
HAL Id: hal-00165641
https://hal.science/hal-00165641v1

Preprint submitted on 26 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral risk measures and portfolio selection
Alexandre Adam, Mohamed Houkari, Jean-Paul Laurent

To cite this version:
Alexandre Adam, Mohamed Houkari, Jean-Paul Laurent. Spectral risk measures and portfolio selec-
tion. 2007. �hal-00165641�

https://hal.science/hal-00165641v1
https://hal.archives-ouvertes.fr


 

Retrouvez la liste complète des cahiers de recherche de l’ISFA à l’adresse : 

http://isfaserveur.univ-lyon1.fr/cahiers-recherche-isfa/ 

 

 

Institut de Science Financière et 

d’Assurances 

 

 

Les Cahiers de Recherche de l’ISFA 

 

 

 

SPECTRAL RISK MEASURES AND PORTFOLIO SELECTION. 

 

Alexandre Adam, 

Mohamed Houkari, 

Jean-Paul Laurent. 

 

 

 

 

Cahier de recherche WP 2037 (2007) 

 

 

Université Claude Bernard Lyon 1    



1 

Spectral risk measures and portfolio selection1 
 

This version: July, 19th 2007 
 
 

Alexandre ADAM a, Mohamed HOUKARI a, b, Jean-Paul LAURENT a, b, * 
 

a Financial Models, Group ALM, BNP Paribas, 3 rue d’Antin, 75078 Paris Cedex 02, France 
b ISFA Actuarial School, Université Lyon 1, 50, avenue Tony Garnier, 69007, Lyon, France 

 
 
 

 
Abstract 
 
This paper deals with risk measurement and portfolio optimization under risk constraints. 
Firstly we give an overview of risk assessment from the viewpoint of risk theory, focusing on 
moment-based, distortion and spectral risk measures. We subsequently apply these ideas to an 
asset management framework using a database of hedge funds returns chosen for their non-
Gaussian features. We deal with the problem of portfolio optimization under risk constraints 
and lead a comparative analysis of efficient portfolios. We show some robustness of optimal 
portfolios with respect to the choice of risk measure. Unsurprisingly, risk measures that 
emphasize large losses lead to slightly more diversified portfolios. However, risk measures 
that account primarily for worst case scenarios overweight funds with smaller tails which 
mitigates the relevance of diversification. 
 
JEL Classification: C61 ; D81 ; D84 ; G11 
 
Keywords: portfolio selection; expected shortfall; distortion risk measures; spectral risk 
measures; hedge funds 
 

 
 
1. Introduction and context 
 
Since the earlier work on expected utility, the axiomatic approach to risk theory has expanded 
dramatically as illustrated by Yaari (1987), Panjer et al. (1997), Artzner et al. (1999), De 
Giorgi (2005) among others or the books by Embrechts et al. (2005) or by Denuit et al. 
(2006). This enables to represent a large set of behaviours towards risk. Following Markowitz 
(1952), moment-based risk measures were firstly considered. Lately, Acerbi (2002) and 
Acerbi and Tasche (2002) studied spectral risk measures which involve a weighted average of 
the quantiles of the loss. The dual theory of choice under risk leads to the class of distortion 
risk measures (see Yaari (1987) and Wang (2000)). In order to quantify risk, instead of 
modifying returns as in the expected utility framework, distortion risk measures modify the 
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probability distribution. This approach towards risk can be related to investor’s psychology as 
in Kahneman and Tversky (1979). Other risk measures have been used in a portfolio selection 
context, such as conditional drawdown (see Cheklov, Uryasev and Zabarankin (2005)). 

Rockafellar and Uryasev (2000), Acerbi and Simonetti (2002) and Bassett et al. (2004) have 
demonstrated the usefulness of efficient linear programming techniques when dealing with 
spectral or distortion risk measures. This paves the way for a thorough analysis of optimal 
portfolios and their reliance on the choice of risk measure. Meanwhile, despite some 
theoretical drawbacks, the computation of mean-variance efficient frontiers remains a 
cornerstone of quantitative asset management. Whenever returns are Gaussian, one could 
quite well rely upon the mean-variance framework and the choice of a risk measure is 
purposeless. Since it is well reported that many asset classes such as hedge funds (see Brooks 
and Kat (2002)) exhibit non Gaussian returns, especially when considering marginal 
distributions and individual returns, the robustness of portfolio allocation with respect to the 
choice of risk measure is thus an important issue.  

A general theory involving any arbitrary portfolio distributions and risk measures seems out 
of scope. We think that it is more insightful to consider a realistic case study, where portfolio 
returns are actually non Gaussian. One could either rely upon a dynamic statistical model with 
non Gaussian effects as in Giamouridis and Vrontos (2007) or Morton et al. (2006). Another 
possibility is to use a set of historical returns and the empirical measure as in Heyde et al. 
(2006). We will thereafter follow this route, though there are obviously some various issues to 
be considered with respect to the estimation of risk measures (see Scaillet (2004), Gouriéroux 
and Liu (2006)). On practical grounds, Krokhmal et al. (2002), Chabaane et al. (2006) studied 
the dependence of optimal portfolios with the choice of risk measures. This paper extends 
previous results to spectral and distortion risk measures.  

The paper is organized as follows. In Section 2 we present and discuss some useful risk 
measures – moment based and spectral/distortion risk measures – from an asset management 
point of view. We show how spectral and distortion risk measures are related to VaR and 
expected shortfall. We also provide a simple characterization of distortion risk measures and 
recall how this theory is related to the standard expected utility approach. Section 3 deals with 
the problem of portfolio optimization under a risk measure constraint. The empirical study is 
based upon a database of hedge funds for which we emphasize the non Gaussian features. We 
subsequently discuss the differences between the optimal portfolios. Risk measures that 
emphasize large losses lead to slightly more diversified portfolios. However, risk measures 
that account primarily for worst case scenarios overweight funds with smaller tails which 
mitigates the relevance of diversification. 
 

2. Theoretical overview of risk measures for asset management 
 
The purpose of this section is to discuss some risk measures from the viewpoint of an asset 
manager. We will consider portfolio returns over a given time horizon: other risk management 
approaches rather deal with wealth or with the increment of wealth, but portfolio returns are 
easier to grasp in an asset management framework. As for the time horizon, we will thereafter 
deal with a one month time horizon, corresponding to the periodicity of our dataset. Dealing 
with longer horizons would not involve only the modelling of conditional means and 
variances of returns, as usually required in a mean-variance framework, but of the entire 
distribution. Furthermore, even if returns were independent, the convolution of discrete 
distributions would lead to large dimensional problems and this is likely to dramatically 
increase numerical difficulties. 
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2.1. Axiomatic approach to risk measurement 
 
From a mathematical point of view, we will be given a finite2 probability space ( ), , PΩ Α . 
Given a portfolio return X , we denote by XF , the corresponding distribution function: 

( )( )Xx F x P X x∈ → = ≤\ . A risk measure is a functional over the set of random portfolio 

returns ( )X Xρ→ ∈\ . It may fulfil some axioms such as: 
 

- H1 Positive Homogeneity: for every random portfolio return X  and real value 0λ > , 
( ) ( )X Xρ λ λρ= ; 

- H2 Translation-Invariance: for every random portfolio return X  and real value α , 
( ) ( )X Xρ α ρ α+ = − ; 

- H3 Monotonicity: for every random portfolio returns X  and Y  such that X Y≥ , 
( ) ( )X Yρ ρ≤ ; 

- H4 Sub-additivity: for every random portfolio returns X  and Y , 
( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + ; 

- H5 Law-Invariance: for every random portfolio returns X  and Y  with distribution 
functions XF  and YF , ( ) ( )X YF F X Yρ ρ= ⇒ = ; 

- H6 Comonotonic3 Additivity: for every comonotonic random variables X  and Y , 
( ) ( ) ( )X Y X Yρ ρ ρ+ = + . 

 
Coherent measures of risk as discussed in Artzner et al. (1999) fulfil H1 to H4, distortion risk 
measures as defined in Panjer et al. (1997) comply with H1, H2, H3, H5, H6, while spectral 
risk measures considered by Acerbi (2002) conform to all the above axioms. We also refer to 
Rockafellar et al. (2006) for discussion about deviation risk measures. Let us remark that from 
H1, (0) 0ρ =  ; thus, from H2, ( )r rρ = − , where r is a risk-free return. From H2 and H3, 

( ) infX Xρ ≤ − . All the risk measures being considered thereafter are positive homogeneous.  
 
2.2. Use of the empirical measure 
 
We will thereafter consider a set of historical funds returns { }1, , nr r…  as a realization of an 

m -dimensional strictly stationary process 1( )t t nR R ≤ ≤= . k
tR  denotes the return on fund k  at 

date t  and each ( )1,..., m
t t tR R R=  represents the m  returns at date t . We will consider 

portfolios based on this pool of funds, defined by their allocation vector ( )1,...,
m

ma a a= ∈\  

and the related return process ( ) ( )
1 1

m
k

k tt
k t n

a a a R
= ≤ ≤

⎛ ⎞Π = Π =⎜ ⎟
⎝ ⎠

∑ . Then the realization of this 

return process is given by ( )
1

,1
m

k
k tt

k

a a r t nπ
=

⎧ ⎫= ≤ ≤⎨ ⎬
⎩ ⎭

∑ .  

 

                                                 
2 This simplifies the mathematical framework. See Delbaen (2002) for issues related to more 
general probability spaces. 
3 Comonotonicity is related to perfect dependence. Two random variables X and Y  are 
comonotonic if: ( ) ( )( ) 0)()()()(,, 1212

2
21 ≥−−Ω∈∀ ωωωωωω YYXX . 
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Given a set of asset returns associated with a random vector R  taking values in m\ , we can 
think of using the law of R , RP  and deal with the space ( )( ), ,m m

RB P\ \ . We believe that it 

is more intuitive to work with the latter space and therefore we further restrict to law-invariant 
risk measures, which is actually the case in all our examples.  
 
In an asset management framework, we can only rely upon historical databases and do not 
have a direct access to the true probability RP . There is thus clearly an inference issue and we 

can only deal with an estimator R̂P . At this stage, we can think of parametric or 
nonparametric approaches.  
 
Regarding parametric approaches, while there are obviously many dynamic models of 
individual asset returns to be considered, there are also various ways to address the 
multivariate dependence structure. As discussed above, relying upon a simple conditional 
Gaussian distribution or any other arbitrary dependence structure involving some elliptical 
distribution is irrelevant. In our view, since we want to emphasize non Gaussian effects 
through a reasonable case study, we will leave aside the intricate issue of multivariate time 
dependence and eventually work with marginal distributions4.  
 
While the use of nonparametric approaches is more flexible5, we could either rely upon the 
empirical measure (more generally upon L - estimators as in Granger and Silvapulle (2001)) 
or upon kernel based estimators (see Gouriéroux et al. (2000), Scaillet (2004), Gouriéroux and 
Liu (2006)). The main differences regarding the computation of risk measures and optimal 
portfolios are the following: using the empirical measure involves a finite state space; 
empirical risk measures are not differentiable with respect to portfolio allocation (see Laurent 
(2003)) but one can rely upon very efficient linear programming techniques to derive optimal 
portfolios as in Rockafellar and Uryasev (2000). When using kernel based estimators, risk 
measures usually become differentiable with respect to portfolio allocation; efficient 
computations of risk sensitivities can be achieved leading to steepest descent optimisation 
techniques. As for theoretical properties of the estimators involved in the two approaches, we 
refer to Scaillet (2004) and Gouriéroux and Liu (2006). Chabaane et al. (2006) studied the 
dependence of portfolio choice with respect to the choice of Value at Risk estimator and 
found only small effects6. 
 
In this paper, we will stay in line with the classical work of Rockafellar and Uryasev (2000), 
dealing with portfolio selection under expected shortfall constraints, and thus R̂P  will be the 

empirical measure. Since R̂P  fulfils the permutation invariance axiom, the risk measures 
further considered belong to the class of “natural risk statistics” (see Heyde et al. (2006)). As 
seen below in our case study, we think that some of the features exhibited might reasonably 
be extended to  L - estimators. 
 

                                                 
4 It is well-known that marginal distributions tend to exhibit fatter tails than conditional 
distributions. 
5 We refer to Morton et al. (2006) for a semiparametric approach involving a Gaussian copula. 
6 Since spectral risk measures can be viewed as weighted averages of Values at Risk, we can 
think that the choice of the nonparametric procedure is not of first importance; see Scaillet 
(2004) for a discussion in the case of the Expected Shortfall. 
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From now on, a random variable X  will be related to some portfolio allocation a  and the 
corresponding historical returns are denoted by { }1, , nx x… . The empirical distribution 

function is given by: [ [ ( ),
1

1ˆ ( ) 1
i

n

X x
i

x F x x
n ∞

=

∈ → = ∑\ . Since only empirical estimators of the 

distribution functions will be further involved, for simplicity XF  will state for ˆ
XF . Besides, 

as we deal with empirical estimators, all being related to the historical realisations { }1, , nr r…  
of the asset returns, the probabilistic framework behaves as if the state space Ω  were finite 
with ( )card nΩ = . Thus this will be our assumption from now on, setting our probabilistic 
framework as in Artzner et al. (1999). 
 
We will further consider the (lower) quantile function: 

] ] { }10,1 ( ) inf ( )X XF x F xα α α−∈ → = ≥ , 

where inf ∅ = +∞ . We denote by { }1: :, ,n n nx x…  the set of ordered historical portfolio returns, 

1: :n n nx x≤ ≤… . The (empirical) quantile function is such that 1
:( )X i nF xα− =  for 1 ,i i

n n
α −⎛ ⎤∈⎜ ⎥⎝ ⎦

, 

1, ,i n= … . We can also write 1
:( )X n nF x αα−

⎡ ⎤⎢ ⎥
= , 0 1α< < , where nα⎡ ⎤⎢ ⎥  is the smallest integer 

above nα . 
 
2.3. Moment based risk measures 
 
Markowitz (1952) standard deviation is the most famous one, as it gave birth to asset 
management strategies in the fifties and still constitutes a benchmark in these activities. This 
risk measure can be extended to higher moments as illustrated in a portfolio selection context 
by Davies et al. (2003). However, in addition to its symmetric behaviour towards profits and 
losses, standard deviation fails to be translation invariant, monotonic and comonotonic 
additive and can exceed the maximal loss. For this reason, we may consider the class of one-
sided moment based risk measures as discussed in Fischer (2003):  

[ ] [ ]( )( ) ( )
1/1/

,
1

1( )
qq nq qP P P

q a i
i

X E X a E X E X x a x x
n

ρ
−−

=

⎛ ⎞⎡ ⎤= − + − = − + −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
∑ , 

where [ ]
1

1 n
P

i
i

E X x x
n =

= =∑ , max( ,0)Z Z− = − , 0 1a≤ ≤  and 1 q≤ ≤ ∞ . It can be shown that 

these risk measures are coherent and law-invariant; however, they fail to be comonotonic 
additive. We will further investigate the cases 1,2q = . 1q =  corresponds to the one-sided 
absolute deviation from the mean and has been used in Denneberg (1990) and Krokhmal et al. 
(2002). 2q =  is associated with the well-known lower semi-variance. Denneberg (1990) also 
considered risk measures based upon the absolute deviation from the median ( )1 1/ 2XF − : 

 [ ] ( )1
: : / 2 :

1

1( ) (1/ 2)
n

P P
a X i n i n n n

i
X E X aE X F x a x x

n
ρ −

⎡ ⎤⎢ ⎥
=

⎡ ⎤= − + − = − + −⎣ ⎦ ∑ ,  

where 0 1a≤ ≤ . As for the risk measures based on one sided moments, these measures are 
coherent and law-invariant. Using the median instead of the expectation makes them 
comonotonic additive. Moreover, Denneberg shows that the risk measure can be simply 
deduced from the quantile function as: 
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1

1

0

( ) ( ) ( )a XX p F p dpρ φ −= −∫ ,  

where ( ) [ ) ( ) [ ]1/ 2,10,1/ 2( ) 1 1 ( ) 1 1 ( )p a p a pφ = + + − .  

 
Let us remark that the previous risk measures are more pessimistic than the expectation, i.e. 
they fulfil ( ) [ ]PX E Xρ ≥ − . 
 
2.4. VaR and expected shortfall 
 
A typical example of a popular risk measure is the Value-at-Risk (or VaR). The Value-at-Risk 
at a specified threshold α  is defined as:  
 
 { }1

:( ) ( ) inf ( )X X n nVaR X F x F x xα αα α−
⎡ ⎤⎢ ⎥

= − = − ≥ = − .  
 
Thus, Values at Risk are associated to ordered statistics of portfolio returns. VaR fulfils H1, 
H2, H3, H5 and H6 (see for example Dhaene et al. (2002) for the fulfilment of comonotonic 
additivity) but fails to comply with the sub-additivity property and thus does not provide good 
incentives with respect to portfolio diversification.  
 
The expected shortfall (see Acerbi and Tasche (2002), or Rockafellar and Uryasev (2002)) is 
a typical example of a coherent risk measure based upon quantiles of the returns. The 
expected shortfall at level α  can be expressed as follows: 

 1

0

1ES ( ) ( )XX F p dp
α

α α
−= − ∫ ,  

Considering, as before, the empirical distribution function of X  and since 1
:( )X np nF p x−

⎡ ⎤⎢ ⎥
= , we 

also have: 

 ( )
1

: :
1

1ES ( ) 1
n

i n n n
i

X x n n x
n

α

α αα α
α

−⎡ ⎤⎢ ⎥

⎡ ⎤⎢ ⎥
=

⎛ ⎞
= − + − +⎡ ⎤⎜ ⎟⎢ ⎥

⎝ ⎠
∑ .  

Thus, the expected shortfall is a weighted average of ordered statistics and can be easily 
computed from historical portfolio returns7.  
 
From the above expression, it can be easily checked that ( ]0,1 ES ( )Xαα ∈ →  is continuous 

and non-increasing. The extreme cases correspond to [ ]1ES ( ) PX E X= −  which is the less 
pessimistic risk measure and 1:0

lim ES ( ) nX xαα→
= −  associated with the worst case scenario. 

 
Unlike Value-at-Risk, the expected shortfall is a coherent risk measure. In fact, it is the 
smallest coherent, comonotonic additive and law-invariant risk measure which dominates 

                                                 
7 Since we deal with historical returns and the empirical distribution function, we may wonder 
whether the expected shortfall computed under the empirical measure converges, as the 
number of observations tends to infinity, to the expected shortfall under the true distribution 
function. This is fortunately the case; we refer to Acerbi and Tasche (2002) or Jones and 
Zitikis (2003) for a more thorough discussion. 



7 

VaR as shown in Dhaene et al. (2004). Therefore the expected shortfall can be seen as a 
“natural” coherent extension of the Value-at-Risk8. 
 
Following the work of Artzner et al. (1999) any coherent risk measure defined on a finite state 
space Ω  can be set under the following form: 
 

[ ]{ }( ) inf QX E X Qρ = − ∈Π , 
 
where Π  is a set of probability measures Q  defined on Ω . In the case of the expected 
shortfall at level α , we can indeed fully characterize the set αΠ  such that: 

[ ]{ }ES ( ) inf QX E X Qα α= − ∈Π , 

(see Proposition A.1 in Appendix A). αΠ  is obtained by considering scenarios that put a 

constant weight of 
αn
1  upon ⎡ ⎤αn  events and 0 upon the others.  

 
The use of expected shortfall is consistent with standard microeconomic theory thanks to the 
following result, whose proof is given in Appendix B: 

SOSD
X Y≤ ⇔ ( ]0,1 ,ES ( ) ES ( )X Yα αα∀ ∈ ≥ . 

We recall that X  is smaller than Y  with respect to second order stochastic dominance and we 
denote 

SOSD
X Y≤ , if for every non-decreasing concave function u  such that the expectations 

are defined we have [ ] [ ]( ) ( )P PE u X E u Y≤ . Thus, any Von Neumann-Morgenstern investor 
would prefer Y  to X .  
 
2.5. Spectral risk measures 
 
In this subsection, we deal with spectral risk measures, a class of measures based on integrals 
of the quantile function of the portfolio return. A spectral risk measure consists in a weighted 
average of the quantiles of the distribution of the returns using a non-increasing weight 
function called the spectrum. It is defined as follows:  

 
1

1

0

( ) ( ) ( )XM X p F p dpφ φ −= −∫ ,  

where φ  is a non-negative, non-increasing, right-continuous integrable function defined on 

[ ]0,1  and such that 
1

0

( ) 1p dpφ =∫ . Kusuoka (2001)9 showed that spectral risk measures 

coincide with coherent, comonotonic-additive and law-invariant risk measures. In other 

                                                 
8 The expected shortfall can be further connected to the VaR since for a continuous 
distribution of portfolio returns, it coincides with the (lower) Tail Conditional Expectation as 
stated by Corollary 5.3 in Acerbi and Tasche (2002): 
 ES ( ) ( )PX E X X VaR Xα α= − ≤ −⎡ ⎤⎣ ⎦ .  
The latter expression, defining the lower Tail Conditional Expectation, corresponds to the 
average value of the returns on a short position beyond VaR at level α . 
9 See also Tasche (2002) or Jouini et al. (2006), for a thorough discussion about the 
assumptions. 
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words, any risk measure fulfilling assumptions H1 to H6 is a spectral risk measure. The 
coherence of spectral risk measures comes from the assumptions made on the spectrum φ . If 
any of these assumptions is relaxed, the measure is no longer coherent: note for example that 
if φ  is no more non-increasing, as it is in the case of VaR, the measure is no longer sub-
additive. The usefulness of each of the assumptions on φ  is more precisely explained in 
Acerbi (2002). 
 
Since 1

:( )X np nF p x−
⎡ ⎤⎢ ⎥

= , we can express the spectral risk measure of the empirical distribution 
of portfolio returns as: 

:
1

( )
n

i i n
i

M X xφ λ
=

= −∑ , 

 where
/

( 1) /

( ) 0
i n

i
i n

p dpλ φ
−

= ≥∫ , 
1

1
n

i
i
λ

=

=∑ . Then the computation of any spectral risk measure 

involves an average value of ranked portfolio returns10.  
 

The expected shortfall is a spectral risk measure with [ ] ( )0,
1( ) 1p pαφ
α

= ×  and conversely, 

any spectral risk measure can be expressed as a weighted average of expected shortfalls (see 
Appendix C for a proof of this result). As an example, let us turn back to the Denneberg risk 
measure. It can be seen that ( ) [ ) ( ) [ ]1/ 2,10,1/ 2( ) 1 1 ( ) 1 1 ( )p p a p a pφ→ = + + −  fulfils the required 
properties; this means that we are dealing with a spectral risk measure. Indeed, it can be 
checked that the Denneberg risk measure is equal to ( ) ( ) ( )1 1/ 21 ES ESa X a X− + .  
 
As in the case of the expected shortfall, we can fully characterize the set φΠ  such that: 

[ ]{ }( ) inf QM X E X Qφ φ= − ∈Π , 

(see Proposition A.2 in Appendix A).  
 
Spectral risk measures are also consistent with expected utility theory and second order 
stochastic dominance thanks to the following result, whose proof is given in Appendix B: 
 

SOSD
X Y≤ ⇔  For any spectral risk measure Mφ  we have ( ) ( )M X M Yφ φ≥ . 

 
When portfolio returns are Gaussian, spectral risk measures are linear with respect to portfolio 
expected return and standard deviation (see Proposition D.1. in Appendix D). Therefore, in 
the Gaussian case, as far as portfolio selection is concerned, one could rely upon a mean-
variance framework.  
 
2.6. Distortion risk measures 
 

                                                 
10 As for the expected shortfall, the spectral risk measure computed under the empirical 
distribution converges to the spectral risk measure computed under the true limit distribution 
as the number of observations tends to infinity. We refer to Acerbi (2002) for a more thorough 
discussion. 
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Distortion risk measures take their origin in Yaari’s Dual theory of choice under risk (1987). 
Yaari’s idea consists in measuring risk by applying a distortion function f  on XF , the 
distribution function of the portfolio returns. This formally leads to11: 

 ( ) ( )
0

0

( ) ( )( ) 1 1 ( ) 1 ( )f X X XX xd f F x f F x dx f F x dxρ
+∞ +∞Δ

−∞ −∞

= − =− ⎡ − − ⎤ + −⎣ ⎦∫ ∫ ∫D ,  

where the distortion function f  is non-decreasing, concave and such that (0) 0f =  
and (1) 1f = . In other words, the distortion function increases the weight put on negative 
events and deflates that of positive ones. The case f id=  corresponds to the expected return, 

[ ]( ) P
id X E Xρ = − . Besides, the expected return is the less pessimistic distortion risk 

measure, since the distortion function, as defined above, verifies [ ] ( )0,1 ,u f u u∀ ∈ ≥ , and the 

definition of distortion risk measures above gives ( ) ( ) [ ]P
f idX X E Xρ ρ≥ = − .  

 
The previous definition creates a whole class of risk measures, also known as the set of 
concave distortion risk measures. Besides, the theory of integration developed in Denneberg 
(1994) leads to: 

 
1

1

0

( ) ( )( ) ( ) ( ) ( )f X XX xd f F x p F p dp M Xφρ φ
+∞

−

−∞

= − = − =∫ ∫D ,  

with 
0

( ) ( )
p

f p u duφ= ∫  for [ ]0,1p∈ . This shows the identity between the set of concave 

distortion and spectral risk measures. As a consequence, any concave distortion risk measure 
fulfils assumptions H1 to H6. For example, the expected shortfall at level α  corresponds to 

the spectrum [ ] ( )0,
1( ) 1p pαφ
α

= ×  and to the distortion function ( ) min ,1pf p
α
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, for 

[ ]0,1p∈ .12 
 
Distortion risk measures were firstly applied in an insurance context. For example, Wang 
(2000) considers the following specification of f : 
 ( ) ( )1 1( )f p p q− −⎡ ⎤= Φ Φ −Φ⎣ ⎦ ,  

for [ ]0,1p∈ , where 0 0.5q< ≤  is some parameter13. The distortion function f  is indeed 
non-decreasing, concave and such that (0) 0f =  and (1) 1f = . The corresponding risk 
measure qWT  is known as the Wang-transform.  
 
                                                 
11 This definition makes reference to the Choquet integral theory as in Denneberg (1994) for 
example. The concept of ( ) ( )( )Xg u d f F u∫ D makes sense thanks to the Stieltjes integral which 

states that the function Xf FD  only has to be non-decreasing and finite.  
12 Theorem 9 in Dhaene et al. (2004) characterizes the expected shortfall of X  – as we define 
it – as the lower bound of the set of values taken on X  by the concave distortion risk 
measures dominating VaR. 
13 When 0.5q = , idf =  and we are back in the case of the less pessimistic risk measure 
based upon the expectation. We need 0.5q ≤  in order to get a concave distortion risk 
measure. 
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The parameter q  can be changed to make the Wang-transform either sharper on high losses or 
softer and more receptive to positive returns. For a Gaussian portfolio return X , 

[ ] ( )1( ) ( )P
qWT X E X q Xσ−= − −Φ . For such a Gaussian portfolio return, with the Value-at-

Risk, we also have [ ] ( )1( ) ( )P
qVaR X E X q Xσ−= − −Φ , which shows the equality between 

the Wang-transform (at level q ) and the Value-at-Risk (at level q ) for Gaussian returns. Such 
a property can be used for the calibration of q  and may be appealing when integrating the 
measurement of market risks – where Value-at-Risk is still widely used – and technical risks 
arising from the insurance liabilities. As a consequence, the Wang transform might be 
considered also by asset managers within insurance companies. 
 
3. Portfolio optimization under risk constraints 
 
3.1. Framework of the study 
 
Our study has been performed on a pool of 16 hedge funds. We had access to monthly returns, 
from January 1990 to July 2001. We used the same database as Chabaane et al. (2006). We 
give in Table 3.1 some descriptive statistics, including mean (m), standard deviation (σ), 
skewness (s) and kurtosis (κ).  
 
We also computed the hedge funds monthly betas and Jensen’s alphas with respect to the 
S&P500 index. This basic approach is motivated by Agarwal and Naik (2000) who derive a 
multi-factor model for hedge funds returns based on 7 factors including the S&P500 
composite index and found some significant market exposure even for non-directional hedge 
funds. However our low betas and high alphas have to be taken carefully due to survivorship 
bias. Indeed, hedge funds’ performances are known to be over-estimated since their 
evaluations only deal with survivor funds, as studied in Bares et al. (2001) or Amin and Kat 
(2003). This has significant influence on the values of the betas and Jensen’s alphas. Cvitanic 
et al. (2003) address the uncertainty of hedge funds alphas as far as portfolio selection is 
concerned. More accurate assessment of survivorship bias in the hedge funds industry can be 
found in Brown et al. (1997) or Fung and Hsieh (1997) for example. As for our study, our aim 
is to use a class of assets which does not follow standard distributions; our pool of hedge 
funds achieves that, as we further point out.  
 
 
HF Hedge Funds m σ s κ Sharpe Ratio Betas Alphas

1 AXA Rosenberg  0,46% 2,31% 0,17 5,92 0,20% -14% 0,57%

2 Discovery MasterFund 0,51% 4,30% -0,06 0,15 1,27% 2% 0,49%

3 Aetos Corporation 0,99% 2,34% -0,36 3,40 22,88% 25% 0,79%

4 Bennett Restructuring Fund 1,25% 2,15% -0,16 3,22 36,81% 16% 1,11%

5 Calamos Convertible Hedge Fund 0,85% 2,33% 0,15 1,16 17,18% 37% 0,56%

6 Sage Capital Limited Partnership 0,78% 0,70% -0,67 1,34 47,04% 7% 0,72%

7 Genesis Emerging Markets Fund 0,84% 5,78% -0,70 2,80 6,71% 78% 0,22%

8 RXR Secured Participating Note 0,97% 1,86% 0,49 2,13 27,94% 21% 0,81%

9 Arrowsmith Fund 2,01% 7,81% 3,05 26,20 19,89% 37% 1,71%

10 Blue Rock Capital Fund 0,69% 1,00% 0,35 3,28 24,23% 9% 0,62%

11 Dean Witter Cornerstone Fund IV 1,09% 6,69% 1,56 4,00 9,61% -3% 1,12%
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12 GAMut Investments Inc 1,86% 4,16% 0,71 2,03 33,79% 6% 1,81%

13 Aquila International Fund 0,79% 4,87% -0,26 1,05 6,88% 69% 0,23%

14 Bay Capital Management 0,81% 5,57% 0,41 0,35 6,37% 24% 0,61%

15 Blenheim Investments 1,28% 8,54% 0,64 4,46 9,72% 10% 1,20%

16 Red Oak Commodity Advisors 1,52% 8,39% 0,41 1,56 12,69% 70% 0,96%
 

Table 3.1. Descriptive analysis of the hedge funds (monthly returns) 
 
In our database, two hedge funds are highly rewarding assets – HF 9 and 12 – therefore we 
may expect that these two assets – at least HF 9 which is the most rewarding one – should be 
selected in optimal portfolios when the risk constraint is pretty weak. However HF 9 is 
associated with a very high kurtosis therefore it should be all the less probably selected as the 
risk constraint is demanding. On the contrary, HF 6 combines low volatility and high Sharpe 
ratio and therefore it could be selected when the risk constraint is tight. 
 
On the other hand, as we will further notice, some assets – for example, HF 2 and 11 – 
sometimes appear in efficient portfolios for low risk levels although they are weakly 
rewarding and highly volatile. The presence of these assets in efficient portfolios is probably 
due to diversification effects that counterbalance the risk contributions of other assets in the 
portfolio. We show below the correlation matrix between hedge funds, showing, for example, 
negative correlation effects between the assets of the pool. However, let us recall that we can 
combine positive tail dependence and negative linear correlation implying two opposite 
effects from the viewpoint of diversification. 
 
 

100 14 -3 0 -20 -13 -33 -4 -15 5 7 8 -24 -7 -2 -28
14 100 -1 -13 -5 -2 -5 6 -10 28 11 -2 3 2 -5 7
-3 -1 100 35 35 21 31 12 16 11 1 -13 30 -5 0 12
0 -13 35 100 25 31 40 -3 16 -4 3 -8 31 9 -4 11

-20 -5 35 25 100 40 50 21 18 30 -15 5 49 12 1 16
-13 -2 21 31 40 100 40 8 14 7 2 1 34 -5 -2 2
-33 -5 31 40 50 40 100 15 22 10 -8 -9 64 14 16 31
-4 6 12 -3 21 8 15 100 8 25 37 41 25 10 11 31

-15 -10 16 16 18 14 22 8 100 1 -9 -1 17 7 -1 11
5 28 11 -4 30 7 10 25 1 100 8 1 21 13 -5 13
7 11 1 3 -15 2 -8 37 -9 8 100 37 -3 7 6 17
8 -2 -13 -8 5 1 -9 41 -1 1 37 100 -2 10 22 29

-24 3 30 31 49 34 64 25 17 21 -3 -2 100 14 6 24
-7 2 -5 9 12 -5 14 10 7 13 7 10 14 100 10 9
-2 -5 0 -4 1 -2 16 11 -1 -5 6 22 6 10 100 50

-28 7 12 11 16 2 31 31 11 13 17 29 24 9 50 100
 
Table 3.2. Correlation matrix of monthly returns of the hedge funds. Rows and columns follow the same order as 

in Table 3.1 
 
We showed in subsection 2.3 that the spectral risk measure of a Gaussian variable is an affine 
function of the mean and the standard deviation of this distribution. Thus optimizing under a 
risk constraint in a Gaussian framework is vacuous since it clearly leads to mean-variance 
efficient portfolios. We performed a Jarque-Bera test on our pool of hedge funds which shows 
that the marginal distributions are pretty far from Gaussian. Besides, using the test procedure 
developed in Malevergne and Sornette (2003), we show that the correlation structure of this 
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pool of funds does not follow a Gaussian copula either. Indeed, the Kolmogorov-Smirnov 
procedure returns a distance of 0.34 for a sample of size 139; this corresponds to a P-value of 
less than 1%. 
 
We also provide risk measures for individual hedge funds (see Table 3.3), namely standard 
deviation (SD or StDev), lower semi-variance (LSV), Fischer risk measure (Fischer), absolute 
deviation to the mean (i.e. Denneberg absolute deviation or DAD) with 85%a = , expected 
shortfall (ES) for 10%α =  and Wang-transform (W-T) for 1.805λ =  which correspond to a 
reference quantile 97%α = ).  
 
As for the expected shortfall and Wang transform, we chose to calibrate them on the same 
level, using a Gaussian distribution as a benchmark. As a result, the expected shortfall at 
10%-quantile corresponds to the Wang transform with 1.805λ = . Conversely, the choice of 
the parameter for Fischer’s deviation to the average and Denneberg’s deviation to the mean is 
irrelevant since these two risk measures are a linear combination of the expected return and a 
deviation term weighted by the parameter. The risk constraint is then completely endowed in 
the deviation term and the value of the parameter does not play any role – unless if it is equal 
to zero.  
 
 

  SD LSV ES (10%) W-T (λ=1.805) Fischer R.M. DAD 

HF 1 2,31% 1,66% 4,07% 4,19% 0,18% 0,24% 

HF 2 4,31% 3,04% 7,28% 6,98% 0,91% 0,89% 

HF 3 2,35% 1,71% 3,60% 3,86% -0,33% -0,33% 

HF 4 2,16% 1,51% 2,52% 3,19% -0,60% -0,65% 

HF 5 2,34% 1,63% 3,40% 3,23% -0,11% -0,11% 

HF 6 0,71% 0,54% 0,68% 0,66% -0,57% -0,53% 

HF 7 5,78% 4,36% 10,14% 11,91% 0,98% 1,24% 

HF 8 1,86% 1,25% 2,17% 2,27% -0,38% -0,42% 

HF 9 7,82% 4,34% 8,85% 11,89% -0,24% -0,62% 

HF 10 1,00% 0,68% 1,02% 1,25% -0,40% -0,38% 

 HF 11 6,69% 3,81% 7,84% 7,15% 0,89% 0,57% 

HF 12 4,17% 2,68% 4,73% 4,89% -0,54% -0,70% 

HF 13 4,87% 3,53% 8,60% 8,44% 0,75% 0,77% 

HF 14 5,58% 3,66% 7,87% 8,32% 1,04% 0,84% 

HF 15 8,54% 5,69% 13,37% 13,96% 1,35% 0,80% 

HF 16 8,40% 5,56% 12,56% 13,22% 1,12% 0,61% 
 

Table 3.3. Individual risk measurement of the hedge funds (monthly returns) 
 
Now, in order to study the relative content of each risk measure, let us assess the rank 
correlations between the various risk measures for the 16 hedge funds of our dataset. The 
results are given in Table 3.4. Except for Denneberg and Fischer risk measures, we notice that 
the rankings of the 16 funds under the different risk measures are almost the same. We refer 
to Danielsson et al. (2006) for related results about the comparison of downside risk measures 
for heavy tailed distributions.  
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  St Dev LSV ES W-T FRM DAD 
St Dev 100 99 96 96 80 53 
LSV 99 100 99 99 83 59 
ES 96 99 100 100 83 60 
W-T 96 99 100 100 83 60 
FRM 80 83 83 83 100 89 
DAD 53 59 60 60 89 100 

 
Table 3.4. Rank correlations among risk measures (same parameters as above), in % 

 
3.2. Determining optimal portfolios 
 
The problem of portfolio optimization consists here in finding the allocation within the 
portfolio of 16 hedge funds which maximizes the expected return of the corresponding 
portfolio under some constraints such as no short-selling and some risk limit on the portfolio. 
Since the risk measures being considered here are coherent and thus convex, we can 
equivalently consider the dual problem of minimizing the risk measure under some expected 
return constraints. 
 
Let us firstly detail the optimization problem. Each fund { }1, ,16i∈ …  is characterized by his 

historical returns { }1 139, ,r r… . The return of the fund of funds corresponding to some portfolio 

allocation ( )1 16,...,a a a=  is then given by ( ) 1 16
1 16...a a r a rπ = + + and the corresponding 

historical returns are given as follows: 
 

Date 1 ( ) 1 16
1 1 16 11

...a a r a rπ = + +  

…
  

Date i ( ) 1 16
1 16...i ii

a a r a rπ = + +  

…
  

Date 139 ( ) 1 16
1 139 16 139139

...a a r a rπ = + +  
 
As an example, let us consider the case of a spectral risk measure with some spectrum φ . The 
risk measure associated with portfolio allocation a  is performed by firstly sorting the 
historical returns: ( ) ( ) ( )1:139 2:139 139:139

...a a aπ π π≤ ≤ ≤  and then by computing a weighted 

sum of these values, 
139

:139
1

( )i i
i

aλπ
=

−∑ , where
/139

( 1) /139

( )
i

i
i

p dpλ φ
−

= ∫ . 

 

The optimal allocation problem can then we written as: 
139

:139
1

min ( )i ia i

aλπ
=

−∑  under 0ia ≥ , 

1, ,16i = …  (no short selling constraints), 1 16 1a a+ + ="  (budget constraint) and 
139

1

1 ( )
139 i

i
a rπ

=

=∑  (expected return constraint). 
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There exist various efficient numerical techniques based on linear programming to solve this 
problem. Rockafellar and Uryasev (2000) pioneered these techniques in the case of the 
expected shortfall. Acerbi and Simonetti (2002) and Bassett et al. (2004) further extended the 
approach to the case of spectral and distortion risk measures. As for variance-based measures, 
we can rely on quadratic optimization methods as shown in Konno et al. (2002).  
 
Figures 3.5, 3.6 and 3.7 represent the optimal portfolios for variance-based risk measures 
(lower semi-variance and standard deviation), moment-based measures and some spectral risk 
measures. We show how the optimal allocation depends upon the expected return objective.  
 

- Efficient allocations for variance-based risk measures 
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Fig 3-5: Efficient allocations for standard deviation (left) and lower semi-variance (right) 

 
- Case of deviation-based measures 
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Fig 3-6: Efficient allocations for Fischer measure (a=85%)(left) and Denneberg absolute deviation 

(right)(a=85%) 
 

- Spectral risk measures 
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Fig 3-7: Efficient allocations for expected shortfall (α=10%) (left) and Wang transform (λ=1.805) (right) 

 

 
At first sight, there are only small differences as we skip from one risk measure to another. 
Some other studies have recently investigated the use of alternative risk measures for portfolio 
management. For example, Krokhmal et al. (2002) performed hedge fund portfolio 
optimization under different risk measures: CVaR, conditional drawdown at risk, mean 
absolute deviation and maximum loss, showing that the resulting efficient frontiers are close. 
Chabaane et al. (2006) compared VaR optimal portfolios computed under different VaR 
estimators and expected shortfall or semi-variance optimal portfolios. Their study shows some 
similarity between the various optimal allocations as well. 
 
3.3. Analysing efficient portfolios 
 
We further investigate this proximity issue by firstly quantifying the proximity between 
optimal portfolios. For this purpose, we chose some level of expected return and we 
determined the corresponding optimal portfolio for each risk measure. For our study we chose 
the level of return corresponding to the portfolio equally weighted in each hedge fund, 
noticing that this return – 1.04 % – is located in a region where efficient portfolios are 
significantly diversified, as we see in the previous figures. This leads to six optimal funds of 
hedge funds each of them being associated with a particular risk constraint. In Table 3.8, we 
report their corresponding risk characteristics and we notice that they almost do not change 
when switching from one portfolio to another. 
 

  Efficient Portfolios 
  St Dev LSV ES Wang DAD FRM 
Expected return 1,04% 1,04% 1,04% 1,04% 1,04% 1,04%
Minimum return -1,72% -1,48% -1,38% -0,64% -2,14% -2,12%

Caption 
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Maximum return 3,81% 3,86% 3,86% 4,27% 4,33% 4,32%
Standard deviation 0,89% 0,92% 0,92% 1,01% 0,91% 0,91%
Lower semi-variance 0,62% 0,60% 0,61% 0,64% 0,64% 0,64%
Expected shortfall 0,30% 0,24% 0,21% 0,34% 0,34% 0,35%
Wang transform 0,56% 0,48% 0,45% 0,29% 0,72% 0,71%
Denneberg absolute deviation -0,66% -0,70% -0,66% -0,69% -0,72% -0,71%
Fischer risk measure -0,71% -0,70% -0,68% -0,65% -0,72% -0,72%

 
Table 3.8. Some characteristics of the six efficient portfolios (monthly returns) 

 
As mentioned in Hahn et al. (2002) or Sharma (2004), the proximity between efficient 
portfolios can be well captured by computing the rank correlation between their historical 
returns. Thus, the rank correlations between the 6 efficient portfolios mentioned above are 
also very explicit (Table 3.9) since all of them are located beyond 80%. We also led a 
principal component analysis on the returns of these 6 optimal portfolios, showing that the 
first factor explains more than 90% of the total dispersion of our 6 portfolios. These results 
contribute to show some kind of robustness of optimal allocations with respect to the choice 
of the risk measure. Therefore, our study confirms and extends the results of Krokhmal et al. 
(2002), Chabaane et al. (2006) to a wider range of spectral and deviation-based risk measures.  
 

  St Dev LSV ES Wang DAD FRM 
St Dev 100% 98% 97% 89% 97% 97% 
LSV 98% 100% 99% 92% 94% 94% 
ES 97% 99% 100% 92% 93% 93% 
Wang 89% 92% 92% 100% 81% 81% 
DAD 97% 94% 93% 81% 100% 100% 
FRM 97% 94% 93% 81% 100% 100% 

 
Table 3.9. Rank correlations between efficient portfolios (same portfolios as in Table 3.8) 

 
To further investigate the robustness of portfolio selection with respect to the choice of risk 
measure, we computed optimal portfolio allocations as a function of the threshold of the 
expected shortfall. This was achieved for 7 values of the threshold – 5%, 10%, 15%, 20%, 
30%, 40% - and an expected return of 1.04%. The same study as above leads to over 80% 
rank correlations and a PCA shows that more than 95% of the total dispersion is related to a 
unique factor This confirms the proximity between optimal allocations with respect to the 
choice of the measure since, as mentioned in subsection 2.5, any spectral risk measure can be 
expressed as a weighted average of expected shortfalls at different probability thresholds. 
 
However, when going to extreme attitudes towards risk, we observe new kinds of optimal 
investments. As we did for other risk measures, we represent in Figure 3.10 the optimal 
allocations for the risk measure representing the worst case scenario with respect to the 
expected return objective. This latter risk measure corresponds to the lowest quantile of the 
distribution and is equal, in our framework, to an expected shortfall at a level 1

nα ≤ .  
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Fig. 3.10. Efficient Allocations for Worst Case risk measure 
 
Comparing with the same graph for the expected shortfall at a 10% level (Fig.3.7), some 
funds such as HF1 or HF2 appear in a more important proportion in the intermediate range of 
expected returns (1.1% - 1.6%). The presence of such funds is likely to be related to 
diversification effects decreasing the global risk of the portfolio. Thus, we studied more 
specifically the diversification effect by computing the diversification ratio defined as 

( )
116

2

1
i

i
DR a a

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ . We show the evolution of this ratio in Figure 3.11. The higher ( )DR a , 

the more diversified a portfolio will be. We see that the statement that more pessimistic 
investors tend to hold more diversified portfolios is somehow true but does not explain 
everything.  
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Fig. 3.11. Diversification ratio of efficient portfolios for several risk measures varying expected return 



18 

 
For extremely demanding risk constraints – corresponding to the left part of the 
diversification ratio curves – optimal portfolios are concentrated on fewer funds, those with 
the « less catastrophic » risk characteristics. To illustrate it, we focus on HF 6, the fund whose 
lowest quantile is the highest among the funds of the pool. As Table 3.12 shows, its 
proportion in optimal portfolios goes higher as the risk constraint hardens. 
 

Expected Return 0.80% 0.90% 1.00% 1.10% 1.20% 1.30% 1.40%
Standard Deviation 58.33% 51.87% 44.92% 36.29% 27.66% 19.03% 7.87%
Lower Semi-Variance 48.19% 38.80% 29.99% 22.45% 14.40% 6.02% 0.02%
Worst Case Measure 41.62% 41.74% 40.27% 24.42% 19.89% 8.28% 0.00%
Wang Transform 44.25% 44.01% 38.58% 28.48% 17.73% 5.08% 0.00%

 
Table 3.12. Proportion of HF 6 in efficient portfolios when varying expected return 

 
The latter results show the influence of two opposite effects. On one hand, as mentioned 
above, an increased risk constraint should lead to more diversified portfolios. On the other 
hand, diversification effects may be counterbalanced in case of positive tail dependence. For 
instance, in the specific case where extreme negative returns would be perfectly correlated, 
the optimal portfolio with respect to the worst case risk measure would consist in a full 
allocation in the fund with the highest worst return, here HF 6. 

Conclusion 
Various classes of risk measures – spectral or distortion risk measures, moment based risk 
measures – can be used in the framework of portfolio optimization. We firstly reviewed some 
theoretical properties of such risk measures and discussed the use of the empirical measure. 

Thanks to linear or quadratic programming techniques, the problem of finding optimal 
portfolio allocations under a risk constraint can be efficiently solved. As the panorama of risk 
measures has considerably widened, there remains, for the asset manager, the question of the 
choice of the measure. Our case study based on a dataset of individual hedge funds shows 
some robustness of the optimal allocations with respect to the choice of the measure and 
confirms previous studies. However, as we head for more extreme risk criteria like the worst 
case measure, we obtain slightly different optimal profiles. The optimal allocations ensue 
from two opposite effects. Diversification tends to be magnified as the risk constraint 
sharpens but due to possible dependence effects of extreme returns, the rational investor 
might concentrate its investments on the less risky funds. 
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Appendix A: Scenario analysis and spectral risk measures in a discrete 
framework 
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In this Appendix, we successively establish a representation of the expected shortfall and 
spectral risk measures through scenario analysis, as developed in Artzner et al. (1999) or 
Heyde et al. (2006). 
 
Proposition A.1. (Scenario analysis and expected shortfall at level α) For some 
permutation σ  of the set { }1,...,n , we define Pσ

α  as the probability measure such that: 
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Then we set { }, SnPσ
α α σΠ = ∈  where Sn  stands for the set of the permutations of { }1,...,n . 

With these notations, we have the following core representation of the expected shortfall at 
level α  :  

[ ]{ }ES ( ) sup ,PX E X Pα α= − ∈Π . 
 

Moreover, for any random variable X , the upper bound is reached for any permutation Xσ  

fulfilling ( ) ( ) ( )(1) (2) ( )...
X X X nX X Xσ σ σω ω ω≤ ≤ ≤ . 

 
Proof of Proposition A.1. Under our assumption of the space Ω  being finite, the portfolio 
return X  takes a finite number of values which can be ordered 1: 2: :...n n n nx x x≤ ≤ ≤ . We define 
the corresponding events 1: :( ;...; )n n nω ω  such that 1: 1: : :( ) ;...; ( )n n n n n nX x X xω ω= = . Such a 
permutation of the events corresponds to Xσ  as defined in Proposition B.1, we call it an 
ordering permutation. 

 

Then we have ( ) [ ]( )
1

: :
1

1ES ( ) 1
X

n
P

i n n n
i

X x n n x E X
n

σ
α

α

α αα α
α

−⎡ ⎤⎢ ⎥

⎡ ⎤⎢ ⎥
=

⎛ ⎞
= − + − + = −⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟

⎝ ⎠
∑ , 

according to the notations we adopted. 
 
In the proposition we state that computing the expected shortfall of X  coincides with the 
maximal value of [ ]PE X

σ
α−  over all permutations σ  and that this maximum is attained for 

any ordering permutation Xσ . Let us show this point.  
 
For any pair of indexes ( , )i j  such that 1 i j n≤ ≤ ≤  we have 

: : : :( ) ( ) ( ) ( )i j n j i n i i n j j nP x P x P x P xα α α αω ω ω ω+ ≥ +  since 1( ) ... ( )nP Pα αω ω≥ ≥ . Since, according to 
our notations, we have: 

[ ] ( )
1

( )
n

P
k k

k
E X P x

σ
α

α σω
=

=∑ , 

this means that any time one switches two indexes in the ordering permutation, he obtains an 
expected value which is superior to [ ]( )XPE X

σ
α . More generally speaking, applying any 

permuting cycle to Xσ  leads to the same result. Since any permutation can be written as a 
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composition of independent permuting cycles, this shows that Xσ  is a permutation 

minimizing the quantity [ ]PE X
σ
α . □ 

 
By this way we obtain one of the possible set of scenarios characterizing the expected 
shortfall: 

{ }SnPσ
α α σΠ = ∈ . 

 
Moreover, all these probability measures are absolutely continuous with respect to the 
historical probability measure. 
 
A similar result can be established for spectral risk measures: 
 
Proposition A.2. (Scenario analysis and spectral risk measures) Let Mφ  be a spectral risk 

measure characterized by its spectrum φ . For some permutation σ  of the set { }1,...,n , we 

define the probability measure Pσ
φ  by ( ) ( )

( )

/

( )
1 /

1 ,
k n

k
k n

k n P p dpσ
φ σω φ

−

∀ ≤ ≤ = ∫  and we set 

{ }, SnPσ
φ φ σΠ = ∈  where Sn  still stands for the set of the permutations of { }1,...,n .  

 
With these notations, we have the following representation of Mφ :  
 

[ ]{ }( ) sup ,PM X E X Pφ φ= − ∈Π . 
 

Moreover, for any fixed random variable X , the superior bound is attained for any ordering 
permutation Xσ  defined by ( ) ( ) ( )(1) (2) ( )...

X X X nX X Xσ σ σω ω ω≤ ≤ ≤ . 
 
Proof of Proposition A.2. This proof is a mere generalisation of the proof concerning the 
expected shortfall to spectral risk measures. In the notations, the probability measure Pα  is 
replaced by the measure Pφ  characterized by the values ( )1,..., nPφ λ λ=  where 

( )

/

1 /

( )
k n

k
k n

p dpλ φ
−

= ∫ . Moreover, we notice that 1 ... 0nλ λ≥ ≥ ≥  and 
1

1
n

i
i

λ
=

=∑  due to the 

assumptions made on the spectrum φ .  
 
According to these notations and keeping the concept of the ordering permutation Xσ , we 
have: 

: ( )
1

( )
n

P
k k n X

k
M X x E Xφ

φ σλ
=

⎡ ⎤= − = − ⎣ ⎦∑ . 

Since the weights of the measure Pφ  are non-increasingly ordered, the idea using permuting 
cycles in the case of the expected shortfall can be used the same way for spectral risk 
measures (see proof of Proposition A.1). Thus, as in the case of the expected shortfall, the 
spectral risk measure Mφ  can be set under the following form: 

[ ]{ }( ) max SP
nM X E X

σ
φ

φ σ= − ∈ , 
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where for any Snσ ∈ , Pσ
φ is the probability measure obtained by permuting the values of Pφ  

according to σ . Similarly, the maximum value is attained for the ordering permutation Xσ . □ 
 
As a consequence, we can derive a closed form for the set of scenarios characterizing a 
spectral risk measure: 

{ }SnPσ
φ φ σΠ = ∈ . 

 

Appendix B: Proof of the consistency of ordering risks with spectral risk 
measures and second order stochastic dominance 
 
In this Appendix, we focus on the following result: 
 
 
Proposition B.1. (Consistency of spectral risk measures ordering with second order 
stochastic dominance):  
 

SOSD
X Y≤ ⇔  For any probability threshold α  we have ES ( ) ES ( )X Yα α≥ , 

 
and 
 

SOSD
X Y≤ ⇔  For any spectral risk measure Mφ  we have ( ) ( )M X M Yφ φ≥ . 

 
 
Proof of Proposition B.1. Since any spectral risk measure can be expressed as a positively 
weighted average of expected shortfalls, and since the expected shortfalls belong to the class 
of spectral risk measures, establishing one of these equivalences gives the other one.  
 
Then we focus on the first one and to achieve the proof, we refer to the method developed in 
Denuit et al. (2006) with adaptations. An interesting proof of this result can also be found in 
Leitner (2005).We recall that standard microeconomic theory (see Denuit et al. (2006) for 
example) allows to equivalently write the SOSD order using the distribution functions of the 
returns:  

( ) ( ), 1 ( ) 1 ( )X YSOSD
t t

X Y t F u du F u du
+∞ +∞

≤ ⇔ ∀ ∈ − ≤ −∫ ∫\ . 

 
Proof of ⇒ . We suppose that 

SOSD
X Y≤ . We refer to the characterization of SOSD with utility 

functions considering the case of stop-loss functions ( )t a t +− −6  defined for every a∈\ . 
Then the SOSD-domination of Y  on X  implies that for every a∈\  we have:  

( ) ( )P PE a X E a Y+ +⎡ ⎤ ⎡ ⎤− ≥ −⎣ ⎦ ⎣ ⎦  
 
Let ( ]0,1p∈  be some probability level. We know (see for example Rockafellar and Uryasev, 
(2002) or Acerbi and Tasche (2002)) that the expected shortfall of X  at level p  is the 
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minimum value of ( )1b E b X
p

+⎧ ⎫⎡ ⎤− + −⎨ ⎬⎣ ⎦⎩ ⎭
 upon b∈\ . We also know that the minimum is 

attained for ( ) ( )1
p Xb VaR X F p−= − = .  

 
Thus, the end of the proof is straightforward:  

 

[ ] ( ) ( ) ( )( )

( ) ( )( ) [ ]

1 1ES inf

1 ES

p p pb

p p p

Y b E b Y VaR X E VaR X Y
p p

VaR X E VaR X X X
p

++

∈

+

⎧ ⎫ ⎡ ⎤⎡ ⎤= − + − ≤ + − −⎨ ⎬ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤≤ + − − =⎢ ⎥⎣ ⎦

\
 

 
 
Proof of ⇐ . Here we require the theory of the integration of non-increasing and non-negative 
functions and their pseudo inverse developed for example in Denneberg (1994).  
 
We suppose that ES ( ) ES ( )X Yα α≥ for every probability threshold ( ]0,1α ∈  and we will 

show that ( )( ) ( )( ), 1 1Y X
t t

t F u du F u du
+∞ +∞

∀ ∈ − ≥ −∫ ∫\ , or equivalently 

( ) ( ), X Y
t t

t F u du F u du
+∞ +∞

∀ ∈ ≥∫ ∫\ . First, we establish the following Lemma: 

 
Lemma B.2. For every x∈\ , we have: 

( )( ) ( )( )
1

1

( )

1 ( ) 1
x F x

F u du F p dp x F x
+∞

−− = − −∫ ∫ , 

where F  stands for the cumulated density function of either X  or Y  and 1F −  the 
corresponding quantile function. 
 
Proof of Lemma B.2. We consider x∈\  and the function 

( ): 1x
X XF u F u x+ +∈ → − + ∈\ \ . 

 
This function is non-negative and non-increasing. Thus we can define 

( ) ( ){ }1
: 0 supx x

X XF p u F u p
− +∈ → ∨ >\ , 

as the pseudo-inverse of x
XF  in the sense of Denneberg (1994). Here a b∨  stands for 

( )max ,a b . 
 
According to Denneberg’s results, we have  

( ) 1

0 0

( ) ( )x x
X XF u du F p dp

+∞ +∞
−

=∫ ∫  (B.3) 

 
Further computation of ( ) 1x

XF
−

gives the following: 
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( ) ( ) ( ){ }
( ){ }

( ){ }
( ){ }

1
0 sup

0 sup 1

0 sup 1

0 sup 1

x x
X X

X

X

X

F p u F u p

u F u x p

u F u x p

x u F u p

−
= ∨ >

= ∨ − + >

= ∨ + < −

⎡ ⎤= ∨ − + < −⎣ ⎦

. 

Since ( ){ } ( ){ } ( )1sup 1 inf 1 1X X Xu F u p u F u p F p−< − = ≥ − = −  then: 

( ) ( ) ( )1 10 1x
X XF p F p x

− −⎡ ⎤= ∨ − −⎣ ⎦ . 
 
Coming back to equality (C.3), we compute separately each of the two terms: 

( ) ( )( ) ( )( )
0 0

1 1x
X X X

x

F u du F u x du F u du
+∞ +∞ +∞

= − + = −∫ ∫ ∫ ; 

in the second one, we firstly notice that the 0 term is the greater in the maximum form of 

( ) 1x
XF

−
when 1 ( )Xp F x− > , or equivalently ( )1 Xp F x< − . This leads to: 

( ) ( ) ( )
( )

( )( ) ( )
( )

1 1
1 1 1

0 0

1 1
X

X

F x
x

X X X X
F x

F u du F p x dp x F x F p dp
−+∞

− − −⎡ ⎤= − − = − − +⎣ ⎦∫ ∫ ∫ . 

Eventually, we get: 

( )( ) ( )( ) ( )
( )

1
11 1

X

X X X
x F x

F u du x F x F p dp
+∞

−− = − − +∫ ∫ ; 

this achieves the proof of Lemma B.2. □ 
 
Let X  and Y  be two random variables verifying ES ( ) ES ( )X Yα α≥  for every probability 

threshold α . This means that for any ( ]0,1α ∈ , 
1 1

1 1

1 1

( ) ( )X YF p dp F p dp
α α

− −

− −

≥∫ ∫ . Let x∈\ . 

 
 First, we assess the case where ( ) ( )X YF x F x≤ . According to Lemma B.2, we have: 

. 

( ) ( ) ( ) ( )
( )

( )
( )

( )1
1 1 1

Y

X X

F x

X Y Y X Y
x F x F x

F u F u du F p F p dp x F p dp
+∞

− − −⎡ ⎤ ⎡ ⎤− = − + −⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  (B.4) 

 
The first term is non-negative and the second one either, since  

( ) ( ) ( ) ( )( ) ( ) ( ){ }1 1, , infX Y Y Y Y Y Yp F x F x F p F F x u F u F x x− −∀ ∈ ≤ = ≥ ≤⎡ ⎤⎣ ⎦ , 

giving ( ) ( ) 0X Y
x

F u F u du
+∞

− ≥⎡ ⎤⎣ ⎦∫ .  

 
Now, let us consider the case where ( ) ( )X YF x F x>  – or equivalently ( ) ( )1 1Y XF x F x− > − . 

First, if we suppose that ( ) ( )X YF t F t>  for every t x≥ , then the result is obvious. Therefore 

we suppose that there exists 0x x≥  such that ( ) ( )0 0X YF x F x≤ . Thus, we consider 

( ) ( ){ }inf X Yx t x F t F t= ≥ ≤ . 
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We know that [ ) ( ) ( ), , X Yt x x F t F t∀ ∈ ≥ , giving ( ) ( )
x x

X Y
x x

F t dt F t dt≥∫ ∫ .  

Besides, by right-continuity of the cumulated density functions, we have ( ) ( )X YF x F x≤ . 

Using equation (B.4) with x x=  gives ( ) ( )X Y
x x

F t dt F t dt
+∞ +∞

≥∫ ∫ , leading to the desired 

inequality and achieving the proof of Proposition B.1. □ 
 
 
 
Appendix C: Spectral Risk Measures as Weighted Averages of Expected 
Shortfalls. 
 
In this Appendix, we establish the following proposition: 
 
Proposition C.1. Any spectral risk measure can be expressed as a positively weighted 
average of Expected Shortfalls. In other words, given a spectral risk measure φM , there exists 

a probability measure ν  on [ ]0,1  such that  
1

0

( ) ES ( ) ( )M X X dφ α ν α= ∫ . 

 
Proof of Proposition C.1. To show this, let us denote by μ , the positive measure such that 

[ )( ), ( ) ( )a b a bμ φ φ= − , for 10 ≤<< ba .  

Thus, [ ),1( ) (1) 1 ( ) ( )pp u d uφ φ μ= + ∫ . Since [ ]
1

1
1

0

( ) ES ( )P
XE X F p dp X−= = −∫  and using 

Fubini’s theorem, 
1

1
0

( ) (1)ES ( ) ES ( ) ( )M X X X dφ αφ α μ α= + ∫ . Let us eventually consider the 

measure ν  defined by ( ) ( ) ∫+=
B

dBB )()1( 1 αμαδφν  for any Borel subset of [ ]1,0 , B. Then,  

1

0

( ) ES ( ) ( )M X X dφ α ν α= ∫ . 

Moreover, [ ]( ) ∫∫ =+=
1

0

1

0

)()()1(1,0 dppd φαμαφν  by Fubini’s theorem. Thus, under the 

normalizing constraint 1)(
1

0

=∫ dppφ , ν  is a probability measure on [ ]1,0  and )( XMφ  

appears as a weighted average of expected shortfalls.□ 
 
Appendix D: Spectral Risk Measures and Mean-Variance 
Criterion.  
 
Proposition D.1. When portfolio risk X  is Gaussian, we can write ( )M Xφ  as:  
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( ) [ ] ( ) ( )0
PM X E X X M Xφ φσ= − + , 

and ( )0 0M Xφ ≥ . 
 
Proof of Proposition D.1. Since [ ] ( ) 0

PX E X X Xσ= +  where ( )0 0,1X N∼ , we get:  

( ) [ ] ( ) ( )0
PM X E X X M Xφ φσ= − + , 

thanks to the positive homogeneity and translation invariance properties of Mφ . 
 
In Subsection 2.6, we showed a one-to-one matching between spectral and distortion risk 
measures. We also established that for any distortion risk measure gρ  we have 

( ) [ ]P
g X E Xρ ≥ − . Thus the non-negativity of the coefficient ( )0M Xφ  can be derived from: 

( ) [ ]0 0 0PM X E Xφ ≥ − = . □ 
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