υ0∧Γ0,0 = υ0∧Γ1,0∧u = υ0∧u.

Since ∆0 ≺ z ≤ υ0, then z 6≤ u. We have therefore z ≤ Γ1,1, ∆0,0 ≤ u, z 6≤ u,
that is (∆0,0, z) ≤ (u,Γ1,1). Consequently, F (∆) = f(∆0,0, z) = f(u,Γ1,1) =
F (Γ).

In order to show that F (∆) < F (Υ) it is enough to show that if j, k ∈ J(L),
(j∗, j) ≤ (Υ0, w), and (k∗, k) ≤ (u,Γ1,1), then jAk. It follows then, by Lemma
5.12, that

F (Γ) = f(u,Γ1,1) = f(k∗, k) < f(j∗, j) ≤ f(Υ0, w) = F (Υ) .

Let m ∈ M(L) such that (u,Γ1,1) ≤ (m,m∗). We have j ≤ w ≤ Γ1,1 ≤ m∗,
and if j ≤ m, then j ≤ υ0 ∧ Γ1,1 ∧m = υ0 ∧ u = ∆0,0 ≤ Υ0,0, a contradiction.

By duality, it also follows that F (υ,Γ1) < F (Υ).

7 Derived Lattices of Newman Lattices

We refer the reader to [2, 3, 5, 17] for introductory readings on Newman lat-
tices. In this section we explicitly compute derived lattices C(L,α) when L is a
permutohedron or an associahedron and α is an atom.2We shall see that these
derived lattices are again permutohedra (respectively, associahedra) in one di-
mension less. We remark therefore a peculiar property of these lattices, they

2We say that α ∈ C(L) is an atom if α0 is the bottom of the lattice and α1 is an atom in
the usual sense.
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are regular, meaning that C(L,α) does not depend on the choice of the atom
α. We shall exhibit later a semidistributive lattice – not complemented – that
it not regular. Regularity is a property reminiscent of Boolean algebras: if Bn
is the Boolean algebra with n-atoms, α being one of them, then the equality
C(Bn, α) = Bn−1 holds up to isomorphism. More generally:

Proposition 7.1. If α is an atom of a distributive lattice L, then the projection
( · )0 from C(L,α) to the lower set {x ∈ L | α1 6≤ x } is an isomorphism.

The Proposition depends on modularity, since if α1 6≤ x, then x ≺ x ∨ α1.
In the proofs to follow we shall make intensive use of the category of finite

ordinals and functions among them, a skeleton of the category of finite sets and
functions. To this goal, let [n] be the set { 1, . . . , n } and, for i ∈ [n], denote
by în : [n − 1] ✲ [n] the unique order preserving injection whose image is
[n] \ { i }. For k ∈ [n − 1] denote by Nk

n : [n] ✲ [n − 1] the unique order
preserving surjection such that Nk

n(k) = Nk
n(k + 1). As the subscripts n will

always be understood from the context, we shall omit them and write only î
and Nk.

Proposition 7.2. Let Sn be the permutohedron on n letters (i.e. the weak
Bruhat order on permutations on n elements). If α is an atom of Sn then
C(Sn, α) is isomorphic to Sn−1.

Proof. As usual we represent a permutation w ∈ Sn as the word w(1) . . . w(n) =
w1 . . . wn. An increase of w is an index i ∈ { 1, . . . , n− 1 } such that wi < wi+1.
If i is an increase of w and σi denotes the exchange permutation (i, i+ 1), then
we represent the cover w ≺ w ◦ σi of Sn by the pair (w, i). Every cover arises
in this way.

Remark now that a cover (w, i) is perspective to the atom (⊥, σk) if and only
if wi = k and wi+1 = k + 1. If (w, i) is such a cover, then we define ψk(w, i) as
the composal

[n− 1]

[n]

î+1

OO
[n]

w //

[n− 1]

Nk+1

��ψk(w,i) //

(1)

For example, ψ1(35124, 3) is the permutation 2413. Let us remark that ψk(w, i)
is injective, hence ψk(w, i) ∈ Sn−1. If not, there exists x, y ∈ [n] such that
x, y, i+1 are pairwise distinct andNk+1(wx) = Nk+1(wy). But this may happen
only if {wx, wy } = { k, k + 1 } and, by the assumption on the permutation w,
this happens exactly when {x, y } = { i, i+ 1 }.

It is easily seen that ψk is a bijection from C(Sn, (⊥, σ
k)) to Sn−1: if u ∈

Sn−1 then (w, i), where i is determined by ui = k, and where

wj =

{

k + 1 , j = i+ 1 ,

k̂ + 1(uNi+1(j)) , otherwise ,
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is the unique cover of Sn which is sent by ψk to u.
To prove that ψk is an order isomorphism, we prove that (w, i) ≺ (w′, i′) if

and only if ψk(w, i) ≺ ψk(w′, i′). This equivalence is an immediate consequence
of the following two claims.

Claim 7.3: For j ∈ [n], j 6= i, j is an increase of w if and only if N i+1(j) is an
increase of ψk(w, i).

Define

(x, y) =

{

(i, j + 1) , j = i+ 1 ,

(j, j + 1) , otherwise.

Observe that the assumption on the index i, namely that wi = k < k+1 = wi+1,

implies (i) i + 1 6∈ {x, y }, î+ 1(N i+1(j)) = x, and î+ 1(N i(j) + 1) = y, (iii)
wj < wj+1 if and only if wx < wy. By (i) and (ii) we have two commuting
diagrams of order preserving maps

[N i+1(j), N i+1(j) + 1] [n− 1]//

[n]

î+1

OO
[x, y]
EE

��

//

By pasting along î+ 1 this diagram with diagram (1) defining ψk(w, i), we
obtain that wj < wj+1 iff wx < wy iff ψj(w, i)Ni+1(j) < ψj(w, i)Ni+1(j)+1.
� Claim

Claim 7.4: Given an increase j 6= i of w, let w′ and i′ be determined by the the
pushup relation (w, i)⇀w◦σj (w′, i′). Then

ψk(w′, i′) = ψk(w, i) ◦ σN
i+1(j) .

Let us first compute w′ and i′ in the pushup relation (w, i)⇀w◦σj (w′, i′). If
|i−j| > 1, then w◦σi◦σj = w◦σj ◦σi, so that w′ = w◦σj and i′ = i. Otherwise
|i− j| = 1, w ◦ σi ◦ σj ◦ σi = w ◦ σj ◦ σi ◦ σj and therefore w′ = w ◦ σj ◦ σi and
i′ = j.

Let us suppose that |i− j| > 1. We have then

σj ◦ î+ 1 = î+ 1 ◦ σN
i+1(j) (2)

and therefore

ψk(w ◦ σj , i) = ψk(w, i) ◦ σN
i+1(j) (3)

by virtue of the following commuting diagram:

[n− 1] [n− 1]
σNi+1(j)

//

[n]

î+1

OO
[n]

σj

// [n]
w //

[n− 1]

Nk+1

��
î+1

OO

ψ(w,i) // .

18



We leave verification of (2) to the reader.
Let us suppose otherwise that |i− j| = 1. In this case we claim that

σj ◦ σi ◦ ĵ + 1 = î+ 1 ◦ σN
i+1(j) (4)

so that

ψk(w ◦ σj ◦ σi, j) = ψk(w, i) ◦ σN
i+1(j) (5)

by the diagram

[n− 1] [n− 1]
σNi+1(j)

//

[n]

ĵ+1

OO
[n]

σj
◦σi

// [n]
w //

[n− 1]

Nk+1

��
î+1

OO

ψ(w,i) // .

To prove equation (4) we use the standard properties of the calculus of
strings, see [12, §2.3] for example. If i < j, then we have

σj ◦ σi ◦ ĵ + 1 = î+ 1 ◦ σi

as witnessed by

��������

=
��������

Otherwise j < i and

σj ◦ σi ◦ ĵ + 1 = î+ 1 ◦ σj ,

the latter relation being witnessed by

��������

=
��������

� Claim

This also completes the proof of Proposition 7.2.

We use Proposition 7.2 to argue that derived semidistributive lattices of the
form C(L, γ) are not quotients of L in the most obvious way. It is a standard
reasoning to argue that δ ∈ C(L, γ) implies (δ0, δ1) ∈ θ(γ0, γ1), where θ(γ0, γ1)
is the congruence generated by the pair (γ0, γ1). It is reasonable to ask whether
the lattice C(L, γ) is related to the specific quotient lattice L/θ(γ0, γ1). The
following Proposition gives a first answer in the negative, showing that these
two lattices are not in general isomorphic.
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Proposition 7.5. For k ∈ { 1, . . . , n− 1 } the lattice Sn/θ(⊥, σ
k) is isomorphic

to the lattice Sk × Sn−k.

Proof. We recall that for a finite lattice L and a congruence θ of L, each equiv-
alence class [x]θ has a least element µθ(x), computed as follows:

µθ(x) =
∨

{ j ∈ J(L) | j ≤ x and (j∗, j) 6∈ θ } .

The quotient L/θ is then isomorphic to the poset 〈{µθ(x) | x ∈ L },≤〉. We use
this representation to give explicit form to Sn/θ(⊥, σ

k).
Recall that a permutation is join irreducible iff it has a unique descent, i.e.

a unique index i ∈ { 1, . . . , n − 1 } such that wi > wi+1. In [17] we called
the pair (wi+1, wi) the principal plan of the join irreducible w. Let us denote
by E the reflexive transitive closure of the join dependency relation between
join irreducible permutations. From the characterization given there of the join
dependency relation, we have that w E σk iff the [k, k + 1] ⊆ [a, b], where a, b
is the principal plan of w. Therefore, a join irreducible permutation is not
congruent to its unique lower cover modulo θ(⊥, σk) if and only if its principal
plan does not contain the interval [k, k + 1].

Remark that, for a < b < c, we have [k, k+1] ⊆ [a, c] if and only if [k, k+1] ⊆
[a, b] or [k, k + 1] ⊆ [b, c]. Using this fact, we see that if D = D(w) is the set of
disagreements (or inversions) of some permutation w, then D′ = { (a, b) ∈ D |
[k, k + 1] 6⊆ [a, b] } is also the set of disagreements of some permutation w′. To
this goal, it is enough to verify that D′ is closed – i.e. (a, b), (b, c) ∈ D′ implies
(a, c) ∈ D′ – and open as well – i.e. a < b < c and (a, c) ∈ D′ implies (a, b) ∈ D′

or (b, c) ∈ D′. Since (a, b) ∈ D(w) if and only if there exists j ∈ J(Sn) such
that (a, b) is the principal plan of j, then we deduce that the permutation w′ is
the least element in the congruence class of w.

Knowing that the order on Sn is given by inclusion of disagreement sets, the
relation

D(w′) = { (a, b) ∈ D(w) | [a, b] ⊆ [1, k] } ⊎ { (a, b) ∈ D(w) | [a, b] ⊆ [k + 1, n] }

exhibits Sn/θ(⊥, σ
k) as the product of Sk and Sn−k.

Considering that finite semidistributive lattices and bounded lattices form
pseudovarieties [11, 14], we leave it as an open problem whether derived lattices
are constructible by means of standard operations such as homomorphic images,
subalgebras and products.

We are ready to tackle computation of the lattices derived from associahedra
by atoms. The computation we present here is a direct one. Considering however
that associahedra are quotient of permutohedra, see [16, §9], we expect that the
next Proposition may be derived from Proposition 7.2 in a more informative
manner.

Proposition 7.6. Let Tn be the associahedron on n+1 letters (i.e. the Tamari
lattice). If α is an atom of Tn then C(Tn, α) is isomorphic to Tn−1.
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To prove the propositions we shall review some facts about the explicit rep-
resentation of the Tamari lattices as lattices of bracketing vectors with the
pointwise order, see [10, 2, 5]. A bracketing vector is a vector v ∈ { 1, . . . , n }n

such that (i) i ≤ vi and (ii) i < j ≤ vi implies vj ≤ vi. We are going to deter-
mine covers of the pointwise order. Let us say that k ∈ { 1, . . . , n− 1 } is a split
of a bracketing vector v if i < k ≤ vi implies vvk+1 ≤ vi. The next diagram
should help understanding the condition: if k is a split, then the black region is
a forbidden area meaning that it does not contain points of the form (i, vi).

�������������������������������������������

1

�������������

k

���������
vk + 1vk

vvk+1

Lemma 7.7. Let k be a split of a bracketing vector v and define the vector vk

by

vki =

{

vvk+1, i = k,

vi, otherwise.

Then v ≺ vk and moreover all the covers in Tn arise in this way.

Proof. We observe first that vk is again a bracketing vector. Condition (i) is
satisfied: if i 6= k, then i ≤ vi = vki , and otherwise k ≤ vk < vk+1 ≤ vvk+1 = vkk .
Condition (ii) clearly holds if both i and j are distinct from k. Let us suppose
that j = k, that is i < k ≤ vki = vi. Since k is a split, then vkk = vvk+1 ≤ vi. Let
us suppose that i = k, that is, k < j ≤ vkk = vvk+1. If j ≤ vk then vj ≤ vk < vkk .
If vk < j, then vk + 1 ≤ j ≤ vvk+1 and vj ≤ vvk+1 = vkk .

Let us suppose that v < w and let k be the least index such that vk < wk.
Observe first that vvk+1 ≤ wk: from vk < wk we can write k < vk + 1 ≤ wk and
hence vvk+1 ≤ wvk+1 ≤ wk. Also k is a split of v: if i < k ≤ vi then i < k ≤ wi,
wk ≤ wi so that vvk+1 ≤ wk ≤ wi = vi. This shows that v ≺ vk and moreover
that any upper cover of v is of the form vk for some split of v.

Lemma 7.8. Let v be a bracketing vector.
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1. If i, j are two splits of v with j = vi + 1, then we have the following
pentagon:

vi . . . vj . . . vvj+1

vj . . . vj . . . vvj+1

i???

???

vvj+1 . . . vj . . . vvj+1

i

vvj+1 . . . vvj+1 . . . vvj+1

j
���

���

vi . . . vvj+1 . . . vvj+1

j














i44444

44444

2. If i, j are two splits of v and j 6= vi + 1, then we have one of the following
diamonds:

vi . . . vvi+1 . . . vj . . . vvj+1

vvi+1 . . . vvi+1 . . . vj . . . vvj+1

i OOOO

OOOO

vvi+1 . . . vvi+1 . . . vvj+1 . . . vvj+1

joooo

oooo

vi . . . vvi+1 . . . vvj+1 . . . vvj+1

joooo

oooo

i OOOO

OOOO

vi . . . vj . . . vvj+1 . . . vvi+1

vvi+1 . . . vj . . . vvj+1 . . . vvi+1

i OOOO

OOOO

vvi+1 . . . vvj+1 . . . vvj+1 . . . vvi+1

joooo

oooo

vi . . . vvj+1 . . . vvj+1 . . . vvi+1

joooo

oooo

i OOOO

OOOO

We refer the reader to [5, Propositions 4 and 5] for a detailed proof of this
Lemma.

If v is a bracketing vector and k is a split of v, then we denote the cover
v ≺ vk by the pair (v, k). From the previous Lemma it immediately follows:

Corollary 7.9. If i 6= j and (v, j)⇀vi (w, k), then k = j and

w =

{

vii, j = vi + 1,

vi, otherwise.

Corollary 7.10. A cover (v, j) is perspective to the atom (⊥, k) if and only if
j = k and vk = k. In this case k is the unique index i such that vi = k.

Proof. The condition is necessary: the property holds for (v, k) and, by Lemma
7.8, is preserved under the operation of pushing up covers. The condition is
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also sufficient, for which it is enough to remark that if vk = k, then ⊥ ≤ v,
⊥k = k + 1 6≤ k = vk, ⊥

k = k + 1 ≤ vkk = vvk+1. For the last statement, let us
suppose that k is a split of v and that vk = k. If vi = k, then i ≤ k. However
i < k contradicts i being a split.

We are ready to proof Proposition 7.6.

Proof of Proposition 7.6. From a cover (v, k) ∈ C(Tn), perspective to an atom,
define a bracketing vector ψ(v, k) ∈ Tn−1 as the composal

[n− 1]

[n]

k̂

OO
[n]

v //

[n− 1]

Nk

��ψ(v,k) // .

Before carrying on with the proof, we collect first some remarks. Observe that
Nk(k̂(x)) = x, while x ≤ k̂(Nk(x)) and this is an equality if x 6= k. Therefore k̂

is right adjoint to Nk and moreover Nk is inverse to k̂ if restricted to [n] \ { k }.
Also Nk(x) + 1 = Nk(x + 1) if x 6= k. If (v, k) is perspective to an atom,
so that vj = k implies j = k, an integer of the form vk̂(j) is not equal to k,

otherwise k = k̂(j), a contradiction. Consequently we shall use formulas such

as k̂(Nk(vk̂(j))) = vk̂(j), and Nk(vk̂(j)) + 1 = Nk(vk̂(j) + 1).

Let us verify that ψ(v, k) is a bracketing vector. The relation i ≤ ψ(v, k)i =

Nk(vk̂(i)) immediately follows from k̂(i) ≤ vk̂(i). If i < j ≤ ψ(v, k)i = Nk(vk̂(i)),

then k̂(i) < k̂(j) ≤ k̂(Nk(vk̂(i))) = vk̂(i) and vk̂(j) ≤ vk̂(i) since v is a bracketing

vector; the relation ψ(v, k)j ≤ ψ(v, k)i follows then by applying Nk.
The correspondence ψ is a bijection: given w ∈ Tn−1 the vector v ∈ Tn,

defined by vi = k if i = k and vi = k̂(wNk(i)) otherwise, is the unique bracketing
vector such that (v, k) is a cover perspective to (⊥, k) and ψ(v, k) = w.

We are going to verify that (a) j is a split of ψ(v, k) iff k̂(j) is a split of v, (b)

if (v, k)⇀vj (w, k) then ψ(w, k) = ψ(v, k)N
k(j). From these properties it follows

that ψ preserves and reflects the covering relation and therefore it is an order
isomorphism.

(a) Let us suppose first that k̂(j) is a split of v and that l < j ≤ ψ(v, i)l =

Nk(vk̂(l)). It follows that k̂(l) < k̂(j) ≤ k̂(Nk(vk̂(l))) = vk̂(l) and therefore
vv

k̂(j)+1 ≤ vk̂(l). Hence

ψ(v, k)ψ(v,k)j+1 = Nk(vk̂(Nk(v
k̂(j))+1)) = Nk(vk̂(Nk(v

k̂(j)+1)))

= Nk(vv
k̂(j)+1) ≤ Nk(vk̂(l)) = ψ(v, k)l .

Let us suppose now that j is a split of ψ(v, k) and that l < k̂(j) ≤ vl. Observe

that the relation l < vl implies that l 6= k. Since both l and k̂(j) are distinct
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from k, the relation l < k̂(l) is strictly preserved by Nk and consequently

Nk(l) < Nk(k̂(j)) = j

≤ Nk(vl) = Nk(vk̂(Nk(l))) = ψ(v, k)Nk(l) .

We have therefore ψ(v, k)ψ(v,k)j+1 ≤ ψ(v, k)Nk(l) and

Nk(vv
k̂(j)+1) = Nk(vk̂(Nk(v

k̂(j)+1))) = Nk(vk̂(Nk(v
k̂(j))+1))

= ψ(v, k)ψ(v,k)j+1 ≤ ψ(v, k)Nk(l) = Nk(vl) .

Transposing this relation and considering that l 6= k we deduce

vv
k̂(j)+1 ≤ k̂(Nk(vl)) = vl .

(b) Let us suppose that (v, k)⇀vj (w, k), so that w = vjj if k = vj + 1 and

w = vj otherwise. We want to prove that ψ(w, k) = ψ(v, k)N
k(j). Let us begin

to show that these two vectors coincide in each component i such that i 6= Nk(j)

(or equivalently j 6= k̂(i)):

ψ(w, k)i = Nk(wk̂(i)) = Nk(vk̂(i)) = ψ(v, k)i = ψ(v, k)
Nk(j)
i .

Therefore we are left to compare the values of the two vectors at the coordinate
i = Nk(j). On the one hand, we have

ψ(v, k)
Nk(j)

Nk(j)
= ψ(v, k)ii = ψ(v, k)ψ(v,k)i+1 = Nk(vk̂(Nk(v

k̂(i))+1))

= Nk(vk̂(Nk(v
k̂(i)+1))) = Nk(vk̂(Nk(vj+1)))

=

{

Nk(vk+1) , k = vj + 1

Nk(vvj+1) , otherwise.

On the other hand, we have

ψ(w, k)Nk(j) =

Nk(wj) =































Nk(vjjj )= Nk(vj
vj

j
+1

) = Nk(vjvvj+1+1)

= Nk(vjvk+1) = Nk(vjk+1)

= Nk(vk+1) , k = vj + 1 ,

Nk(vjj ) = Nk(vvj+1) , otherwise.

This completes the proof of Proposition 7.6.

Let us say that a finite semidistributive lattice is regular if the lattices
C(L,α), α an atom of L, are all isomorphic. It is not the case that every semidis-
tributive lattice is regular as witnessed by the multinomial lattice L(2, 2, 1),

24



the bottom of which is represented in figure 1. Let α = aaabbc ≺ ababc and
β = aaabbc ≺ aabcb be two atoms of this lattice, if we consider the bottoms
of C(L,α) and C(L, β) we observe these two lattices are not isomorphic. We
remark that the lattice L(2, 2, 1) is not complemented, contrary to the Newman
lattices considered in this section. It might be conjectured that complemented
semidistributive lattices are regular. More generally it is an open problem to
identify sufficient conditions that ensure that a semidistributive lattice is regu-
lar.

aabbc

ababc

baabc abbac abacb

aabcb

aacbb

α???

???
β���

���

???????

�������

???????

�������

α

•

•

β

•

• ????????

•
��������

Figure 1: The bottom of the lattices L = L(2, 2, 1), C(L,α) and C(L, β).
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