
HAL Id: hal-00165673
https://hal.science/hal-00165673

Submitted on 27 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a denotational semantics for a reflective Scheme
- An implementation of the towerless model

Catherine Recanati, Alain Deutsch

To cite this version:
Catherine Recanati, Alain Deutsch. Towards a denotational semantics for a reflective Scheme - An
implementation of the towerless model. 1987. �hal-00165673�

https://hal.science/hal-00165673
https://hal.archives-ouvertes.fr

Towards a denotational semantics for a reflective Scheme
- An implementation of the towerless model -

C. Recanati, Non Standard Logics, ...mcvax!inria!lri!nsl!cathy
A. Deutsch, LITP, Universite de Paris VI, ...mcvax!inria!litp!ald

This paper presents the Flat Reflexive Scheme Interpreter (FRSI) by means of which process migra-
tion is performed in our prototypic DSM system (see [16]). The implementation of this interpreter
is based on the semantical description of the underlying language. An important conclusion of this
paper is that it is not possible to give an usual structural denotational description of reflective
languages. Nevertheless, we have given what we call a relative denotational semantics. In the first
part of this paper, we explain what we mean by this and in the second part, we give a relative
denotational description of our language.

1. Introduction

As it has been pointed out in previous Chameleon reports, [13, 14, 15], procedural reflection provides
a fruitful research framework for the building of dynamic software migration systems. We have
extended the description given in these reports to a real size language - Scheme - with a real
implementation in SKIM, a dialect of Scheme (see [4, 5]).
Originally, the notion of reflection was introduced by Smith. It was then viewed as “the ability of
an agent to reason not only introspectively about its self and internal thought processes, but also
externally, about its behaviour and situation in the world” (in [8]). In terms of programs, it should
be a mechanism which allows a program to gain access both to its text and to the context in which
it is running. Such a device should provide a means by which an active program can extract from
its environments a context-free description of its state.
In the model developed by Smith and des Rivières [9] the architecture resembles an infinite tower
of continuation-passing metacircular interpreters. A program running at one level can provide code
to be run at the next higher level. Although it may be possible to give a denotational description
of this potentially infinite tower of interpreters, as has been claimed by Friedman and Wand in [12],
the advantages of such a model of reflection have not yet been investigated and will be the subject
of future work (see [16, 17]).
Friedman and Wand have proposed another model of reflection in [10]. They propose to build
a reflective Scheme interpreter by adding two more primitives called reify and reflect. The
intuitive meaning of these two functions is the following: reify will freeze the state of the program
and reflect will reanimate it. Unfortunately, the formal description of these two primitives is not
easy.

2. Towards a denotational description

In this section, we summarize the difficulties encountered and present a relative denotational de-
scription of a reflective Scheme.

1

Towards a denotational description

2.1. Semantic problems

The reflect primitive is very similar to the eval procedure of LISP. The introduction of eval is
problematic in the denotational approach because it leads to the following equation:

E [[(eval exp)]]ρ = E [[E [[exp]] ρ]] ρ

which is not structural.
With reflect, a similar failing occurs. As Yelland ([15]) has pointed out, in Friedman and Wand,
the semantical equation for reflect leads to the following term:

[[e0]]ρ {(λe[[e]] reflectP(p) reflectK(k))}

which is again non structural because when [[e0]]ρ will be passed to the continuation, it will lead to

...[[[[e0]]ρ]] reflectP(p) reflectK(k)

Now, the use of structural induction is a corner stone of the denotational approach. Without
it, it is not guaranteed that every program will be assigned a meaning.
To solve this problem Yelland proposes what he calls a metacircular denotational semantics. His
approach is more operational than denotational because it is still non structural. To preserve struc-
tural induction, a denotational description defines the meaning of a syntactic component only in
terms of the meaning of its immediate subcomponents. Now, in the definition of (reflect e0 e1 e2)
the following expression occurs:

I e0 ρ { (λe . I e1 ρ (λp ... I e reflectP(p) reflectK(k)))}

Therefore, one more time, there is a call to the metacircular interpreter I taking as argument
an expression e which is not an immediate syntactic subcomponent of the original expression.
(Here, the only immediate syntactic subcomponents of the expression are e0 e1 and e2).
Stoy in [7] has convincingly emphasized the differences between the operational and the denotational
approach. From an implementation point of view, the operational approach can be very convenient.
But the operational approach will define the value of the program in terms of what an abstract
machine does with the complete program. The denotational approach will define the value of a
program in terms of the values of its subcomponents. According to Stoy, ”the crux of the distinction
is that by considering the function associated with a program by an operational definition of
semantics, we may be begging the question of whether such a function exists and is well-defined”
([7]).
But although the denotational approach is safer, reflection is intrinsically operational. So a complete
denotational description is not possible and we have to look for another solution.

2.2. A relative structural denotational description

It is not possible to give a completely structural denotational description of a reflective language.
The only thing we can do is to give a description whose structural character is relative to reflect.
An analogous notion exists in computation theory. Computability is usually defined by a set of
primitives and by a structural induction schema which makes the construction of other computable
functions possible. Usually, the set of primitive functions effectively contains computable functions.
But another notion of computability can be defined, by adding to the set of primitives other

A denotational description for a reflective Scheme 2

The language

functions, like the truth function T of the predicate calculus, which are not necessary computable.
The new class of functions which can then be reached by structural induction is said to be relatively
computable in T.

We have done something similar in the denotational model. Our idea is that, even if the whole
language cannot be given a structural denotational description, it is interesting to give a description
which will be structural as far as possible and make explicit the precise points at which the structural
approach fails.

For instance, in our language, only the reflect primitive cannot be given a structural description.
So we have given what we call a relative structural description in reflect. In this description, the
meaning of all the expressions but the ones containing reflect is given a full denotational definition.
One of the advantages of this approach is that if a program doesn’t contain any reflect expression
its correctness may be proved by structural induction.

Another interesting property of this description is that it shows which part of a program may
be actually compiled. In the implementation, the purely denotational part of the semantics will
translate into a compiling program and the operational part will correspond to the call of an
interpreter.

3. The language

The language itself is a subset of Scheme ([1, 3, 4, 5]) extended to support reflection and reification.
We present an abstract semantic of the language using notations of [7], based on the work of M.
Wand in [1]; we have extended this description with a top-level definition, continuations definitions,
and reify and reflect expressions. The formal specification is in section 3.1 with comments in section
3.2.

3.1. Formal specification

3.1.1. Notations

The notation is summarized below:

〈 . . . 〉 sequence formation
s † k kth member of the sequence s (1-based)
#s length of sequence s
s § t concatenation of sequences s and t
s ↓ k drop the first k members of sequence s
t → a, b McCarthy conditional “if t then a else b”
ρ[x/i] substitution “ρ with x for i”
E = A + B sum of A and B (disjoint union)
e |A projection onto A
a in E canonical injection

We also use ↓ i to denote the i-th projection of a cartesian product.

3.1.2. Syntax

The following is the abstract BNF syntax of the language:

A denotational description for a reflective Scheme 3

The language

P ∈ Prg programs
T ∈ Top top-level expressions

D ∈ Def definitions

E ∈ Exp expressions
K ∈ Con constants, including quotations
I ∈ Ide variables
Γ ∈ Com = Exp commands

Prg −→ T | T P

Top −→ E | D

Def −→ (define I E)
| (define (I0 I∗) Γ∗ E0)

Exp −→ K | I | (E0 E∗)
| (lambda (I∗) Γ∗ E0)
| (if E0 E1 E2)
| (set! I E)
| (reify E0 K0)
| (reflect E0 E1 E2 E3)

A denotational description for a reflective Scheme 4

The language

3.1.3. Domains
α ∈ L locations
ν ∈ N natural numbers
τ ∈ T = Tk + Tvar + Tλ + Tif + Tset + Tcall + Tseq + Trei + Tref textual forms

Tk = E constants
Tvar = Q variables
Tλ = Q∗ × T∗ × T lambda forms
Tif = T× T× T conditional forms
Tset = Q× T assignments
Tcall = T∗ combinations
Tseq = T∗ × T sequences
Trei = T∗ × E reify forms
Tref = T× T× T× T reflect forms
B = {false, true} booleans
Q symbols
H characters
R numbers
Ep = L× L pairs
Ev = L∗ vectors
Es = L∗ strings
M = {false, true, null, undefined, unspecified, nihil}

miscellaneous
φ ∈ F = L× (E∗ → K→ C) procedure values
ε ∈ E = Q + H + R + Ep + Ev + Es + M + F expressed values
σ ∈ S = L→ (E× B) stores
ρ ∈ U = (Ide → Q)× (Q→ L) environments
θ ∈ C = S→ A command continuations
κ ∈ K = E∗ → C expression continuations
ζ ∈ Z = U→ C definition continuations

A answers
X errors

3.1.4. Semantic functions
P : Prg → U→ K→ Z→ C
T : Top → U→ K→ Z→ C

D : Def → U→ Z→ C

E : Exp → U→ K→ C
E∗ : Exp∗ → U→ K→ C
C : Com∗ → U→ C→ C
K : Con → E

P[[T]] = λρκζ . T [[T]]ρκζ

P[[T P]] = λρκζ . T [[T]]ρ
(λε∗ . (seq (print ε∗) P[[P]]ρκζ))
(λρ′ . P[[P]]ρ′κζ)

A denotational description for a reflective Scheme 5

The language

T [[E]] = λρκζ . E [[E]]ρκ

T [[D]] = λρκζ . D[[D]]ρζ

D[[(define I E)]] =
λρζ . (λσ . ((λρ′ . E [[(set! I E)]] ρ′ (λε∗ . ζ(ρ′)))

(extends ρ 〈I〉 〈new σ〉))) σ

D[[(define (I0 I∗) Γ∗ E0)]] =
λρζ . (λσ . ((λρ′ . E [[(set! I0 (lambda (I∗) Γ∗ E0))]]ρ′ (λε∗ . ζ(ρ′)))

(extends ρ 〈I0〉 〈new σ〉))) σ

E [[K]] = λρκ . send (K[[K]])κ

E [[I]] = λρκ . hold (lookup ρ I)
(single(λε . ε = undefined →

wrong "undefined variable",
send ε κ))

E [[(E0 E∗)]] =
λρκ . E∗(permute(〈E0〉 § E∗)

ρ
(λε∗ . ((λε∗ . applicate (ε∗ ↓ 1) (ε∗ † 1) κ)

(unpermute ε∗)))

E [[(lambda (I∗) Γ∗ E0)]] =
λρκ . λσ .

new σ ∈ L→
send (〈new σ | L,

λε∗κ′ . #ε∗ = #I∗ →
tievals(λα∗ . (λρ′ . C[[Γ∗]]ρ′(E [[E0]]ρ′κ′))

(extends ρ I∗ α∗))
ε∗,

wrong "wrong number of arguments"〉
in E)

κ
(update (new σ | L) unspecified σ),

wrong "out of memory" σ

E [[(if E0 E1 E2)]] =
λρκ . E [[E0]] ρ (single (λε . truish ε → E [[E1]]ρκ,

E [[E2]]ρκ))

E [[(if E0 E1)]] =
λρκ . E [[E0]] ρ (single (λε . truish ε → E [[E1]]ρκ,

send unspecified κ))

Here and elsewhere, any expressed value other than undefined may be used in place of unspecified.

A denotational description for a reflective Scheme 6

The language

E [[(set! I E)]] =
λρκ . E [[E]] ρ (single(λε . assign (lookup ρ I)

ε
(send unspecified κ)))

E [[(begin Γ∗ E0)]] = λρκ . C[[Γ∗]] ρ (E [[E0]]ρκ)

E [[(reflect E0 E1 E2 E3)]] =
λρκ . E∗[[E0 E1 E2 E3]] ρ

(λε∗σ . intern (ε∗ ↓ 1)
(λτ . int τ (upU (ε∗ ↓ 2))

(upK (ε∗ ↓ 3)) (upS (ε∗ ↓ 4)))
σ

E [[(reify E0 K0)]] =
λρκ . E [[E0]] ρ

(single(λεσ . applicate ε 〈K[[K0]] ,downU ρ,
downK κ, downS σ〉 σ))

E∗[[]] = λρκ . κ〈 〉

E∗[[E0 E∗]] =
λρκ . E [[E0]] ρ (single(λε0 . E∗[[E∗]] ρ (λε∗ . κ (〈ε0〉 § ε∗))))

C[[]] = λρθ . θ

C[[Γ0 Γ∗]] = λρθ . E [[Γ0]] ρ (λε∗ . C[[Γ∗]]ρθ)

3.1.5. Auxiliary functions

lookup : U→ Ide → L
lookup = λρI . (ρ ↓ 2)((ρ ↓ 1)I)

extends : U→ Ide∗ → L∗ → U
extends =

λρI∗α∗ . #I∗ = 0 → ρ,
extends 〈ρ ↓ 1 , (ρ ↓ 2)[(α∗ ↓ 1)/(ρ ↓ 1)(I∗ ↓ 1)] 〉

(I∗ † 1)
(α∗ † 1)

wrong : X→ C [implementation-dependent]

send : E→ K→ C
send = λεκ . κ〈ε〉

A denotational description for a reflective Scheme 7

The language

single : (E→ C) → K
single =

λψε∗ . #ε∗ = 1 → ψ(ε∗ ↓ 1),
wrong "wrong number of return values"

new : S→ (L + {error}) [implementation-dependent]

hold : L→ K→ C
hold = λακσ . send (σα ↓ 1)κσ

assign : L→ E→ C→ C
assign = λαεθσ . θ(update αεσ)

update : L→ E→ S→ S
update = λαεσ . σ[〈ε, true〉/α]

tievals : (L∗ → C) → E∗ → C
tievals =

λψε∗σ . #ε∗ = 0 → ψ〈 〉σ,
new σ ∈ L→ tievals (λα∗ . ψ(〈new σ | L〉 § α∗))

(ε∗ † 1)
(update(new σ | L)(ε∗ ↓ 1)σ),

wrong "out of memory"σ

truish : E→ B
truish = λε . (ε = false ∨ ε = null) → false, true

permute : Exp∗ → Exp∗ [implementation-dependent]

unpermute : E∗ → E∗ [inverse of permute]

applicate : E→ E∗ → K→ C
applicate =

λεε∗κ . ε ∈ F→ (ε | F ↓ 2)ε∗κ, wrong "bad procedure"

sequence : T∗ → U→ K→ S→ A
sequence =

λτ∗ρκσ . #τ∗ = 0 → wrong "empty sequence" σ,
#τ∗ = 1 →int (τ∗ ↓ 1) ρ κ σ,

int (τ∗ ↓ 1) ρ (λε∗ . sequence (τ∗ † 1) ρ κ)

intern : E→ (T→ A) → S→ A [ommited]

downU : U→ E
downU =

λρ . ρ in E

downK : K→ E
downK =

λκ . κ in E

A denotational description for a reflective Scheme 8

The language

downS : S→ E
downS =

λσ . σ in E

upU : E→ U
upU =

λε . ε | U

upK : E→ K
upK =

λε . ε | K

upS : E→ S
upS =

λε . ε | S

int∗ : T∗ → U→ K→ C
int∗ =

λτ∗ρκ . #τ∗ = 0 → κ 〈〉,
int (τ∗ ↓ 1)

ρ
(single(λε . int∗ (τ∗ † 1) ρ (λε∗ . κ (〈ε〉 § ε∗))))

int : T→ U→ K→ S→ A
int =

λτρκσ .
cases τ of
isTk(k) → κ〈k〉σ
isTvar(i) → hold ((ρ ↓ 2) i)

(single (λε . ε = undefined→ wrong "undefined variable" ,
(send ε κ)))

σ
isTλ(l) →

(λi∗e∗ . new σ ∈ L→
send (〈new σ | L,

λε∗κ′ . #ε∗ = #i∗ →
tievals(λα∗ . ((λρ′ . sequence ε∗)

(extends ρ i∗ α∗)))
ε∗,

wrong "wrong number of arguments"〉 in E)
κ
(update (new σ | L) unspecified σ),

wrong "out of memory" σ)
(l ↓ 1)
((l ↓ 2) § 〈l ↓ 3〉)

isTif(l) →
int (l ↓ 1)

ρ

A denotational description for a reflective Scheme 9

The language

(single(λε . truish ε →
int (l ↓ 2) ρ κ σ,
int (l ↓ 3) ρ κ σ))

σ
isTset(l) →

int (l ↓ 2)
ρ
(single(λε . assign((ρ ↓ 2)(l ↓ 1))

ε
(send unspecified κ)))

σ
isTseq(l) →

sequence ((l ↓ 1) § 〈l ↓ 2〉) ρ κ σ
isTcall(l) →

int∗ (permute l)
ρ
(λε∗ . ((λε∗ . applicate(ε∗ ↓ 1) (ε∗ † 1) κ)

(unpermute ε∗)))
σ

isTrei(l) →
int (l ↓ 1)

ρ
(single (λε . applicate ε 〈l ↓ 2, downU ρ, downK κ, downS σ〉))
σ

isTref(l) →
int∗ l

ρ
(λε∗ . intern (ε∗ ↓ 1)

(λτ . int τ (upU (ε∗ ↓ 2)) (upK (ε∗ ↓ 3)) (upS (ε∗ ↓ 4)))
σ)

σ
isE(x) → wrong "illegal object" σ
endcases

3.2. Comments on the formal specification

This semantic description uses the three variables ρ, κ, σ as metavariables for environments, con-
tinuations and stores. The denotation of an expression is a function of these three variables.
The introduction of the reflect primitive, as we have already pointed out, is very similar to the
introduction of eval. A consequence of this is that some expressed values will have to be assigned
a new meaning. For instance, in Lisp, the quote operation maps Identifiers onto Symbols. But
what could be the meaning of an expression like

(eval (quote x))
Usually, (quote x) denotes a symbol. But symbols are not syntactic objects and we have no
mapping from Symbols to Identifiers. To remove the nonstructural loop, we will describe eval as

A denotational description for a reflective Scheme 10

The language

Figure 1: textual forms

a function from E to E. But a suitable description of eval requires another type of environments.
Instead of a mapping from Identifiers to Locations, we would prefer a mapping from Symbols to
Locations.
In our description, environments are of type (Ide → Q)× (Q→ L); we can both access (Q→ L) and
(Ide → L) because we maintain our environments so that (Ide → L) will be obtained by composition
of the two parts (Ide → Q) and (Q→ L).
Quoted forms are mapped onto a domain of constants. We will also have to reflect them. To make
the manipulation of such abstract quotations easier, we have added a new domain: the domain of
textual forms (also in [6]).
Textual forms are special values. They are representations of what we could call first order values.
For instance, symbols, strings, constants and numbers are first order values in opposition to proper
function of [E → E]. For constants, the idea is that they mirror the syntactic structure already
parsed. So they also contain some abstract forms like lambda forms, conditional forms, etc., which
are distinguished by a parser but merely considered as constants.
The intern function converts first order values into textual forms. This function is intended to
perform lexical parsing on abstract forms. Second order values cannot be interned because they
don’t have a canonical text form and this would generate an error continuation.
The meaning of reflect is described by means of an auxiliary function interpret, which corre-
sponds to the eval primitive of a LISP interpreter. We could have written it as a function from E
to E, but to make its description easier we have used the domain of textual forms. Interpret will
not operate directly on E, nor on pure syntactic objects, but on the domain of textual forms (see
figure 1).

A denotational description for a reflective Scheme 11

The language

Figure 2: semantic mappings

The meaning of interpret is given by an operational description. There was no other solution but
to simulate the eval primitive. Interpret takes four arguments, a textual form, an environment,
a continuation and a store.

Now we come to the reify and reflect primitives.

A call to reify is of the form (reify E0 K0). E0 denotes a function which will be called with the
constant K0. More precisely, the function denoted by E0 will take four arguments, a constant, an
environment, a continuation and a store. The main effect of reify is to apply that function to the
constant K0, the current environment, the current continuation and the current store.

One of the difficulties here is that all these functions manipulate abstract functions like envi-
ronments, continuations and stores. But these entities are not supposed to be in the domain E
of expressed values. In order to manipulate them, we need functions defining some corresponding
structures in E. We have respectively called these functions downU, downQ and downS. Conversely,
we have upU, upQ and upS which convert manipulable environment, continuation and store into
true environment, continuation and store. E will also be extended with the corresponding domains.
We can now complete our figure of semantic mappings (see figure 2).

Reflect is intended to restart an evaluation in the context given by the last three arguments. It
takes four arguments. The first denotes a value which may be turned into a textual form. The
three other arguments respectively denote values which may be possibly turned into environment,
continuation and store respectively.

A denotational description for a reflective Scheme 12

Implementation

4. Implementation

The language has been implemented in SKIM. The implementation matches the denotational de-
scription as far as possible. For instance, corresponding to the semantical equation which gives the
meaning of an expression reduced to an identifier,

E [[I]] = λρκ . hold (lookup ρ I)
(single(λε . ε = undefined →

wrong "undefined variable",
send ε κ))

the following code has been produced:

(define (E e r k)
(if (atom? e)

(hold (lookup r e)
(single (lambda(e) (if (eq? e :undefined)
(wrong "undefined variable" e)
(send e k)))))

...))

But the implementation of the projections of environment, continuation and store onto E has raised
some problems. Not just any implementation would be suitable in the context of migration.

4.1. Reflection and migration

To be really useful for migration, the reified structures of environment, continuation and store
should be not only denotable but also decomposable by the user. By decomposable we mean that
these structures should have a representation expressible in terms of constituents storable on a
persistent medium.
This requirement seems to impose that functions be decomposable. For environments and stores,
a solution is easy to come by, since these functions can be represented as finite structures. But the
treatment of continuations is not so easy because continuations are functions from E∗ to C, and
therefore the domain on which they operate is infinite.
A similar problem was raised in [16]. The use of Skim continuations as a state vector for a Skim
computation is not possible in a migration context, because Skim continuations contain references
to the language in which Skim is implemented (like return adresses in C).
The FRSI was built mainly to solve that problem. But here again, the FRSI continuations seem to
be of no help for migration because they contain references to Skim objects (Skim being also the
language that we have chosen to write our denotational description in).
The problem we are discussing here is an implementation problem: how can we implement the two
functions downK and upK of our formal description, so that we can dump a continuation onto a file
?

4.2. A solution

The situation is not as bad as it looks at a first glance. With our new interpreter a step forward
has been made: we can now encode the FRSI continuations in Skim and we are able to decompose
them at the Skim level.
We have added a metafunction external which allows to call an external function (here a Skim
function). We have used this mechanism as a means of passing values between FRSI and SKIM,
thus rendering continuations effectively decomposable somewhere, if not in FRSI itself.

A denotational description for a reflective Scheme 13

Conclusion

It is not surprising that we have represented our FRSI continuations in Skim because Skim is the
language in which our metadescription was written. So the best way for encoding the continuation
of FRSI is obviouly a Skim object, and the external mechanism we have used could be viewed
as just a particular implementation of upK and downK.

5. Conclusion

Reflective languages cannot be given a complete denotational description because reflection is
intrinsically operational. In this paper we have presented a reflective Scheme. We have given a
relative denotational description of this language and we have solved the implementation problems
raised by its use for migration.

A denotational description for a reflective Scheme 14

Conclusion

References

[1] J. Rees and W. Clinger (eds), Revised Revised Revised Report on Scheme, 1986.

[2] G.L.J. Steele and G.J. Sussman, The Revised Report on Scheme, a Dialect of Lisp, MIT
Artificial Intelligence Memo 452, January 1978.

[3] W. Clinger (ed), The Revised Revised Report on Scheme or an UnCommon Lisp, MIT Arti-
ficial Intelligence Memo 848, August 1985. Also published as Computer Science Department
Technical Report No.174, Indiana University, June 1985.

[4] R. Dumeur, SKIM: un interpréteur SCHEME optimisant, Mémoire de maitrise, Université
Paris VIII, Juin 1987.

[5] A. Deutsch, Conception, implémentation et validation d’un compilateur Scheme, Mémoire de
maitrise, Université Paris VIII, Juin 1987.

[6] C. Recanati, LAMBDIX: un interprète LISP à liaison lexicale et évaluation paresseuse, Thèse
de 3eme cycle, Laboratoire de Recherche en Informatique, Université Paris XI, Orsay, dec.
1986.

[7] E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Language Theory, MIT
Press, Cambridge, 1977.

[8] B.C. Smith, Reflection and Semantics in LISP, CSLI report No.84 8, Standford University,
december 84.

[9] B. C. Smith and J. des Rivières, The Implementation of Procedurally Reflective Languages,
Proc. 1984 ACM symposium on Lisp and Functional Programming, August 1984, 348-355.

[10] D.P. Friedman and M. Wand, Reification - Reflection without metaphysics, Proc. 1984 ACM
symposium on Lisp and Functional Programming, August 1984, 348-355.

[11] D.P. Friedman and M. Wand, The mystery of the tower revealed - A non-reflective description
of the reflective tower, Proc. 1986 ACM symposium on Lisp and Functional Programming,
August 1986, 298-307.

[12] D.P. Friedman and M. Wand B.F Duba, Getting the Levels Right, (Preliminary Report),
Indiana and Northeastern University, 1986.

[13] P. Yelland, Denotational Semantics for Reflection in a Procedural Language. Esprit project No

1228 (Chameleon), Technical report 87/6.

[14] P. Yelland, Implementation of a Reflective Language. Esprit project No 1228 (Chameleon),
Technical report 87/7.

[15] J. Marks, Chameleon Reflections. Esprit project No 1228 (Chameleon), Technical report 87/20.

[16] A. Deutsch, C. Recanati, I. Filotti, A scheme for Scheme migration. Esprit project No 1228
(Chameleon), Technical report 87/35.

[17] A. Deutsch, C. Recanati, I. Filotti, C. Consel, The tower model of reflection and reification in
Scheme - a prototype implementation. Esprit project No 1228 (Chameleon), Technical report
87/37.

A denotational description for a reflective Scheme 15

Conclusion

[18] A. Deutsch and C. Recanati, A Scheme implementation of multitasking. Esprit project No 1228
(Chameleon), Technical report 87/38.

[19] A. Deutsch and C. Recanati, A Scheme persistent storage system. Esprit project No 1228
(Chameleon), Technical report 87/39.

A denotational description for a reflective Scheme 16

