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Abstract

We first analyze some atmospheric parameters measured in 2004 at the top of
La Soufrière volcano: wind speed, pressure and temperature. Next, we study the
stochastic process of the wind speed modulus which is of interest for prediction of
pollution induced by the plume. We fit to the data various models: FARIMA, pe-
riodic trend plus multifractional Brownian noise, multifractal continuous cascades.
The estimations show that the parameters are quite constant during some time
intervals but that they evoluate during some transition phases in response to en-
vironment changes. Thus, we finally suggest, for future works, some settings that
should be more appropriate: time series with regime changes and stochastic pro-
cesses in random environment.
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1 Introduction

Since several years, a strong fumarolic plume is emitted from the south crater
of La soufrière volcano, in Guadeloupe. In 2004, in order to characterize gases,
OP-FTIR measurements in that volcanic plume were performed, revealing
presence of HCl, SO2, SiF4, CH4. Accurate estimations of gas traces were
difficult to obtain due to spatial and temporal variability of the emissions,
acidity of gases, volcano morphology, and weather conditions. For example,
humidity largely contaminated the OP-FTIR spectra while high variations of
wind intensity and wind direction disturbed the measurements in the plume.
These results and observations can be found in [Bernard et al.(2006)].
As temporal evolution and forecasting of gas traces is a matter of fundamen-
tal importance for the assessment of the volcanic risk and for public safety in
the volcanic areas, it is of great interest to elaborate models that can predict
atmospheric gase concentrations, taking in account the wind process. As a
first step to this purpose, we report in the present work a statisticial analysis
of measurements on various meteorological parameters, performed near the
summit of the volcano.
The paper is organized as follows. In Section 2, we shortly present the mea-
surements context. Section 3 is concerned with elementary but useful statis-
tics such as daily or monthly profiles. In Section 4 we perform a fast Fourier
transform analysis and we represent the autocorellation function of the wind
modulus process. In Section 5 we put in evidence a periodic trend and a
high local variability of the noise process by fitting a multifractional Brow-
nian motion (MFBM). Due to the difficulties of identifying a model for the
Hurst function in the MFBM, we turn to, in Section 6, a model which has a
deep interpretability in physics: the continuous cascades model with fractional
stochastic integral drift and standard noise [Schmitt (2001)], [Schmitt (2003)],
[Schmitt (2005)]. We also show why the estimations that we obtain suggest an
extension of such a model. Conclusion and perspectives on future works are
presented in the last section.

2 Material and methods

2.1 Instruments

Since 2000, a meteorological station has been installed by the ”Observatoire
Volcanologique et Sismologique de Guadeloupe” at the top of the volcano La
Soufrière. The station is situated at Piton Sanner, 16◦02.70’N, 61◦39.76’W,
h=1442 m on the the mount ”Sanner”. Horizontal wind speed and direction
were measured by a wind monitor (Campbell scientific 05103-03) Accuracy :
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0.3 m s−1, 1 to 60 m s−1; ±1.0 m s−1 60 to 100 m s−1) at z = 2m. This type
of anemometer was selected because its design offers improved resistance to
corrosion from atmospheric pollutants (volcanic plume) and gusts. Tempera-
ture (HMP45C), relative humidity (HMP45C Campbell), barometric pressure
(PTB 101B Campbell), radiation (pyranometer SP1110 Campbell) and plu-
viometry were also measured. Signals from the station were recorded by data-
loggers (CR10X Campbell scientific). All the equipments are Campbell. A de-
tailed physical description of these systems is given in ”http://www.ovsg.univ-
ag.fr/meteo/public/SANNER”.

2.2 Sampling

The dataset used in this analysis concerns three meteorological parameters,
wind speed, pressure, wind direction, supplied by the ’Observatoire volcanologique
et Sismologique de Guadeloupe and denoted S, P and D, respectively. The data
were discretely sampled every minute but only averaged intervals of ten min-
utes are recorded. The experiment has provided a time series of 12 month
length (from january 1st to december 31th 2004). The mean ten-minute wind
speed (in m s−1) corresponds to the meteorological mean wind so that varia-
tions due to turbulence are filtered. Therefore, measurements made here are
well adapted to synoptic and average scale phenomenon representation.

3 Elementary statistics

3.1 Summary statistics

The following table is concerned with some elementary yearly statistics of the
three variables S, P and D. As it must be expected, the atmospheric pressure
seems to be a stationary process with small variation, at the opposite of the
wind speed and wind direction processes.

Min Max Mean Median Std. dev.

Wind velocity 0 27.81 10.89 11.39 5.55

Pressure (mm.Hg) 849 862.2 857.5 857.5 1.676

Direction (degrees) 21.6 342.4 118.2 107.6 36.23

Table 1: Summary statistics of (S,P,D)
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3.2 Time series (S, P, D)

The figure below represents the time series of the wind speed, the atmospheric
pressure and the wind direction, respectively. It can be observed that wind
speed is more chaotic than atmospheric pressure while wind direction has
some random extreme jumps.
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Fig. 1. Time series of (S,P,D), La Soufrière Volcano

3.3 Distributions and occupation time

It seems that the connection between the distribution of the sampled values
of a continous stochastic process and its local time is not very popular. First
recall that the bar histograms as those plotted in Fig. 2 below are computed
as follows. The min-max interval of the data values is splitted into regular
bins and the surface of each bar is the frequency of the values belonging to
the bin. As the measurements were sampled at regular time intervals, we see
that this frequency is also a time frequency. Therefore, if the wind speed and
pressure are considered as continuous stochastic processes observed during a
time interval (t, T ), these bar histograms estimate a probability distribution
function (pdf) L(t, T ), the occupation time density of these processes, also
called local time in the probabilistic literature.

3.3.1 (S,P,D) occupation time densities

For 2004, the wind intensity varies from 0 to 28 m s−1 with a mean speed of
10.89 m s−1 and a standard deviation of 5.55 m s−1. Its graphical representa-
tion is a bimodal asymetric histogram (Fig. 2). This corresponds to the well
known property of the wind speed density to generally be a mixture of two
Weibull distributions.
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Recall that a peak of the density (for example at 4m s−1 and at 12m s−1 in
april 2004) means that the speed is more frequent at the corresponding value
during the monitoring interval.
The atmospheric pressure varies from 849 to 862.5 mm Hg. Its representation
seems to be quite a normal distribution. It is more difficult to characterize the
wind direction which seems to be a gamma distribution.
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Fig. 2. Densities of (S,P,D)

3.3.2 Monthly profiles

Monthly averages of the wind speed, atmospheric pressure and wind direction
are represented in Fig. 3. Monthly profiles wind speed vary between 14.70 m
s−1 in June to 5.87 m s−1 in October. These profiles are very similar to those
recorded and calculated for the synoptic flux in a climatic station of Météo-
France in Guadeloupe [Brevignon et al.(2006)]. Only the order of magnitude
is different: the intensity is multiplied by 1.6 at the summit.
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Fig. 3. Monthly average of (S,P,D)

Monthly profiles could be separated in four parts:
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• January to february: we observed a constant flux for wind speed and atmo-
spheric pressure

• March-June: the Azores anticyclone grows stronger and stronger while the
ITCZ goes up to the north with an increase of the atmospheric pressure
accompanied with a strengthening of the wind flux.

• July to October: flux intensity decreases to reach a minima in october. A
similar trend is also observed for the atmospheric pressure.

• October- December: a steady increase of fluxes is observed.

The monthly evolution of the average pressure follows the same profile as the
intensity of the wind.
Concerning wind direction, it is about 110-115 south until July. From August
a progressive rotation towards the south is observed. It reaches its maximum,
about 140, in October and then decreases towards the values measured at the
beginning of the year.

The following figures show the distributions of S, P and D during two extreme
behaviours: June and October 2004.

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 wind speed m/s
852 856 860 864

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Atmospheric Pressure: mm Hg

June

0 306090120150180210240270300330360
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wind Direction (°N)

June: (S ) June: (P) June: (D) 

Fig. 4. Densities of (S,P,D) in June 2004
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Fig. 5. Densities of (S,P,D) in October 2004

Observe that the probability that the speed is less than 10 m s−1 is small while
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it is large in October. Concerning the pressure, there is a sliding of the high
pressures towards the weak ones with a variation of magnitude around 4 mb.
The wind direction is mainly south-east in June and south to south-west in
October.

3.3.3 Average day profile (V,P)

Since the sampling is done every 10 min, 6 data are collected per hour and 144
per day. To get a day profile, we have computed for each time t = 1, ...144,
the mean and the standard deviation through the 366 days of year 2004. The
following figures represent the evolution of the mean of the data computed at
each time. Clearly, S and P are highly correlated.
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Fig. 6. Average Day profile of (S,P,D) for 2004.
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Fig. 7. Standard deviation for a day profile of S, P and D in 2004.

Similarities between these evolution curves yield some empirical rules such
as the following ones which can be of interest for future measurement exper-
iments. Between 0 and 10 a.m., wind speed varies around 11 m s−1. From
10 a.m. to 3:00 p.m. it decreases to reach a minima of 9.5 m s−1 between
3:00 and 4:00 p.m.. Then it regularly increases to reach a maxima at 10 p.m..
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Concerning the pressure we observe a well shaped ”pressure wave” with an
amplitude of 2 hPa and a 12 hour phase. We observe two maxima at 10
a.m. and 10 p.m. local time alternated by two minima at 4 a.m. and 4 p.m..
These results agree with published meteorological data [Dhonneur (1978)],
[Brevignon et al.(2006)]. Concerning wind direction, it is constant from 0:00
to 9:00 a.m.. A rotation of about 10 towards the south is observed from 9:00
a.m. to 2:00 p.m.,then wind direction comes back to its initial direction at
6:00 p.m.. Fig.6 represents standard deviations calculated at each time of the
day-profile for the three variables S, P and D. The measure of the distibution
dispersion is evaluated by the coefficient of variation. For S, it is 50%, for P it
is less than 1% and for D it is about 25 %. Thus S is the most chaotic variable
and P is the most stable one.

3.3.4 Profiles at a fixed hour

It is of interest to know how the data vary when they are observed at a fixed
hour every day, say e.g. at 8 a.m. The following figures yield some empirical
rules. On the 5th april 2004, at 8 a.m., the wind speed modulus has a first
peak, then it decreases from 5th to 10th, and from 10th it increases up to
reach a second peak on 12th. Next, the speed at 8 a.m. decreases from 12th
to 15th and then increases up to the largest peak on 23th. It decreases down
on 24th to slightly increase again. This profile is quite the same at any fixed
hour during this month.
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4 Fourier transform and autocorrelation

Fourier transform and autocorrelation function provide us a deep insight into
the data.
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4.1 Fourier transform

Spectral analysis is the most popular tool for observing cyclical phenomena
and highliting lead-lag relation within a time series. It is based on Fourier
decomposition wich is a way of separating time series into different frequency
components that contribute to or influence the time series. This separating
procedure is important since dynamic processes operate on different frequen-
cies. In our case, the fast Fourier transform is performed in order to get a
periodogram.
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Fig. 9. Power spectrum density of (S,P,D)

In this wind speed periodogram, we observed a first peak corresponding to
a 12-hours cycle (2.309 e-5 Hz) and a second one corresponding to a daily
cycle (1.155 e-5 Hz) . These two periodic peaks are observed at 0.5-day and
1-day. Concerning the atmospheric pressure, we observed two additional peaks
corresponding to a 8-hours cycle (3.4688 e-5 Hz) and a 6-hours cycle (4.623
e-5 Hz).

4.2 (P,V) autocorrelation

The normalized auto-correlation function (NACF) is defined as

R(τ) =
X(ti)X(ti + τ)

X(ti)2
,

where the time series X(ti) is centered, τ denoting the delay time parameter.
The decay of the NACF against the delay time τ from 0 is an indicator of the
relaxation time scale of the system. For the wind speed, it is observed that
we have to wait for a long time before flow renewal. The extinction time for
the wind flow is about 3,000 minutes, that is 2 days and 2 hours. This specific
extinction time and the mean value of the wind speed intensity yield an idea
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of the whirl size. For the atmospheric pressure, the extinction is softer. The
observed time period is 720 minutes, that is a half-day.
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Fig. 10. Autocorrelation function of (S, P, D)

5 Wind speed stochastic process

5.1 FARIMA model

The slow decay of the autocorrelation function plotted in section 4 shows a
long-term memory behaviour of the wind intensity, confirming a well-known
property of meteorological time series. Since [Raftery et al. (1989)] and
[Motanari et al (1996)], FARIMA and GARMA models are usually fit to such
data. A process (Xt)t>0 is FARIMA(p, d, q) [Hosking (1981)] if:

φ(B)∆dXt = θ(B)ǫt,

where d is a real number (−1/2 < d < 1/2), φ(B) and θ(B) are AR and MA
polynomials respectively, and ǫt is a white noise.
Its autocorrelation function ρ(h) verifies ρ(h) ≈ cdh

2d−1 as h → ∞. If

log(|ρ(h)|) ≡ α̂ + β̂log(h)

is a linear regression model estimation, then d can be estimated by d̂ =
(
β̂ + 1

)
/2.

For our wind speed time series, we obtain α̂ = 0.9069, and β̂ = −0.2794, there-
fore d = 0.360.
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5.2 Periodic trend plus noise model

We now consider the following model:

Xt = T (t) + Nt,

where N is the noise process and T is a deterministic (one year period) peri-
odic trend which can be expressed as a linear combination of sine and cosine
functions:

T (t) = α0 +
m∑

j=1

[
αjCos

(
2πjt

K

)
+ βjSin

(
2πjt

K

)]
, (1)

where αj and βj for j = 1, ...,m are real constants given by the least squares
estimation method and defined as α0 = 1

K

∑K
n=1 X(n),

αj =
2

K

K∑

n=1

X(n)Cos
(

2πjn

K

)
, βj =

2

K

K∑

n=1

X(n)Sin
(

2πjn

K

)
,

the integer K denoting the number of data recorded during one year, here
K = 52706.
The main problem is the estimation of m, the number of harmonics to be
considered. When m is too large we get an overfit model so that we penalize
large m by using the Akaike Information Criterion AIC [Akaike (1974)] or the
Bayesian Information Criterion BIC [Schwarz (1978)] defined respectively by

AIC(p) = Ln(σ̂2
p) +

2p

K
and BIC(p) = Ln(σ̂2

p) +
p.Ln(K)

K
,

where σ̂2
p = 1

K

∑K
t=1 e2

tp, e2
tp = (X(t) − Tp(t))

2, and Tp is the tendancy on p
harmonics. The value of m is then the value p that minimizes the choosen
criterion. Unfortunately, the above formulas show that the larger the number
K is the higher p̂ will be. In our case, this leads to very large value of m so
we turned to the mean deviation criterion. We decided that a polynomial of
type (1) is a good approximation of the wind speed process when its mean
deviation is less than 10. The best solution in this way is obtained for m = 72.
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5.3 Multifractional noise

Figure 11 below shows the noise’s time series of the wind speed after removing
the trend on 72 harmonics.
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Fig. 12. Noise time series of the wind speed

The noise process (Nt)t≥0 is defined as Nt = Xt − T (t). In terms of infinites-
imal increments we have dXt = T (t)dt + dNt. Usually the noise process is a
standard white noise that is the derivative in the sense of Ito calculus of a
standard Brownian motion: dNt = dBt. However, while Brownian motion is
memoryless (the increments are independent), the measurements show that
the process of wind speed modulus has a long term memory behaviour. So, in
a first approach we have estimated the noise by using a fractional Brownian
motion. A fractional Brownian motion (fBm) (BH

t )t≥0 with (Hurst) parameter
H, 0 ≤ H ≤ 1 is a zero-mean Gaussian process such that

Cov[BH
t , BH

u ] =
|t|2H + |u|2H − |t − u|2H

2
.
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The parameter H can be estimated by

HK =
1

2
log2

(
VK/2

VK

+ 1

)

,

where VK is the generalized quadratic variation defined by

VK =
K−2∑

p=0

(
BH

p+2

K

− 2BH
p+1

K

+ BH
p

K

)2

.

Unfortunately the above estimations applied to the wind speed data show that
this parameter is not constant as it depends on the time parameter t. Hence
we have considered a multifractional Brownian motion (mfBm) B

H(t)
t , a richer

model for which the Hurst parameter is a function of t. The estimation of the
function H is achieved by using the formula

Hǫ,K(t) =
1

2
log2

(
Vǫ,K/2(t)

Vǫ,K(t)
+ 1

)

for 0 ≤ t ≤ 1, noticing that the process is sampled at discrete time i = 1, 2, ....., K.
The process Vǫ,K(t) is the local generalized quadratic variation defined on a

neighborhood νǫ,K(t) =
{
p ∈ Z,

∣∣∣ p
K
− t

∣∣∣ ≤ ǫ
}

of t by

Vǫ,K(t) =
∑

p∈νǫ,K(t)

(
B

H(t)
p+2

K

− 2B
H(t)
p+1

K

+ B
H(t)
p

K

)2

.

In our study we have taken ǫ = 300/K.

The results reveal that the maximal value of H(t) does not exceed 0.5. This
confirms the high variability of the noise series, since H(t) is an indicator of
the smothness of the sample paths of a mBm. The more H(t) is closed to 1
the smoother the sample paths are. Futher H(t) is not a regular function since
it presents several variations in short intervals. A close look at the results
(figure 13) sugest that H(t) might be well fited by a stochastic process.
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Fig. 13. Evolution of the estimated H(t) on [0.1, 0.2] and [0.1, 0.11]
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6 Continuous cascades and stochastic equation model

The results in the preceding section has put in evidence the local high variabil-
ity of the wind process but due to the difficulties of identifying a model for the
Hurst function H(t), we turned to a model which has a deep interpretability
in physics: the continuous cascades model with fractional stochastic integral
drift and standard noise [Schmitt (2001)] [Schmitt (2003)] [Schmitt (2005)].
Our motivation has come from the similarity between our measurements time
series representation (Fig. 1) and the simulations in the papers of F.G. Smith
[Schmitt (2003)] . The estimation of the parameters are derived from some
nice computations of F.G. Schmitt [Schmitt (2003)] whose notations are kept
to make comparisons easier. We will also show how our numerical results sug-
gest an extension of this continuous cascade model.
Discrete multiplicative cascades model of Yaglom [Yaglom (1966)] appeared
after the celebrated pioneering works of Richardson, Kolmogorov and Obukhov
on turbulence modelling. Yaglom model can be seen as a weighted random
tree depending on an i.i.d. family of random variables (r.v.) W(p,i): the root
node is associated with W1,1 and with a scale number L = l0λ

n
1 , each node

having λ1 > 1 children nodes and all the branches having length n. Each
of the λp

1 edges i in layer p is associated with Wp,i and with a scale number
L/λp

1 = l0λ
n−p
1 . Hence each node is associated with the product of the Wp,i’s

which are in the path from the root to this node, and also to a scale number.
In particular, each leaf node x is associated with a r.v.

ε(x) =
n∏

p=1

Wp,x.

Similar constructions are done for random Polya trees [Paddock et al. (2003)]
or in Kraft construction of a continuous random distribution [Kraft (1964)].
Continuous cascades are obtained by letting the depth n → +∞ while the total
scale ratio λ = L/l0 = λn

1 is kept fixed (but large) so that λ1 = λ1/n → 1+.
When taking all the W ’s log-normal, that is

W = exp(
√

µ ln 2go −
µ

2
ln 2),

where g0 is a standard Gaussian, we obtain a dissipation stochastic process:

ελ(t) = λ−µ

2 exp(µ
1

2

∫ t

t+1−λ
(t + 1 − u)−1/2dB(u)),

and its generator,called singularity process:

γλ(t) = ln ελ(t) = −
µ

2
ln λ + µ1/2

∫ t

t+1−λ
(t + 1 − u)−1/2dB(u)
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has a stochastic drift:

dγλ(t) = −
µ1/2

2

(∫ t

t+1−λ
(t + 1 − u)−3/2dB(u)

)
dt+µ1/2dB(t)−λ−1/2dB(t+1−λ).

For large scale ratios λ ≫ 1 we have

dγλ(t) ≈ −
µ1/2

2

(∫ t

t+1−λ
(t + 1 − u)−3/2dB(u)

)
dt + µ1/2dB(t).

These processes are both stationary with long-range correlations so that under
some standard hypothesis, the ergodic theorem ensures the existence of

< ελ(.) >= lim
T→+∞

1

T

∫ T

0
ε(s)ds.

F.G. Schmitt [Schmitt (2003)] (pages 89-90) has computed the moments of
the dissipation process

< εq
λ(.) >= λ−qµ/2λµq2/2

< ελ(.) >= 1,

while the autocorrelation function of the singularity process satifies

< γλ(.)γλ(. + τ) >≈ Aλ − µ ln τ

under the assumption 1 ≪ τ ≪ λ.

6.1 Estimation of the continuous cascades model

Our one-year 52706 measurements of the wind speed modulus during 2004 will
be represented by a vector denoted S[1..52706]. Although the wind process is
not stationnary, we will assume that we can fit the above process γλ(.) during
a time interval of our study period. However as we need < ελ(.) >= 1, the
vector S has to be translated from a constant c determined by the equation:

1 =< exp(γλ(.)) >=< exp(S + c)(.) >

which gives

c = − ln( lim
n→+∞

1

n

n∑

1

exp(S[i])).

In our series, the limit is reached for n ≈ 15000.
The estimation of the intermittency parameter µ can be obtained as follows:

< γλ(.)γλ(. + τ) >≈ Aλ − µ ln τ
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and
< γλ(.)γλ(. + 3τ) >≈ Aλ − µ ln τ − µ ln(3)

imply that

µ ≈ (< γλ(.)γλ(. + τ) > − < γλ(.)γλ(. + 3τ) >) / ln(3),

µ ≈ lim
n→+∞

(
1

n − 1

n−1∑

1

γ[i]γ[i + 1] −
1

n − 3

n−3∑

1

γ[i]γ[i + 3]

)

/ ln(3).

In our case we have taken 1 ≪ τ = 10′ = 600” since the logarithmic decrease
is observed during 3τ = 30′ = 1800”.
The estimation of the parameter λ is achieved by observing that

< ελ(t)
2 >=< exp(2γλ(t)) >

implies

λµ = lim
n→+∞

1

n

n∑

1

exp(2γ[i]).

As µ is already estimated, we get an estimate of λ and that of the depth
d = ln(λ)/ ln(2) of the continuous cascade model.

6.2 Numerical results on continuous cascades model

Using S[1..52706], we first plot the autocorellation of the γ process with a loga-
rithmic scale on the x-axis for the parameter τ . As expected we observe a loga-
rithmic decrease. The above estimations yield µ ≈ 0.3378 and λ ≈ 20, 000, 000
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Fig. 14. Autocorrelation function and logarithmic decrease

that is d = 23 levels of cascades.
Further, as the wind speed is not stationnary we have also considered sliding
windows of size 25000 by considering S[1..25000], S[2..25001] . . . S[27706..52706]
It is important to observe that during some periods the parameters µ and λ
are quite constant but that they evoluate in response to environment change,
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putting in evidence some regime changes. Similar behaviour have been ob-
served when taking windows of size 30000, 35000, 40000 and 45000.
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Fig. 15. Evolution of µ[1 + n..25000 + n] for n = 0, 1, 2, ...
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Fig. 16. Evolution of λ[1 + n..25000 + n] for n = 0, 1, 2, ...
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Fig. 17. Levels of cascades [1+n..25000+n] for n = 0, 1, 2, ...

6.3 Continuous mixtures and hierarchical models

The above estimations suggest that deeper models should be considered: time
series with regime changes or, if the parameters are themselves considered
random, hierarchical mixture models. It should be pointed out that the esti-
mations of such models need a more accute sampling, we think of 10 or 20
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measurements per second.
We make precise our idea on mixture models. Let M(µ, λ) denote the above
cascades model. In order to take in account the environment changes, we
assume that the parameters µ and λ are themselves stochastic processes
µ = (µt)t≥0, λ = (λt)t≥0. This is connected to the refined notion of stochastic
process in random environment. We think of the following hierarchical model
(as usual ∼ indicates the distribution and | conditionality):

WindSpeed(t)|µ,λ ∼M(µt, λt)

(µ, λ)∼D0,

where the mixing distribution D0 is the distribution of a pair of stochastic
processes, that is, in our case, a distribution on a product of two sets of contin-
uous functions. This model can even be complexified by using a nonparametric
Bayesian approach via a continuous-time Ferguson - Dirichlet prior:

WindSpeed(t)|µ,λ ∼M(µt, λt)

(µ, λ)|P ∼P

P ∼Dirichlet(cD0),

where P denotes a random distribution drawn from a Dirichlet prior and c is
a positive constant representing the confidence in that the mean distribution
of P is D0.
This model is a generalization to continuous time of some hierarchical models
used in classification (see e.g. [Ishwaran (2002)]).

7 Conclusion

We have analyzed the behaviour of some atmospheric parameters at the top of
La soufrière volcano giving some useful profiles and interpretations which can
be of interest for future experiments. We have specially put in evidence the
complexity of the wind speed modelling by fitting various models: FARIMA,
periodic trend plus multifractal noise, and a continuous cascades model with
fractional stochastic integral drift, this last one being fit on some specific
periods. The estimations suggest the use of more complex models such as time
series with regime changes or stochastic processes in random environment, for
example continuous time hierarchical mixture models with Dirichlet prior.
This is a challenge for future works since a nice model for wind speed is a
preliminary step for getting nice models for pollution prediction.
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F.,Hammouya, G., & Marion, G., 2006. Remote and in situ measurements of
aid gas release from La Soufrière volcano, Guadeloupe. Journal of Volcanology
and Geothermal Research 150, 395-409.

[Brevignon et al.(2006)] Brevignon, 2006. Atlas Climatique de la Guadeloupe 150,
395-409.

[Dhonneur (1978)] Dhonneur, G., 1978. Météorologie Tropicale.
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