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Abstract

The purpose of this note is to describe a risk management procedure applica-

ble to options on large credit portfolios such as CDO tranches on iTraxx or CDX.

Credit spread risk is dynamically hedged using single name defaultable claims such as

CDS while default risk is kept under control thanks to diversification. The proposed

risk management approach mixes ideas from finance and insurance and departs from

standard approaches used in incomplete markets such as mean-variance hedging or

expected utility maximisation. In order to ease the analysis and the exposure, default

dates follow a multivariate Cox process.

JEL Classification: G 13

Key words: CDOs, default risk, credit spread risk, dynamic hedging, diversification, large
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Introduction
The hedging of defaultable claims is an involved topic (see Blanchet-Scalliet & Jeanblanc [2004],
Bielecki et al [2004, 2006a], Elouerkhaoui [2006]), especially in a multivariate setting (see Bielecki et al
[2006b] for some discussion). To list only a few issues at hand, we can mention the possibility of simultaneous
defaults, contagion effects (leading to jumps in credit spreads at default times), random recoveries, the
occurrence of exogenous jumps in the default intensities. Thus, we are likely to be an incomplete market
framework. When considering the risk management of a CDO tranche, we must moreover deal with numerical
issues related to the high number of names involved.

Though this is not yet well documented in the academic literature, a widely used approach amongst credit
derivatives trading desks is to build some hedging portfolios based upon single name credit default swaps.
The hedge ratios are computed as sensitivities to marginal credit curves in a copula framework (Greenberg
et al [2004], Gregory & Laurent [2003]). As a consequence, the main focus is put upon the credit spread
hedging leaving aside the default risk. This departs from the academic approach: a copula model is associated

1ISFA Actuarial School, University Claude Bernard of Lyon, 50, Avenue Tony Garnier, 69 007, Lyon
& BNP Paribas, FIRST Credit, 10 Harewood Avenue, London, NW1 6AA, laurent.jeanpaul@free.fr,
http://laurent.jeanpaul@free.fr
The author gratefully thanks X. Burtschell, J-D. Fermanian, S. Hitier, J. Lebuchoux, M. Musiela, M.
Rutkowski and A. Savine for helpful discussions. The usual disclaimer applies.
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1 MODELLING OF DEFAULT TIMES 2

with contagion effects2 while default intensities are deterministic between two default times. That simple
dynamics of the default intensities and a martingale representation theorem with respect to the natural

filtration of default times leads to a hedging strategy concentrated upon the risk management of default risk
(Bielecki et al [2006b]).

Given the rather large number of names in iTraxx on CDX indices, default of a single name has a small effect
on the aggregate running loss. In other words, default risk is already partly diversified when considering
large portfolios. The theory of such infinitely granular portfolio is already well-developed in the static case
(see Vasicek [1991], Schönbucher [2002], Gordy [2003]). Frey & Backaus [2004], Jarrow, Lando
& Yu [2005] consider similar issues in a more dynamical setting.

The purpose of that paper is to deal with such ideas with respect to dynamic hedging. Loosely speaking,
we could think of dealing with the default risk management through diversification or insurance techniques
while credit spread risk is dealt with through dynamic replication techniques. The core idea of the paper is

to project the defaultable price process onto the filtration generated by the default intensities. In a second
step, we consider the dynamic hedging of the associated smoothed payoff that only involves credit spread
risks. The main result of the paper is that using that dynamic hedging strategy with the actual defaultable
price processes allows to control the hedging error (with respect to the number of names).

There is now a large body of literature dedicated to large financial markets and completeness (see for
instance Jarrow & Bättig [1999]). Let us emphasize that while some of our results might be extended
to an infinite number of names, this paper remains in a small market or finite sample framework. Unlike
Björk & Näslund [1998] or De Donno [2004] for example, hedging strategies are based on a finite
and fixed number of assets and we do not need the use of well diversified portfolios such as the infinitely

granular portfolio which are not readily tradable in the market. Using a finite number of assets simplifies
the mathematical exposition. We do not require either that the asymptotic market should be complete.

To keep things simple, we have assumed that default times were modelled through a multivariate Cox
process, thus leaving aside possible contagion effects (section 1). Sections 1 and 2 deal with defaultable
price processes and their projections onto the filtration of credit spreads. The material there is rather
standard and expository. Section 3 contains the main results related to the risk management of CDOs.

1 Modelling of default times

1.1 probabilistic framework
Let us consider some filtered probability space (Ω,A, (Ft)0≤t≤T , P ) with a fixed time horizon T ∈ R+
and some random variables τ1, . . . , τn that denote the default times of n obligors. For any t ∈ [0, T ],
Ni(t) = 1{τi≤t}, i = 1, . . . , n denote the default indicators, Hi,t = σ(Ni(s), s ≤ t), Ht = H1,t ∨ . . . ∨Hn,t
and Gt = Ft∨Ht. The background filtration F is typically associated with credit spread risks. The enlarged
filtration G corresponds to the actual information of market participants.

2See Schönbucher & Schubert [2001] for an analysis of the dynamics of the default intensities.
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We now assume the existence of an arbitrage-free financial market where a savings account and defaultable
T maturity zero-coupon bonds are being traded. A T maturity defaultable bond on name i is associated

with a payment of 1{τ i>T}
3. For simplicity, we thereafter assume that the default-free interest rates are

equal to zero. We denote by li(t, T ) the time t price of an asset with a time T payoff Ni(T ) = 1{τi≤T}
4 ,

i = 1, . . . , n.

Assumption 1 There exists a probability Q equivalent to P such that:

1. for i = 1, . . . , n, the price processes of defaultable claims li(., T ) are (Q,G) martingales:

li(t, T ) = EQ[Ni(T ) | Gt], (1.1)

for 0 ≤ t ≤ T .

2. the default times follow a multivariate Cox process:

τ i = inf{t ∈ R+, Ui ≥ exp (−Λi,t)}, i = 1, . . . , n (1.2)

where Λi are F-predictable, absolutely continuous increasing processes such that Λi,0 = 0, limt→∞ Λi,t =
∞, U1, . . . , Un are independent random variables uniformly distributed on [0, 1] under Q and F and
σ(U1, . . . , Un) are independent under Q.

3. EQ
∙³

dP
dQ

´2¸
<∞5 .

The Cox process framework is now standard in finance (see Lando [1994], the books by Bielecki &
Rutkowski [2002], Duffie & Singleton [2003], Lando [2004] and the references therein). More precisely,
our setting corresponds to the conditionally independent default framework (see chapter 9 of Bielecki &

Rutkowski [2002]). As a consequence, t ∈ R+ → Λi,t∧τi is the (Q,G) compensator of τ i, i.e. the processes
Ni(t)− Λi,t∧τ i , i = 1, . . . , n are (Q,G) martingales.

The multivariate Cox process framework is convenient since the so-called (H) hypothesis or martingale
invariance property holds:

Lemma 1.1 Every (Q,F) square integrable martingale is also a (Q,G) square integrable martingale.

Proof : an equivalent statement of the (H) hypothesis is the following: for any t ∈ R+, for any s ∈ [t, T ]
and any bounded Fs - measurable random variable ξ, we have: EQ[ξ | Gt] = EQ[ξ | Ft]. To show this, let us
denote by Gi,s = Fs∨Hi,s for some i = 1, . . . , n (say i = 2) and byH(−i),t = H1,t∨. . .Hi−1,t∨Hi+1,t . . .∨Hn,t.
The σ - fields Gi,s and H(−i),t are conditionally independent given Gi,t. Consequently, since ξ is Gi,s -
measurable, we have EQ[ξ | Gt] = EQ[ξ | Gi,t ∨H(−i),t] = EQ[ξ | Gi,t]. Now, we are back in a univariate Cox
process framework and it is well known that EQ[ξ | Gi,t] = EQ[ξ | Ft].

3For simplicity, the recovery rates are equal to zero.
4This payoff corresponds to a long position in a default-free T maturity bond and a short position in a

defaultable T maturity bond.
5Let us remark that the equivalent martingale measure Q is somehow independent of the number of

names. This is related to the absence of asymptotic free lunch (see Klein [2000]).
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Let us remark that there are no contagions effects under Q. The absence of contagion under Q will further
provide a simple split between default and credit spread risks for large portfolios. Let us also remark that

while (τ1, . . . , τn) is a multivariate Cox process under Q, it may not be a Cox process under P . For instance,
we may have some contagion effects under P (see Kusuoka [1999]).

The joint survival function is such that S(t1, . . . , tn) = EQ [
Qn
i=1 exp (−Λi,ti)] for t1, . . . , tn ∈ R+. Since it

is continuous, we must have Q(τ i = τ j) = 0 for i 6= j which precludes simultaneous defaults.

EQ
∙³

dP
dQ

´2¸
<∞ states that the historical measure P and the risk-neutral one Q do not depart too much

from one to another. On economic grounds, it constrains the magnitude of default risk premia (see Jarrow,
Lando & Yu [2005] for a discussion).

From the absolute continuity of the Λi’s, there exist non-negative cadlag F-adapted processes, λ1, . . . ,λn
such that:

Λi,t =

Z t

0

λi,udu, (1.3)

for t ≥ 0, i = 1, . . . , n. λi is the (Q,G)-intensity of the counting process Ni.

We can now state the dynamics of the defaultable claims:

Lemma 1.2 defaultable claim price dynamics

li(t, T ) = (1−Ni(t))
¡
1−EQ [exp (Λi,t − Λi,T ) | Ft]

¢
+Ni(t), (1.4)

for 0 ≤ t ≤ T and i = 1, . . . , n.

Proof: the σ - fields Gi,T and H(−i),t are conditionally independent given Gi,t. Consequently, Q(τ i >
T | Gt) = Q(τ i > T | Gi,t). Since τ i can be seen as a univariate Cox process, Q(τ i > T | Gi,t) =
1{τ i>t}E

Q[exp (Λi,t − Λi,T ) | Ft]. We conclude by using li(t, T ) = EQ[Ni(T ) | Gt] = 1−Q(τ i > T | Gt).

From the monotonicity of conditional expectations, 0 ≤ li(t, T ) ≤ 1, for i = 1, . . . , n and 0 ≤ t ≤ T . Thus,
li(., T ), i = 1, . . . , n are (Q,G) square integrable martingales, with a jump at τ i.

Definition 1.1 predefault bond price dynamics
We denote by Bi(t, T ) = EQ [exp (Λi,t − Λi,T ) | Ft], for 0 ≤ t ≤ t. Bi(t, T ) corresponds to the defaultable
bond price6 at time t on the set {τ i > t}.

Hence, the dynamics of the defaultable claims simplifies to:

li(t, T ) = (1−Ni(t)) (1−Bi(t, T )) +Ni(t).

6Associated with a payoff 1{τ i>T} at time T
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2 Portfolio dynamics

2.1 default-free processes
It will be convenient to consider the following default-free running loss processes:

Definition 2.1 The default-free running loss process associated with name i ∈ {0, . . . , n}, denoted by pi(.)
is such that for 0 ≤ t ≤ T :

pi(t)
∆
= EQ[Ni(t) | Ft] = Q(τ i ≤ t | Ft) = 1− exp (−Λi,t) . (2.1)

The last equality is a direct consequence of assumption (1). pi is a F - adapted increasing process that,

unlike Ni, does not jump at default times7. We can also define the default free forward loss processes by:

Definition 2.2 The default free T forward loss process associated with name i ∈ {0, . . . , n}, denoted by
pi(., T ) is such that for 0 ≤ t ≤ T :

pi(t, T )
∆
= EQ

£
pi(T ) | Ft

¤
= EQ [Ni(T ) | Ft] = Q(τ i ≤ T | Ft). (2.2)

The second equality is a direct consequence of the definition of pi(T ) and the law of total expectation. From
the monotonicity of conditional expectations, we readily see that 0 ≤ pi(t, T ) ≤ 1, for i = 1, . . . , n and
0 ≤ t ≤ T . Thus, the pi(., T ) are (Q,F) square integrable martingales and thus (Q,G) square integrable
martingales thanks to the martingale invariance property.

From the definition of pi(., T ), we readily have: pi(t, T ) = EQ [1− exp (−Λi,T ) | Ft].

Lemma 2.1 pi(t, T ), i = 1, . . . , n are projections of the forward price processes li(t, T ) on Ft:

pi(t, T ) = EQ
£
li(t, T ) | Ft

¤
, (2.3)

for i = 1, . . . , n and 0 ≤ t ≤ T .

Proof: since li(t, T ) = EQ [Ni(T ) | Gt], we only need to check that pi(t, T ) = EQ [Ni(T ) | Ft]. We conclude
from τ i ≤ T ⇔ Ui ≥ exp(−Λi,T ) and the independence between Ui and Ft.

Lemma 2.2

li(t, T )− pi(t, T ) = Zi(t)Bi(t, T ), (2.4)

for i = 1, . . . , n and 0 ≤ t ≤ T , where Zi(t) = exp
³
−
R t
0
λi,udu

´
− (1−Ni(t)), and Bi(t, T ) is the predefault

bond price (see definition (1.1)).

Proof: Since pi(t, T ) = EQ[Ni(T ) | Ft], li(t, T )−pi(t, T ) = EQ[Ni(T ) | Gt]−EQ[Ni(T ) | Ft], which yields:

li(t, T )− pi(t, T ) =
µ
exp

µ
−
Z t

0

λi,udu

¶
− (1−Ni(t))

¶
×EQ

"
exp

Ã
−
Z T

t

λi,udu

!
| Ft

#
.

7pi can be given a simple financial interpretation. Let us subdivide name i into K names each with
nominal 1/K and intensities equal to λi but with independent thresholds Ui,k. We denote by τ i,k the

corresponding default dates. 1
K

PK
k=1 1τ i,k≤t converges a.s. to p

i(t) as K → ∞. In other words, pi(t)
corresponds to some aggregate running loss where diversification holds at the level of name i.
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2.2 portfolio loss processes
Let us now consider portfolios based upon the previous individual processes:

Definition 2.3 aggregate running loss process The aggregate loss at time t on a portfolio of n names
is such that for 0 ≤ t ≤ T :

ln(t)
∆
=
1

n

nX
i=1

Ni(t). (2.5)

For simplicity, we have assumed that default exposures are equal to 1
n and that recovery rates are equal to

zero. To emphasize the dependence upon the number of names n, we used the subscript in the running loss
ln(t).

Definition 2.4 aggregate forward loss process The T forward aggregate loss at time t is such that for
0 ≤ t ≤ T :

ln(t, T )
∆
= EQ [ln(T ) | Gt] . (2.6)

Since 0 ≤ ln(T ) ≤ 1, we also have 0 ≤ ln(t, T ) ≤ 1, for all t ∈ [0, T ] thanks to the monotonicity of conditional
expectations. ln(., T ) is thus a square integrable (Q,G) martingale. We readily have:

ln(t, T ) =
1

n

nX
i=1

li(t, T ), (2.7)

which shows that ln(t, T ) can be seen as a portfolio price process.

Definition 2.5 default-free aggregate running loss process The default free aggregate running loss
at time t is such that for 0 ≤ t ≤ T :

pn(t)
∆
=
1

n

nX
i=1

pi(t). (2.8)

pn(t) is a F - adapted increasing process. Unlike ln(t), pn(t) does not jump at default times. pn(t)

corresponds to the aggregate loss of a portfolio where the risk has been (infinitely) diversified at the name
level.

3 Option hedging

3.1 main result
We are now concerned by payoffs of the type (ln(T )−K)+ =

¡
1
n

Pn
i=1Ni(T )−K

¢+
, for some K ∈ [0, 1]

corresponding to so-called zero-coupon CDOs. Before proceeding further, let us state some technical lemmas:

Lemma 3.1

k ln(T )− pn(T ) k22,Q=
1

n2

nX
i=1

EQ [(1− exp (−Λi,T )) exp (−Λi,T )] . (3.1)
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Proof: since the means of ln(T ) and pn(T ) are equal, we need to consider Var
Q[ln(T ) − pn(T )] which,

thanks to the law of total variance, is equal to:

VarQ
£
EQ [ln(T )− pn(T ) | FT ]

¤
+EQ

£
VarQ [ln(T )− pn(T ) | FT ]

¤
.

The first term is equal to zero and:

VarQ [ln(T )− pn(T ) | FT ] = VarQ [ln(T ) | FT ] =
1

n2

nX
i=1

VarQ [Ni(T ) | FT ] ,

from the conditional independence of the Ni(T ) given FT . We conclude using:

VarQ [Ni(T ) | FT ] = (1− exp (−Λi,T )) exp (−Λi,T ) .

Since 0 ≤ (1− exp (−Λi,T )) exp (−Λi,T ) ≤ 1
2 , we can also state:

k ln(T )− pn(T ) k22,Q≤
1

2n
.

Lemma (3.1) simply states that the accumulated losses ln(T ) can be well approximated by the F - adapted
random variable pn(T ). In other words, for large n, we can neglect default risks and concentrate on the
credit spread risks embedded in pn(T ).

Lemma 3.2 Let A(.) be a finite variation F - adapted process such that A(0) = 0 and EQ[A(T )] < ∞.
Let θ(.) be a G - adapted process such that 0 ≤ θ(t) ≤ K̄, for 0 ≤ t ≤ T for some positive K̄. Then,
EQ

hR T
0
θ(t)dA(t)

i
= EQ

hR T
0
EQ [θ(t) | Ft] dA(t)

i
.

Proof : let us consider some partition 0 < . . . tj−1 < tj < . . . < T of [0, T ]. Using linearity of expectations
and the law of total expectation,

EQ

⎡⎣X
j

θ(tj−1) (A(tj)−A(tj−1))

⎤⎦ = EQ
⎡⎣X

j

EQ
£
θ(tj−1) | Ftj−1

¤
(A(tj)−A(tj−1))

⎤⎦ .
As the mesh of the partition tends to zero, the two discrete sums converge (for any state of the world) to
the Stieltjes integrals

R T
0
θ(t)dA(t) and

R T
0
EQ[θ(t) | Ft]dA(t). When A is increasing, we conclude using

Lebesgue theorem. This extends to the finite variation case by linearity.

From lemma (3.1), we know that pn(T ) is close to ln(T ) for large n. The idea is thus to consider the hedging
of the payoff (pn(T )−K)+. Since pn(T ) only involves credit spread risks and not default risks, it is more
likely that we can hedge the latter payoff. More formally, we make the following assumption:

Assumption 2 There exists some bounded F - predictable processes θ1(.), . . . , θn(.) such that:

(pn(T )−K)+ = EQ
h
(pn(T )−K)+

i
+
1

n

nX
i=1

Z T

0

θi(t)dp
i(t, T ) + zn, (3.2)

where zn is FT - measurable, of Q-mean zero and Q-strongly orthogonal to p1(., T ), . . . , pn(., T ).
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The previous equation is simply the Galtchouk - Kunita - Watanabe decomposition of (pn(T )−K)+ for
(Q,F). θ1(.), . . . , θn(.) correspond to the optimal (Q,F) mean-variance hedging strategy based upon the
abstract forward price processes p1(., T ), . . . , pn(., T ).

If the default intensities λ1, . . . ,λn follow a multivariate Itô process, then (p1(., T ), . . . , pn(.T )) also follows
a multivariate Itô process. Assuming that the diffusion matrix is of rank n, then zn = 0. This corresponds
to some completeness of the credit spread market. In the case of jump-diffusion processes, the residual term
zn usually differs from zero.

The key point in Assumption (2) is the boundedness of the θi’s (or credit deltas). Let us remark that the
individual credit deltas are equal to θi(t)

n and thus decrease at the rate 1
n . For simplicity, we will thereafter

assume that 0 ≤ θi(.) ≤ 1 for i = 1, . . . , n. This boundedness assumption is related to the propagation of
convexity property. We refer to Bergenthum & Rüschendorf [2004], Ekström & Tysk [2006] and the
references therein for some discussion in a multivariate jump diffusion setting.

We now state another lemma related to the control of hedging errors:

Lemma 3.3 Under assumptions (1) and (2), the following inequality holds:°°°°° 1n
nX
i=1

Z T

0

θi(t)d(l
i(t, T )− pi(t, T ))

°°°°°
2

2,Q

≤ 1

n2

nX
i=1

¡
Q(τ i ≤ T ) +EQ [Bi]T ]

¢
. (3.3)

Proof: from Kunita and Watanabe, we have:°°°°°
nX
i=1

Z T

0

θi(t)d(l
i(t, T )− pi(t, T ))

°°°°°
2

2,Q

=
nX

i,j=1

EQ

"Z T

0

θi(t)θj(t)d[l
i(t, T )− pi(t, T ), lj(t, T )− pj(t, T )]t

#
,

which involves the quadratic covariations of the (Q,G) square integrable bounded martingales li(., T ) −
pi(., T ). Since li(t, T ) − pi(t, T ) = Zi(t)Bi(t, T ) (see lemma (2.2)), when i 6= j, the quadratic covariation
[li(., T )− pi(., T ), lj(., T )− pj(., T )] involves only the quadratic covariation of Bi(t, T ) and Bj(t, T )8:

[li(., T )− pi(., T ), lj(., T )− pj(., T )]t = Zi(t)Zj(t)[Bi, Bj ]t, i 6= j.

The quadratic variation of li(t, T )− pi(t, T ) involves two terms, one associated with the quadratic variation
of Zi(t) (or default risk) and one associated with the quadratic variation of Bi(t, T ) or credit spread risk.
The quadratic variation associated with the default indicator part of li(t, T ) − pi(t, T ), Zi(t), is equal to
Ni(t).

We can write:

nX
i,j=1

θi(t)θj(t)d[l
i(., T )− pi(., T ), lj(., T )− pj(., T )]t =

nX
i,j=1

Ai,jd[Bi, Bj ]t +
nX
i=1

DidNi(t),

8This is the core of the Cox modelling: there are no simultaneous defaults; defaults are not contagious.
This allows for diversification of default risk in large portfolios. This holds even if the predefault bond prices
have common jump components.
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where the Ai,j ,Di are given by: Ai,j = θi(t)θj(t)Zi(t)Zj(t) and Di = θ2i (t)B
2
i (t, T ).

We can thus write:°°°°°
nX
i=1

Z T

0

θi(t)d(l
i(t, T )− pi(t, T ))

°°°°°
2

2,Q

= EQ

⎡⎣Z T

0

⎛⎝ nX
i,j=1

Ai,jd[Bi, Bj ]t +
nX
i=1

DidNi(t)

⎞⎠⎤⎦ .
Let us firstly consider the terms EQ

hR T
0
Ai,jd[Bi, Bj ]t

i
. Thanks to lemma (3.2),

EQ

"Z T

0

Ai,jd[Bi, Bj ]t

#
= EQ

"Z T

0

EQ[Ai,j | Ft]d[Bi, Bj ]t

#
.

Since θi and θj are F-adapted, EQ[Ai,j | Ft] = θi(t)θj(t)E
Q [Zi(t)Zj(t) | Ft]. Thanks to the conditional in-

dependence of default times upon F , EQ[Zi(t)Zj(t) | Ft] = CovQ (Ni(t), Nj(t) | Ft) = 0 for i 6= j and
0 ≤ t ≤ T . As a consequence, EQ[Ai,j | Ft] = 0 for i 6= j and EQ

hR T
0

Pn
i,j=1Ai,jd[Bi, Bj ]t

i
=

EQ
hR T
0

Pn
i=1 θ

2
i (t)Z

2
i (t)d[Bi]t

i
. Since 0 ≤ θ2i (t)Z

2
i (t) ≤ 1, EQ

hR T
0

Pn
i=1 θ

2
i (t)Z

2
i (t)d[Bi]t

i
≤
Pn
i=1[Bi]T .

Similarly, since 0 ≤ Di ≤ 1, EQ
hR T
0
(
Pn
i=1DidNi(t))

i
≤
Pn

i=1Q(τ i ≤ T ).

We can now state our main result with respect to the hedging error:

Proposition 1 Under assumptions (1) and (2), the hedging error εn defined as:

εn = (ln(T )−K)+ −EQ
h
(ln(T )−K)+

i
− 1
n

nX
i=1

Z T

0

θi(t)dl
i(t, T ), (3.4)

is such that EP [| εn |] is bounded by:

1√
2n

⎛⎝1 +ÃEQ "µdP
dQ

¶2#!1/2⎞⎠+ 1

n

Ã
EQ

"µ
dP

dQ

¶2#!1/2Ã nX
i=1

¡
Q(τ i ≤ T ) +EQ [Bi]T ]

¢!1/2
+EP [| zn |]

(3.5)

Let us proceed to the proof of the proposition. Using triangle inequalities, we readily bound EP [| εn |] by:

EP [| ln(T )− pn(T ) |] +EQ[| ln(T )− pn(T ) |] +
1

n
EP

"¯̄̄̄
¯
nX
i=1

Z T

0

θi(t)d(l
i(t, T )− pi(t, T ))

¯̄̄̄
¯
#
+EP [| zn |].

As for the term EP [| ln(T ) − pn(T ) |], we have: EP [| ln(T ) − pn(T ) |] ≤
µ
EQ

∙³
dP
dQ

´2¸¶1/2
× k ln(T ) −

pn(T ) k2,Q. Using lemma (3.1), we can thus bound EP [| ln(T )− pn(T ) |] +EQ[| ln(T )− pn(T ) |] by:

1√
2n

⎛⎝1 +ÃEQ "µdP
dQ

¶2#!1/2⎞⎠ .
Let us now concentrate upon the dynamic hedging strategy term. From Cauchy-Schwarz inequality, we get:

EP

"¯̄̄̄
¯
nX
i=1

Z T

0

θi(t)d(l
i(t, T )− pi(t, T )

¯̄̄̄
¯
#
≤
Ã
EQ

"µ
dP

dQ

¶2#!1/2
×
°°°°°
nX
i=1

Z T

0

θi(t)d(l
i(t, T )− pi(t, T ))

°°°°°
2,Q

.
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Lemma (3.3) allows to conclude. The terms EQ [[Bi]T ] are related to the riskiness associated with credit
spreads. The smaller the "volatility" associated with the credit spreads, the better the approximation hedge

will be. Provided that the EQ [[Bi]T ] are uniformly bounded, that the risk premium term EQ
∙³

dP
dQ

´2¸
also

remains bounded and that the credit spread market is complete, the previous proposition states that the
L1(P ) norm of the hedging error tends to zero at the speed n−1/2 as n tends to infinity.

Let us remark that we apply the hedging strategy θ1(.), . . . , θn(.) to the actual defaultable claims with
associated price processes l1(., T ), . . . , ln(., T ). When θ1(t) = . . . = θn(t) = θ(t), the underlying aggregate
portfolio becomes the single hedging instrument and 1

n

Pn
i=1

R T
0
θi(t)dl

i(t, T ) =
R T
0
θ(t)dln(t, T ). When

θ(t) = 1, we simply hold the aggregate portfolio. However, even when τ1, . . . , τn are exchangeable, there is
no reason why the θi(t) should not depend upon the name i for t > 0. The name per name (or individual)
model involves a larger number of credit deltas but can account for dispersion in the credit spreads which is

problematic in an aggregate (or collective) loss model. When the aggregate portfolio is actively traded (say
in the case of iTraxx or CDX indices), one may use an exposure of θ(t) = 1

n

Pn
i=1 θi(t) to the index and of

θi(t)−θ(t)
n to the individual names in order to minimize transaction costs.

3.2 projection of the option payoff on FT
In the previous subsection, we considered the risk management of (ln(T ) − K)+ through the hedging of¡
EQ [ln(T ) | FT ]−K

¢+
. We might also have considered the hedging of EQ

h
(ln(T )−K)+ | FT

i
. We show

here that for large portfolios, these two approaches are equivalent.

Lemma 3.4

EQ
h
(pn(T )−K)+ | Ft

i
≤ EQ

h
(ln(T )−K)+ | Ft

i
, (3.6)

for all t ∈ [0, T ] and K ∈ [0, 1].

Proof: let us remark that pn(T ) = EQ[ln(T ) | FT ]. From conditional Jensen inequality, we have:

(pn(T )−K)+ ≤ EQ
h
(ln(T )−K)+ | FT

i
which yields the stated result.

Thus, EQ[(pn(T ) − K)+] ≤ EQ[(ln(T ) − K)+], which is consistent with the smaller "volatility" of pn(T )
compared with ln(T ).

Lemma 3.5 °°°EQ h(pn(T )−K)+ | Fti−EQ h(ln(T )−K)+ | Fti°°°2
2,Q
≤ 1

2n
,

for 0 ≤ K ≤ 1 and 0 ≤ t ≤ T .

Proof: let us denote by u =
¯̄̄
EQ

h
(pn(T )−K)+ − (ln(T )−K)+ | Ft

i¯̄̄
. Thanks to conditional Jensen in-

equality, we can bound u byEQ
h¯̄̄
(pn(T )−K)+ − (ln(T )−K)+

¯̄̄
| Ft

i
and thus by EQ [|pn(T )− ln(T )| | Ft],

which is itself bounded by
³
EQ

h
(pn(T )− ln(T ))2 | Ft

i´1/2
.
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Using lemma (3.1), we have EQ
h
(pn(T )− ln(T ))2 | FT

i
= 1

n2

Pn
i=1Var

Q[Ni(T ) | FT ] ≤ 1
2n . Using the

monotonicity of conditional expectations and the law of total expectation, EQ
h
(pn(T )− ln(T ))2 | Ft

i
≤ 1

2n

and thus u ≤ 1√
2n
. Thus EQ[u2] ≤ 1

2n which yields the stated result. Let us remark that:

EQ
h
(pn(T )−K)+ | Ft

i
≤ EQ

h
(ln(T )−K)+ | Ft

i
≤ EQ

h
(pn(T )−K)+ | Ft

i
+

1√
2n
, (3.7)

for all t ∈ [0, T ] and K ∈ [0, 1].

When the credit spread market is complete, EQ
h
(pn(T )−K)+ | Ft

i
is the time t price of (pn(T ) −K)+

while EQ
h
(ln(T )−K)+ | Ft

i
is the time t price of EQ

h
(ln(T )−K)+ | FT

i
. In such a complete credit

spread market, the above price processes are unambiguously defined and are both F and G martingales
thanks to the martingale invariance property. For large n, i.e. when the granularity of the portfolio is small,
these two price processes are close (the inequalities hold almost surely).

Assumption 3 There exists some bounded F-predictable processes θ̃1(.), . . . , θ̃n(.) such that:

EQ
h
(ln(T )−K)+ | FT

i
= EQ

h
(ln(T )−K)+

i
+
1

n

nX
i=1

Z T

0

θ̃i(t)dp
i(t, T ) + z̃n, (3.8)

where z̃n is FT - measurable, of Q-mean zero and Q-strongly orthogonal to p1(., T ), . . . , pn(., T ).

The previous equation is the Galtchouk - Kunita - Watanabe decomposition of EQ
h
(ln(T )−K)+ | FT

i
for

(Q,F). θ̃1(.), . . . , θ̃n(.) correspond to the optimal (Q,F) mean-variance hedging strategy based upon the
abstract forward price processes p1(., T ), . . . , pn(., T ). When the credit spread market is complete, z̃n = 0.
As above, we will thereafter assume that 0 ≤ θ̃i(.) ≤ 1 for i = 1, . . . , n.

Proposition 2 Under assumptions (1) and (3), the hedging error ε̃n defined as:

ε̃n = (ln(T )−K)+ −EQ
h
(ln(T )−K)+

i
− 1
n

nX
i=1

Z T

0

θ̃i(t)dl
i(t, T ), (3.9)

is such that EP [| ε̃n |] is bounded by:Ã
EQ

"µ
dP

dQ

¶2#!1/2⎛⎝r 2

n
+
1

n

Ã
nX
i=1

¡
Q(τ i ≤ T ) +EQ [Bi]T ]

¢!1/2⎞⎠+EP [| z̃n |] (3.10)

Proof:
¯̄̄
(ln(T )−K)+ −EQ

h
(ln(T )−K)+ | FT

i¯̄̄
can be bounded by

¯̄̄
(ln(T )−K)+ − (pn(T )−K)+

¯̄̄
+¯̄̄

(pn(T )−K)+ −EQ
h
(ln(T )−K)+ | FT

i¯̄̄
. Using lemma (3.5) and the proof of proposition (1), we have:

EP
h¯̄̄
(ln(T )−K)+ −EQ

h
(ln(T )−K)+ | FT

i¯̄̄i
≤
Ã
EQ

"µ
dP

dQ

¶2#!1/2r
2

n
.

The stochastic integral terms are treated as in lemma (3.3). This shows that when considering the risk-

management of the CDO payoff (ln(T ) − K)+ we may as well choose the strategy θ1(.), . . . , θn(.) or the
strategy θ̃1(.), . . . , θ̃n(.).
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3.3 study of EQ [(ln(T )−K)+ | Gt]
EQ [(ln(T )−K)+ | Gt] is the expectation of the payoff under "the" risk-neutral probability Q9 . Though
there is no theoretical background based on dynamical replication at this stage, it is "tempting" to consider
EQ [(ln(T )−K)+ | Gt] as the time t "price" of the CDO tranche. We can actually relateEQ [(ln(T )−K)+ | Gt]
and EQ [(ln(T )−K)+ | Ft]. We cannot expect the same a.s. inequalities as above since on {ln(t) = 1},
EQ [(ln(T )−K)+ | Gt] reaches the upper bound 1−K. We can however state that the processes are close
with respect to the L2(Q)-norm.

Lemma 3.6

k EQ
£
(ln(T )−K)+ | Gt

¤
−EQ

£
(ln(T )−K)+ | Ft

¤
k22,Q≤

2

n
(3.11)

Proof: let us denote by u = EQ [(ln(T )−K)+ | Gt] − EQ [(ln(T )−K)+ | Ft]. From the martingale inva-
riance property, EQ [(pn(T )−K)+ | Gt] = EQ [(pn(T )−K)+ | Ft]. Thus,

| u |≤
¯̄
EQ

£
(ln(T )−K)+ − (pn(T )−K)+ | Gt

¤¯̄
+
¯̄
EQ

£
(pn(T )−K)+ − (ln(T )−K)+ | Ft

¤¯̄
.

From the proof of lemma (3.5), we already have
¯̄
EQ [(pn(T )−K)+ − (ln(T )−K)+ | Ft]

¯̄
≤ 1√

2n
. Using

conditional Jensen inequality yields:¯̄
EQ

£
(ln(T )−K)+ − (pn(T )−K)+ | Gt

¤¯̄
≤ EQ

£¯̄
(ln(T )−K)+ − (pn(T )−K)+

¯̄
| Gt
¤
.

The right-hand side of the inequality is bounded by EQ [|ln(T )− pn(T )| | Gt] which is itself bounded by³
EQ

h
(ln(T )− pn(T ))2 | Gt

i´1/2
. Thus u2 ≤ 2EQ

h
(ln(T )− pn(T ))2 | Gt

i
+ 1

n and E
Q[u2] ≤ 2

n thanks to
the law of total expectation and lemma (3.1).

Conclusion
This note shows some simplification in the risk management of CDOs when a large portfolio is involved.

According to market practice, a greater consideration is given to the dynamic hedging of credit spread risks,
while default risks are mitigated. The Cox modelling assumption is crucial for disentangling default and
credit spread risks. In our framework, defaults do not occur simultaneously and are not informative. There
are no jumps in credit spreads or related contagion effects after default of one name. In contagion models,
we could not think of default and credit spread risks independently.

Though theoretical results in the note suggest that, for infinitely granular portfolios, we could only care of
credit spread risks, the practical application to CDX or iTraxx CDO tranches remains to be studied. As
far as the number of names is concerned, we are an intermediate stance. It is likely that the credit spread
risks should be managed by taking into account observed defaults. It is also likely that the hedging of a
tranche should also take into account both default and credit spread risks, for instance using CDS of different

maturities.

9such that the traded defaultable bond price processes are (Q,G)-martingales.
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We did not specialize the credit spread dynamics nor discussed in detail the actual computation of the
credit deltas. Using a Markovian framework would certainly help understanding the various effects involved

in the hedging of a tranche. Since we are likely to be in a high dimensional framework, efficient numerical
approaches must be considered. This is left for future work.
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