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We use the mean crossover functions [Garrabos and Bervillier, Phys Rev. E 74, 021113 (2006)]
estimated from the bounded results of the Massive Renormalization scheme applied to the Φ4

d (n)
model in three dimensions (d = 3) and scalar order parameter (n = 1) [Bagnuls and Bervillier, Phys.
Rev. E 65, 066132 (2002)], to represent the singular behavior of the isothermal compressibility of
xenon along the critical isochore in the homogeneous preasymptotic domain. The validity range and
the Ising nature of the crossover description are discussed in terms of a single scale factor whose
value can be analytically estimated beyond the Ising-like preasymptotic domain.

PACS numbers: 64.60.Ak., 05.10.Cc., 05.70.Jk, 65.20.+w

1. INTRODUCTION

The Ising-like nature of the universal features of the
one-component fluids close to their vapor-liquid critical
point is now well-established (author?) [1]. These uni-
versal features can be estimated by using a renormaliza-
tion approach (author?) [2] of the classical-to-critical
crossover behavior (author?) [3] for three-dimensional
(3D) Ising-like systems with a symmetrical order pa-
rameter density. Especially, the massive renormalization
scheme (author?) [4, 5, 6] applied to the Φ4

d=3 (n = 1)
model (d and n are the dimensions of the space and order
parameter density, respectively), has been recently revis-
ited (author?) [7] to provide max and min crossover
functions which include updated estimations (author?)
[8] of the universal values for exponents and amplitude
combinations. Subsequently, a related paper (author?)
[9] has provided a unique universal form of the mean
crossover functions, which enabled asymptotic descrip-
tion of the universal features valid within the Ising-

like preasymptotic domain exactly, by eliminating the
increasing uncertainties associated with the asymptotic
error-bar propagation in the initial min and max estima-
tions of the critical exponents.

These crossover functions have been used to analyze
for example, the singular behavior of the correlation
length of seven pure fluids in their homogeneous do-
main (author?) [10] or the singular behavior of the
squared capillary length of twenty pure fluids in their
non-homogeneous domain (author?) [11]. For both
cases, it was shown that the scale dilatation method pro-
posed by one of us (author?) [12, 13, 14, 15, 16] gives
a corresponding master singular behavior for the one-
component fluid subclass which agrees with a description
by an appropriate modification of the theoretical func-
tion (author?) [17] within the Ising-like preasymptotic
domain. As a matter of fact, such an exact behavior of
each theoretical function, approximated by a two-term
Wegner-like expansion (author?) [18] close to the non-

trivial fixed point, is an essential tool to provide better
understanding of the basic relations between the “mea-
sured” asymptotic amplitudes and the unknown (fluid-
dependent) scale factors introduced by linear approxima-
tions between bare fields and physical fields (author?)
[19]. From the analogy with the scale dilatation method
which relates the master fields to the physical fields intro-
ducing two well-defined critical parameters of each fluid,
it was then recently proposed (author?) [17] an unam-
biguous modification of the mean theoretical functions
to represent the master crossover for the one-component
fluid subclass (labeled {1f}) in conformity with the corre-
sponding universal features of the Ising-like universality
class (labeled Φ3 (1)). In the following, the theoretical
functions (valid for any three-dimensional Ising-like sys-
tem) estimated in Ref. (author?) [9] are called mean

crossover functions and the related reference (author?)
[9] is labeled I, while their modification (only valid for
the one-component fluids) proposed in Ref. (author?)
[17] are called master crossover functions and the related
Ref. (author?) [17] is labeled II .

The validity range of the mean crossover functions is
theoretically funded only within the Ising-like preasymp-

totic domain (i.e. for t . LIsing
PAD, where t is the thermal-

like field along the critical isochore, i.e. for h = 0,
where h is the magnetic-like field , see II). Especially,
the uniqueness of the asymptotic scale factor, which
acts as a crossover parameter along the critical isochore,
has never been clearly demonstrated for the effective
extended asymptotic domain where the mean crossover
functions fit correctly the experimental results. The main
goal of the present paper addresses to the explicit calcu-
lation of this single crossover parameter using the mean
crossover functions beyond the Ising-like preasymptotic
domain.

We consider in detail the singular behavior of the
isothermal compressibility κT (∆τ∗) and the correlation
length ξ (∆τ∗) of xenon as a function of the reduced
temperature distance ∆τ∗ = T−Tc

Tc
, along the critical
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isochore, in the homogeneous domain T > Tc, [T (Tc)
is the temperature (critical temperature)]. Xenon is
here selected as a standard “critical fluid” in the sense
that the present work only uses quantities which orig-
inate from theoretical arguments, now well-understood,
to link three independent dimensionless amplitudes to
the needed three scale factors (author?) [20]. As a mat-
ter of fact, the fit of susceptibility and correlation length
data obtained by Güttinger and Cannell (author?) [21]
from their precise turbidity measurements in the tem-
perature range 0.028K ≤ T − Tc ≤ 29K, can then be
used as representative of an “ideal” result in order to
check carefully the temperature range where the value
(and its attached uncertainty) of the scale factor char-
acteristic of the thermal field is effectively determined.
This singular behavior was first analyzed (author?) [22],
jointly with singular behaviors of the correlation length
(author?) [21] and the heat capacity (author?) [23],
using precisely the initial estimations (author?) [4] of
the crossover functions from the massive renormalization
scheme. In addition to the experimental critical tem-
perature Tc(≃ 289.74 K), pressure pc (≃ 5.84 MPa), and
density ρc

(

≃ 1110 kgm−3
)

, for the first time a minimal
quantity made of three Ising-like non-universal parame-
ters of xenon was introduced as a set of a single critical
wavelength (noted g0) and two dimensionless scale factors
(noted ϑ and ψ) for the thermal-like (t) and magnetic-
like (h) fields, respectively, with the analytical relations
t = ϑ∆τ∗ and h = ψρ∆µ̃ valid for the asymptotic limits
t → 0 and h → 0 (author?) [19, 22]. ∆µ̃ is the stan-
dard notation of the dimensionless ordering field in the
fluid case (author?) [24], which is related to the chemi-
cal potential difference to the critical chemical potential
[see below Eq. (16)]. In the following, when we refer
to this initial result obtained by fitting the experimen-
tal data with the (max) crossover functions estimated for
the sixth-order, we will use the label MR6max (author?)
[4, 5].

Now, using the updated mean crossover functions given
in I, the main objective is to replace the fitting adjust-
ment of the fluid-dependent parameters g0, ϑ, and ψρ, by
their exact asymptotical values defined in II, only intro-
ducing three master numbers (noted Θ{1f}, L{1f}, and
Ψ{1f}) which are characteristics of the {1f}-subclass (see
II). In that scheme, g0-, ϑ-, and ψρ-values originate from
calculations of the three fluid-dependent amplitudes ξ+0 ,
Γ+, and a+

χ (in standard notations (author?) [24, 25]),
using the scale dilatation method where each fluid is char-
acterized by only four well-defined critical point coordi-
nates. Such results account for the master singular be-
havior of the {1f}-subclass observed within the Ising-like
preasymtotic domain bounded by a known limit (defined

as L{1f}
PAD =

LIsing

PAD

Θ{1f} in II), in conformity with the two-scale
factor-universality of the Φ3 (1)-universality class. As a
main result explicited below [see Eqs. (35) and (40)],
we unambiguously probe that the temperature range
∆τ∗min < ∆τ∗ < ∆τ∗max covered by the Güttinger and
Cannell’s experiments is beyond the Ising-like preasymp-

totic domain, i.e. ∆τ∗min

(

≃ 10−4
)

>
LIsing

PAD

ϑ
.

Moreover, after the initial analysis of Ref. (author?)
[22], the Güttinger and Cannell’s xenon data were also
used (author?) [26, 27, 28, 29, 30] in support for discus-
sion of several theoretical (author?) [31, 32, 33, 34, 35]
and phenomenological (author?) [36, 37, 38, 39, 40] ap-
proaches of the crossover phenomena. As an essential
common result, a single temperature-like crossover pa-
rameter seems appropriate for a complete characteriza-
tion of the classical-to-critical crossover in pure fluids,
whatever the selected crossover theory or the phenomeno-
logical approach (for comparative analyses, see for exam-
ple Ref. (author?) [1] and references therein). However,
the theoretical understanding in terms of a Ising-like crit-
ical crossover characterized by the asymptotic value of
the scale factor ϑ appears limited for two main reasons: i)
the fitted data are not within the Ising-like preasymptotic
domain; ii) any crossover function is only well-defined

within the Ising-like preasymptotic domain t . LIsing
PAD

(see I and II). Especially for the susceptibility case, such
a result cannot be used in comparative analyses which
debate on the “correct” shape of the temperature de-
pendence of the effective exponent γ defined as universal
functions of a single dimensionless variable (author?)
[26, 27, 28, 29, 30, 32, 33, 35, 39, 40].

Our present attention is then mainly focused on the
determination of a thermal-like scale factor, noted ϑL,
calculated from the application of the mean crossover
function beyond the preasymptotic domain. Our analytic
procedure developed hereafter aims to retrieve the Ising-
like universal features only using well-defined energy and
length units, and a well-controlled number (three) of well-
defined dimensionless scale factors given in a form of a
set SSF as defined in II [see also Eqs. (25) and (26) be-
low]. We strictly avoid adjusting the system-dependent
parameters by a minimization of fitting errors to demon-
strate that ϑL ≡ ϑ. Alternatively, using both estima-
tions of the effective exponent and amplitude values (au-
thor?) [41], we calculate the local value of ϑL (∆τ∗) to
verify the uniqueness of the ϑL value and its identity with
the ϑ value when ∆τ∗ → 0. Accordingly, our method
offers the great advantage to directly re-use previous re-
sults obtained by fitting experimental data with an ef-
fective power law valid in a limited temperature range
(author?) [24, 42, 43]. Therefore our attention is also
focussed on the corresponding analyses of the isothermal
compressibility data obtained from pV T measurements
(author?) [44, 45, 46, 47, 48] covering the temperature
range 0.1 K ≤ T − Tc ≤ 283.41 K, light scattering mea-
surements (author?) [21, 49, 50, 51, 52, 53] covering the
temperature range 2.6 mK ≤ T − Tc ≤ 29 K, and inter-
ferometry measurements (author?) [54, 55, 56] covering
the temperature range −0 . T − Tc ≤ 29K, extending
then significantly the temperature range investigated by
the present study. We simultaneously provide the effec-
tive reduced temperature range of the extended asymp-
totic domain, bounded by a limit noted LXe

EAD, with
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LXe
EAD > LXe

PAD =
LIsing

PAD

ϑ(Xe) (see II and below), where isother-

mal compressibility of xenon is accurately described by
the mean crossover function for susceptibility using the
single scale factor ϑ (Xe) for the thermal-like field. Such
a result gives the first complete comparison between ex-
perimental results and crossover theories, de facto with-
out any adjustable parameters in a relative temperature
range covering more than four decades, when the mean
crossover functions are appropriately modified to account
for master behaviors of the one-component fluid subclass.

The paper is organized as follows.

In Section 2, we recall useful notations and definitions
needed to use the mean crossover functions for the cor-
relation length and the isothermal susceptibility in the
homogeneous phase of a one-component fluid. In Section
3, the characterization of the Ising-like preasymptotic
domain of xenon is analyzed only using the isothermal
compressibility fitting result obtained by Güttinger and
Cannell, from their turbidity measurements performed
outside the Ising-like preasymptotic domain. In Section
4, after the introduction of the three-parameter charac-
terization when the extension of the crossover domain
remains undefined, we demonstrate the great advantage
of the mean crossover functions to provide unambigu-
ous scaling determination of ϑL beyond the Ising-like
preasymptotic domain.

In Appendix A, we give the basic estimation of the
needed amplitudes from application of the scale dilata-
tion method to xenon. All the other measurement meth-
ods of the isothermal compressibility are then considered,
with a special attention to the data obtained from pV T
and interferometry measurements which infer a practical
three point calibration for their relative comparison to
the Güttinger and Cannell’s data. We finally compare in
a detailed manner all the results to the ones calculated
with the mean crossover function for susceptibility, then
justifying a posteriori the exact values of the three scale
factors g0, ϑ, and ψρ for xenon which are used in this
paper.

2. MEAN CROSSOVER FUNCTIONS FOR
CORRELATION LENGTH AND

SUSCEPTIBILITY

2.1. Definitions and notations

The dimensionless mean crossover functions
Fℓ (t, h = 0) = 1

ℓth(t) for the inverse correlation length,

and Fχ (t, h = 0) = 1
χth(t) for the inverse susceptibility,

in the homogeneous phase, read as follows (see I),

[ℓth (t)]
−1

= Z+
ξ t

ν

3
∏

i=1

(

1 +X+
ξ,it

D(t)
)Y

+
ℓ,i

(1)

[χth (t)]−1 = Z+
χ t

γ

3
∏

i=1

(

1 +X+
χ,it

D(t)
)Y

+
χ,i

(2)

where t (> 0) is the thermal field like variable, h (= 0)
is the magnetic field like variable. D (t) is a univer-
sal crossover function for the confluent exponents ∆ and
∆MF given by

D (t) =
∆MFS2

√
t+ ∆

S2

√
t+ 1

(3)

All the universal exponents ν, γ, ∆, ∆MF, theoretical
amplitudes Z+

ξ , Z+
χ , and theoretical parameters S2, X

+
ξ,i,

Y +
ξ,i, X

+
χ,i, Y

+
χ,i, are defined in I. They are also reported

in Table I for use in the following numerical estimations.
More generally, the crossover functions estimated in

I are only well-defined for the critical line that links the
Gaussian fixed point and the non-trivial fixed point. The
effects due to the second-order (and higher) analytical
contributions and the ones due to the confluent correc-
tions to scaling linked to critical exponents ∆2, ∆3, ...,
have been discarded. As a direct consequence, these func-
tions account exactly for the Ising-like universal features
only estimated in the t-range very close to the non-trivial
fixed point, which corresponds the Ising-like preasymp-

totic domain t ≤ LIsing
PAD defined in I [see also below Eq.

(9)].
Within the Ising-like preasymptotic domain, the mean

crossover functions can be approximated by their re-
stricted (two-term) Wegner like expansion (author?)
[18]. Then Eqs. (1) and (2) can be replaced by:

ℓPAD,th (t) =
(

Z+
ξ

)−1

t−ν
[

1 + Z
1,+
ξ t∆

]

(4)

χPAD,th (t) =
(

Z+
χ

)−1
t−γ
[

1 + Z1,+
χ t∆

]

(5)

where the amplitudes Z
1,+
ξ and Z1,+

χ of the first-order
term due to the lowest confluent corrections to scaling
are given by

Z
1,+
ξ = −

3
∑

i=1

X+
ξ,iY

+
ξ,i (6)

Z1,+
χ = −

3
∑

i=1

X+
χ,iY

+
χ,i (7)

(see Table I). They are related by the universal ratio
(author?) [7, 8]

Z
1,+
ξ

Z
1,+
χ

= 0.67919 (8)
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a exponent Z
+
ξ S2 i Xξ,i Yξ,i

ν 0.6303875 2.121008 22.9007 1 40.0606 −0.098968

∆ 0.50189 2 11.9321 −0.15391

∆MF 0.5 3 1.90235 −0.00789505

Z
1,+
ξ = 5.81623

b exponent Z+
χ S2 i Xχ,i Yχ,i

γ 1.2395935 3.709601 22.9007 1 29.1778 −0.178403

∆ 0.50189 2 11.7625 −0.282241

∆MF 0.5 3 2.05948 −0.0185424

Z1,+
χ = 8.56347

Table I: Values of the universal exponents and constants of Eqs. (1) to (7), for (a) the dimensionless correlation length and (b)
the dimensionless susceptibility, in the homogeneous domain (see Ref. (author?) [9]).

The validity domain of Eqs. (4) to (8) corresponds to

t ≤ LIsing
PAD where

LIsing
PAD ≃

(

0.033

S2

)2

∼= 1.9 × 10−6 (9)

with S2 = 22.9007 (see I and Table I)
Finally, any restricted two-term Wegner-like expan-

sions can be estimated only using the following set of
three theoretical amplitudes (author?) [20],

SMR
A

(

t ≤ LIsing
PAD;h = 0

)

=

{

Z1,+
χ ;

(

Z+
ξ

)−1

;
(

Z+
χ

)−1
}

(10)
where the subscript A labels for the amplitude nature of
these characteristic parameters.

Beyond the Ising-like preasymptotic domain, i.e. t >

LIsing
PAD, we also recall that the theoretical parameter S2

acts as a convenient sensor to estimate some orders of
magnitude of t which are convenient for the analysis of
the crossover. For example, the theoretical crossover
temperature t∆, which corresponds to the value D (t∆) =
∆+∆MF

2 of the universal confluent function of Eq. (3), is
defined by

t∆ ≃
(

1

S2

)2

∼= 1.9 × 10−3 (11)

For the confluent corrections, t∆ characterizes the uni-
versal crossover exchange between predominant Ising-like
nature close to the non-trivial fixed point [t ≪ t∆], to
predominant mean field-like nature close to the Gaussian
fixed point [t ≫ t∆]. Indeed, t∆ gives an estimation of the
order of magnitude of the teP , 1

2
-value where each effective

exponent eP,e,th (t) = −∂Ln[FP (t)]
∂Ln(t) (author?) [41] crosses

its “mean” crossover value eP, 1
2

(

teP , 1
2

)

=
eP +eP,MF

2 (see

Figure 4 in I). In such a “critical-to-classical” crossing
range in the homogeneous domain [t > 0], ℓth ≃ 20−30 is
a typical (dimensionless) order of magnitude for the the-
oretical correlation length. For example, ℓth (t∆) = 28.8,

ℓth

(

tν, 1
2

)

= 22.2, and ℓth

(

tγ, 1
2

)

= 18.8, anticipating the

following discussion of the results reported in Table II
where the values of Eqs. (1) and (2) are calculated for
eight conditions of the effective exponents. Moreover, in-

troducing the practical relations LIsing
PAD = ̟t∆, with ̟ ∼=

10−3 (see I), it is easy to separate the analysis of, either

the Ising-like preasymptotic domain t . ̟×t∆, or the in-
termediate “Ising-like” crossover domain ̟t∆ < t < t∆.
Especially considering the selected values of the effective

exponent γe,th (t) = −∂Ln[Xth(t)]
∂Ln(t) given in line 3 of Ta-

ble II), we note that the conditions γe

(

tγ 1
2

)

(column 1)

and γe

(

tν 1
2

)

(column 2) are obtained for t > t∆, while,

obviously, the condition γe (t∆) (column 3) is obtained
at t = t∆, where ℓth reach a value ∼ 30. For ℓth & 30,
or t . t∆ 1

2

, (columns 4 and right), we expect to observe

the Ising-like universal features of the critical phenom-
ena which are then characterized by the three system-
dependent parameters only asymptotically well-defined

when ℓth & 1916, or t . LIsing
PAD (i.e. within the Ising-like

preasymptotic domain). We note that the effective values
γe = γe,pV T = 1.16665 (author?) [13]), 1.19 (author?)
[24, 42], 1.211 (author?) [43] obtained from pV T mea-
surements, are precisely in this intermediate Ising-like

range LIsing
PAD < t < t∆. So that, we have underlined these

three latter conditions in columns 5 to 6, respectively,
showing that the value of theoretical correlation length
ℓth is on the range 50 − 220, i.e., 2 . ℓth

ℓth(t∆) . 8. A

special attention to the finite “Ising-like” temperature
range covered by pV T experiments is given in Section
4.2 and Appendix A3. Correlatively, within the Ising-

like preasymptotic domain t . LIsing
PAD, the theoretical

values reported in lines 7 and 8 of Table II show that
the condition ℓth & 2000 (or ℓth

ℓth(t∆) & 70) is satisfied.

The expected temperature-like variation of γe,th (t), i.e.,

γ−γe,th

(

LIsing
PAD

)

≤ 0.006, is then significantly lower than

the typical uncertainty on the asymptotic experimental
value γexp ≃ 1.23 ± 0.02 (author?) [24].

The eight indexations of t (or ℓth) given by these eight
conditions of Table II will be used to label the horizon-
tal (upper) axes of the next figures with corresponding
arrows and column numbers.

2.2. Fluid-dependent parameters

The introduction of the fluid-dependent parameters
to fit the experimental results using the mean crossover
functions was detailed in § 3.1 of II. We recall here the
main steps to introduce definitions and notations of the
needed quantities, fixing the value Λ∗

qe = 1 to neglect
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(a) \ label 1 2 3 4 5 6 7

Condition γ 1
2

= γ+γMF

2
ν 1

2
= ν+νMF

2
∆ 1

2
= ∆+∆MF

2
γe,pV T (author?) [12] γe,pV T (author?) [42] γe,pV T (author?) [24] LIsing

PAD

γe,th 1.1198 1.12776 1.14081 1.16665 1.19 1.211 1.23397

νe,th 0.561 0.5652 0.572 0.5862 0.5994 0.612 0.6266

∆e,th 0.500768 0.500834 0.500945 0.501176 0.501396 0.501601 0.50183

t 4.06 × 10−3 3.056 × 10−3 1.907 × 10−3 7.033 × 10−4 2.392 × 10−4 6.22 × 10−5 1.907 × 10

ℓth 18.76 22.0 28.8 51.32 97.29 220.1 1916

Z+
χ,e 0.73735 0.70492 0.65161 0.54730 0.45641 0.37810 0.29363

(b)

∆τ∗ = t
ϑ

0.193 0.145 0.0905 0.0334 & LXe
EAD 0.01135 0.00295 0.905 × 10

ξ

αc
= ℓtth

L{1f} 0.730 0.857 1.12 1.997 3.786 8.564 74.56

Γ+
e,th 0.099601 0.098193 0.095456 0.088586 0.080842 0.072626 0.061629

Table II: (a): Calculated theoretical values of the effective exponents γe,th (line 3), νe,th (line 4), ∆e,th (line 5), the thermal-like
field t (line 6), the correlation length ℓth (line 7), and the effective amplitude Z+

χ,e (line 8) of the susceptibility, using Eqs. (1)
and (2), for the typical conditions given in line 2, respectively; (b): Corresponding physical values of the reduced temperature

distance ∆τ∗ = t
ϑ

(line 10), the dimensionless correlation length ξ

αc
= ℓth

L{1f} (line 11), and the effective amplitude Γ+
e,th (line

12) of the dimensionless compressibility, using Eqs. (15), (21), and (23), for the xenon case, with ϑ = 0.21069, L{1f} = 25.6988
and ψρ = 3.2507 10−4 (see text).

the quantum effects at the microscopic length scale (au-
thor?) [16] for the xenon case.

When t→ 0 at h = 0, t is analytically related to

∆τ∗ =
T − Tc

Tc

→ 0 (12)

by the following linear approximation (author?) [19]

t = ϑ∆τ∗ (13)

The dimensionless scale factor ϑ is a fluid-dependent pa-
rameter. The fluid critical temperature Tc, provides the
energy unit

(βc)
−1 = kBTc (14)

which links the dimensionless free energies of the Φ4-
model and the selected fluid. Accordingly, the dimension-
less form of the Hamiltonian of the Φ4-model results of
the introduction of a finite (but arbitrary) wave number
Λ0, the so-called cutoff parameter (see I), whose inverse
is related to the unknown finite short range of the mi-
croscopic molecular interaction. A convenient method at
d = 3 consists in replacing (unknown) Λ0 by g0 which
is the adjustable critical coupling constant of the Φ4

term having correct wave number dimension. The in-
verse (g0)

−1
acts as the physical length unit to link the

theoretical dimensionless correlation length (ℓth) and the
physical correlation length (ξexp) of each one-component
fluid, through the fitting equation

ℓth (t) = g0ξexp (∆τ∗) (15)

The dimensionless ordering field for fluids is defined as
(author?) [42, 43]

∆µ̃ = µ̃ρ − µ̃ρ,c (16)

where ∆µ̃ is written using practical dimensionless chem-
ical potential µ̃ =

µρρc

pc
(author?) [43]. µρ (µρ,c) is the

(critical) chemical potential per mass unit, ρ (ρc) is the
(critical) mass density, and p (pc) is the (critical) pres-
sure. Correspondingly, the practical dimensionless form
∆ρ̃ of the order parameter density reads as follows

∆ρ̃ =
ρ

ρc

− 1 (17)

using the practical dimensionless form ρ̃ = ρ
ρc

of the mass

density (author?) [43].
When h→ 0 and ∆µ̃→ 0 at t = 0, h is related to ∆µ̃

as follows

h = ψρ∆µ̃ (18)

where ψρ is the second (fluid-dependent) scale factor.
However, the parameters Tc, g0, ϑ, and ψρ, do not pro-
vide unequivocal link between theoretical and physical
thermodynamics quantities. For example, the definition
of µ̃ρ introduces a second unit pc

ρc
∼
[

energy
mass

]

for (spe-

cific) energy which differs from (mp̄βc)
−1

by the factor
Zc [mp̄ is the mass of the fluid particle (i.e. the molecular
mass)]. Correlatively, the critical mass unit of the one-
component fluid introduces a critical specific volume 1

ρc

which differs from the volume kBTc

pc
= (αc)

d
of the critical

interaction cell [see below Eq. (19)]. The comparison be-
tween the two volumes introduces the extensivity of the
system through the amount

mp̄

Zc
of matter filling the vol-

ume of the critical interaction cell (author?) [12]. That
provides alternative choice between two energy units and
two length units originating from thermodynamics. Such
noticeable differences in the system-dependent units of
the dimensionless variables impose to have careful atten-
tion when comparing the dimensionless thermodynamics
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potentials. Here, the selected length unit αc reads

αc =

(

kBTc

pc

)
1
d

(19)

and have physical meanning in terms of the range of in-
termolecular interaction in fluids. Therefore, in our no-
tations, the superscript star labels a dimensionless vari-
able which uses (βc)

−1
and αc as energy and length units

in one self-consistent procedure to made dimensionless
all the thermodynamic variables normalized per particle
(author?) [12, 13], not per mass unit. The subscript ρ
recalls for practical order parameter density defined by
Eq. (17), and the related practical dimensionless vari-
ables are decorated by a tilde. For example, the experi-
mental isothermal susceptibility χT,ρ for fluids is defined

by χT,ρ =
(

∂ρ
∂µρ

)

T
∼
[

1
energy×volume

]

when the fluid or-

der parameter (respectively, the fluid ordering field) is
proportional to the (mass) density ρ ∼

[

mass
volume

]

(re-
spectively, the chemical potential per mass unit µρ ∼
[

energy
mass

]

). χT,ρ is related to the isothermal compress-

ibility κT = 1
ρ

(

∂ρ
∂p

)

T
∼
[

volume
energy

]

by χT,ρ = ρ2κT .

The practical fluid dimensionless variables are ρ̃ = ρ
ρc

,

µ̃ =
µρρc

pc
, while κ∗T = pcκT (author?) [43]. Thus we

obtain χ̃T ≡ κ∗T only at ρ̃ = 1 for ∆τ∗ > 0. Such
a practical interrelation between the dimensionless vari-
ables results from the implicit use of these two “thermo-
dynamic” length units previously defined from two dis-

tinct volumes v
p̄,c

=
mp̄

ρc
and (αc)

d. On the other hand,

from the theoretical scheme applied to the Φ4
d=3 (n = 1)-

model, after normalization of the free energies by kBT ∼=
kBTc, the length dimensions of the Hamiltonian quanti-

ties r0 − r0c ∼ (g0)
2
t, 〈φ0〉 ∼ (g0)

5
2 m, and h0 ∼ (g0)

1
2 h,

lead to χ0,th = (g0)
2
χth ∼

[

1
surface

]

(see I for notations
and definitions). We can then conclude that introducing
the dimensionless scale factors ϑ and ψρ through Eqs.
(13) and (18), provides a subtle critical combination (not
discussed here) of the model units and the fluid units.
The essential point is to guarantee the uniqueness of the
energy unit and the length unit in the description of di-
mensionless singular behaviors (author?) [25]. Our se-
lected length unit αc [see Eq. (19)] takes thermodynamic
origin, while the wave number unit g0 [see Eq. (15)] has
theoretical interest to fit the asymptotic singular diver-

gence of ξ∗exp (∆τ∗) =
ξexp(∆τ∗)

αc
. Then, by exchanging

Eq. (15) and the following dimensionless form

ℓth (t) = L{1f}ξ∗exp (∆τ∗) , (20)

we also introduce the supplementary scale factor

L{1f} = αcg0 (21)

as a dimensionless product between the two critical quan-
tities (i.e., defined for t = 0;h = 0 and ∆τ∗ = 0; ∆µ̃ = 0,
respectively).

After all, m → 0 and ∆ρ̃ → 0 are related by the
equation

m =
(

L{1f}
)−d

(ψρ)
−1

∆ρ̃, (22)

where m is the theoretical magnetization-like order
parameter. Considering the theoretical susceptibility
χth (t) =

(

∂m
∂h

)

t
and the experimental isothermal suscep-

tibility χ̃T,exp (∆τ∗) =
(

∂∆ρ̃
∂∆µ̃

)

∆τ∗
for fluids, the second

fitting equation is then obtained as follows

χth (t) =
(

L{1f}
)−d

(ψρ)
−2
χ̃T,exp (∆τ∗) , (23)

with χ̃T,exp (∆τ∗) ≡ κ∗T,exp (∆τ∗) when ∆ρ̃ = 0.
Finally, each one-component fluid is asymptotically

characterized by the set (author?) [20]

Qc (∆τ∗ → 0) =
{

(βc)
−1

;αc; g0;ϑ;ψρ

}

(24)

which can be rewritten in an equivalent form

Qc (∆τ∗ → 0) =
{

(βc)
−1

;αc; SSF

}

(25)

then introducing the following fluid set SSF made of three
(asymptotic) dimensionless scale factors

SSF (∆τ∗ → 0) =
{

ϑ; L{1f};ψρ

}

(26)

The subscript SF recalls for the scale factor nature of
the three fluid-dependent dimensionless numbers, while
the condition ∆τ∗ → 0 indicates the asymptotic nature
of the hypotheses needed by the renormalization scheme.
Within the Ising-like preasymptotic domain, κ∗T (∆τ∗)
and ξ (∆τ∗) can be approximated by

κ∗T,exp (∆τ∗) = Γ+ (∆τ∗)
−γ
[

1 + a+
χ (∆τ∗)

∆
]

(27)

ξexp (∆τ∗)

αc

=
ξ+0
αc

(∆τ∗)−ν
[

1 + a+
ξ (∆τ∗)∆

]

(28)

with (author?) [7]

a+
ξ

a+
χ

=
Z

1,+
ξ

Z
1,+
χ

= 0.67919 (29)

Hereabove, we have selected Γ+, ξ+0 (or ξ+ =
ξ
+
0

αc
),

and a+
χ as independent amplitudes to characterize each

one-component fluid. The “experimental” parameter set
written as

Qc,LXe
PAD

=
{

(βc)
−1

;αc;SA

}

(30)

is then Ising-like equivalent to the set Qc (∆τ∗ → 0) of
Eq. (25) [here the subscript LXe

PAD recalls for the fluid-
dependent temperature domain of validity]. Its dimen-
sionless part SA (where the subscript A recalls for the
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amplitude nature of the dimensionless numbers) is given
as :

SA =
{

a+
χ ; ξ+; Γ+

}

(31)

which is compared with Eq. (26) using the fitting equa-
tions (23) and (20) [or (15)]. The successive unequivocal
determinations of the scale factors, first ϑ, hence L{1f}

(or g0), and finally ψρ, are obtained from the following
hierarchy of equations:

ϑ =

(

a+
χ

Z
1,+
χ

)

1
∆

=

(

a+
ξ

Z
1,+
ξ

)
1
∆

, (32)

L{1f} =
[

ξ+Z+
ξ ϑ

ν
]−1

or g0 =
[

ξ+0 Z+
ξ ϑ

ν
]−1

, (33)

ψρ =

[

(

L{1f}
)−d

Γ+Z+
χϑ

γ

]
1
2

(34)

Each one-component fluid characterized by Qc of
Eq. (25), has the Ising-like universal features of the
Φ4

d=3 (n = 1)-model in the Ising-like preasymptotic do-
main LXe

PAD given by

∆τ∗ < LXe
PAD ≃ 1

ϑ
LIsing

PAD
∼= 1.9 × 10−6

ϑ
(35)

Equation (35) demonstrates that the knowledge of the
temperature-like scale factor ϑ defines the extension of
the Ising-like preasymptotic domain of each selected
fluid, then providing an essential tool for analyzing ex-
perimental data. Correlatively, admitting a single ϑ value
whatever the property and the thermal field range, the
(fluid dependent) crossover temperature ∆τ∗∆ is given by

∆τ∗∆ ≃ 1

ϑ
t∆ ∼= 1.9 × 10−3

ϑ
(36)

and the crucial problem of how to define the tempera-
ture range ∆τ∗ ≤ LXe

PAD is solved. Appropriate rewriting
of Eqs. (32) to (34), provides the following functional
scaling form

SMR
A = SAF (SSF ) with ∆τ∗ .

1.9 × 10−6

ϑ
(37)

where F (SSF ) are universal functions. We note the “the-
oretical” (i.e. originating only from the MR scheme) na-
ture of the l.h.s. of Eq. (37).

In next Section 3, we analyze the status of this ex-
pected three-scale-factor characterization for the xenon
case, first, using the values inferred from the applica-
tion of the scale dilatation method (author?) [13], and
second, comparing the results (author?) [26, 28] ob-
tained from the massive renormalization (MR) scheme
(present work), the minimal subtraction renormalization
(MSR) scheme (author?) [29], and the crossover para-
metric model (CPM) (author?) [40], with the experi-
mental results of Güttinger and Cannell.

3. XENON CHARACTERIZATION WITHIN

THE ISING-LIKE PREASYMPTOTIC DOMAIN.

3.1. Hypothesized description of the Ising-like
preasymptotic domain

We hypothesize that the two terms of the asymptotic
Wegner-like expansion of κ∗T,exp (∆τ∗) andξexp (∆τ∗) are
exactly known for critical xenon, provided by the appli-
cation of the scale dilatation method given in Appendix
A. In such a situation, all the needed information takes
origin on four critical coordinates [see below Eq. (A2)]
which localize the xenon critical point on the experimen-
tal phase surface of equation Φ (p, vp̄, T ) = 0. Accord-
ingly, the (dimensional) values of Eqs. (14) and (19) are
the following

Tc = 289.733 K or (βc)
−1

= 4.0002× 10−21 J

αc = 0.881508 nm
(38)

leading to the dimensionless amplitude set

SA =











a+
χ = 1.23397

ξ+ = 0.209111
(

ξ+0 = 0.184333 nm
)

Γ+ = 0.0578204











(39)

with a+
ξ = a+

χ
Z
1,+

ℓ

Z
1,+

X

= 0.83810. Obviously, the valida-

tion of our hypotheses and the justification of Eq. (39)
require the detailed analysis of the isothermal compress-
ibility data of xenon given in Appendix A. However, we
note that the essential aspects for the following presenta-
tion are the Ising-like nature (since the fluid characteri-
zation originates from its critical point coordinates) and
quantity (three) of the dimensionless amplitudes, while
the quoted precision of their numerical values is of sec-
ondary importance. Using Eqs. (32) to (34), the three
dimensionless scale factors for xenon are:

SSF =











ϑ = 0.021069

L{1f} = 25.6936
(

g0 = 29.1473 nm−1
)

ψρ = 3.2507 10−4











(40)
The singular behavior of ξ∗ (∆τ∗) and χ∗

T (∆τ∗) of xenon
can then be estimated by using Eqs. (1) to (3), (15), and
(23), with xenon parameters of Eq. (39). Such an esti-
mation of dimensionless susceptibility (or dimensionless
isothermal compressibility) will be represented by a full
black curve (with label MR) in the next figures.

As a most important result already underlined, ϑ
enables estimation of the extension of the Ising-like
preasymptotic domain [see Eq. (35)]

LXe
PAD ≃ 10−4 (41)

and the reduced crossover temperature [see Eq. (36)]:

∆τ∗∆ ≃ 10−1 (42)
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The temperature extension of the Ising-like preasymp-
totic domain of xenon corresponds to the temperature
range T−Tc . 30 mK [from Eq. (41)], while the Ising-like
predominant nature for crossover estimated by the mean
crossover functions cannot extend beyond ∼ Tc + 30 K
[from Eq. (42)]. More generally, the knowledge of ϑ also
enables useful estimation of any relative temperature dis-
tance and any effective value attached to a specific condi-
tion of the mean crossover function on the complete ∆τ∗

range, as reported for example in lines 7 to 9 of Table II.
Comparable values to the ones given by Eq. (39) can

be found in several published papers but without explicit

reference to the effective temperature range of the Ising-

like preasymptotic domain.
For example, in upper part (a) of Table III , we

have reported Γ+ (column 3) and a+
χ (column 5) val-

ues obtained by using different theoretical crossover
functions calculated by several models labeled X =
{GCRG4,MR6max,MR,MSR,CPM,LM} (column 1) of
respective Refs. (author?) [22, 26, 27, 28] (column 9).
These values result from fits of the isothermal suscepti-
bility data of xenon published by Güttinger and Cannell
(GC) (author?) [21], with γ (column 2) and ∆ (column
4) values fixed to their theoretical estimation. We note
that the variations of the Γ+ values are on a few per-
cent level when the change in γ values affects the third
digit, while the variations of the a+

χ values cover a sig-

nificative range such as 0.9 . a+
χ . 1.3, i.e., a+

χ ≃ 1.1
with ∼ 20% deviation. Then, we have also reported in
Table III, the calculated values of the asymptotic scale
factors ϑ (column 6), L{1f} (column 7), and ψρ (column
8), by using Eqs. (32) to (34), respectively, and an avail-
able estimation of the leading amplitude ξ+0 = αcξ

+ of
the correlation length (see column 7). We can observe
a typical uncertainty of 25% in the ϑ and ψρ values. In
addition, the theoretical error-bars and differences in the
estimations of exponents γ, ν, ∆, and universal constants
appearing in Eqs. (32) to (34), can have comparable ef-
fect on the estimation of ϑ, ψρ, and g0 than the exper-
imental uncertainties on the estimation of a+

χ , Γ+, and

ξ+ and the critical coordinates (such as Tc, ρc, pc, etc.).
Nevertheless, accounting for the above variations of the

ϑ values has no significant effect on the order of mag-
nitude of LXe

PAD ≃ 10−4 estimated from Eqs. (35) and
(39). We can then note that the apparent amplitude
agreement arises in spite of the non overlap between the
estimated temperature range of the Ising-like preasymp-
totic domain [see Eq. (41)] and the temperature range
10−4 . ∆τ∗ . 10−1 [i.e., 30 mK . T − Tc . 30 K], cov-
ered by the Güttinger and Cannell’s measurements (see
also Appendix A). Therefore, the asymptotic amplitude
evaluation provided by these fitting results cannot be eas-
ily transformed in terms of the characteristic scale factors
for two main reasons:

i) measurements of the singular properties are made
in a temperature range which do not reach the Ising-like
preasymptotic domain;

ii) fitting of the data is made with a Wegner-like expan-

Figure 1: Residuals R% (κ∗
T )GC4

(expressed in %) between
the dimensionless susceptibility data given in Table I of Ref.
(author?) [21] and the fitting expression of Eq. (42); a) pa-
rameters given in line GC4 of Table IV; b) after the Tc shift
of 0.5 mK to retrieve the 0.2% numerical level illustrated in
Fig. 3 of Ref. (author?) [21]; In (a) are also illustrated the
respectives deviations and related error-bars of the three “cal-
ibrated” values of the isothermal compressibility for the three
temperature distances indicated by the respective vertical ar-
rows labeled ∆τ∗or , ∆τ∗C2 and ∆τ∗C3 (see text and Appendix).

sion, whose validity is questionable outside the Ising-like
preasymptotic domain (see I).

Therefore, to replace with a suitable precision the in-
dependent amplitudes of Eqs. (39) by the independent
scale factors of Eqs. (40), one needs to give the “rules” to
interpolate from fitting results obtained in an experimen-
tal range outside the Ising-like preasymptotic domain, to
the hypothesized ones, only valid inside the Ising-like
preasymptotic domain.
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γ ∆ Γ+ a+
χ ϑ L{1f} ψρ

X Eq. (32) Eq. (33) Eq. (34) Ref

GCRG4 1.241 0.496 0.0577 1.29 0.0230 24.305 (author?) [21]

(pink) ξ+0 = 0.184 nm

MR6max 1.24194 0.491 0.057 1.1844 0.0194 24.305 3.25 × 10−4 (author?) [22]

ξ+0 = 0.184 nm

MR 1.2395935 0.50189 0.057821 1.23397 0.02107 25.6936 3.25 × 10−4 this work

ξ+0 = 0.184333 nm

MSR 1.2396 0.504 0.0587 1.11 0.0171 (author?) [28]

ξ+0 = 0.184 nm

CPM 1.239 0.51 n.a. 1.08 0.0162 30.382 (author?) [26]

(0.058)∗ ξ+0 = 0.184 nm (calculated)

LM 1.240 0.508 0.0594 n.a. (author?) [27]

(0.9)∗ n.a.

Table III: Amplitude-exponent results (colums 3 to 6) of the fit of the isothermal compressibility data obtained from the turbidity
measurements of Güttinger and Cannell (author?) [21], along the critical isochore, using different theoretical crossover models
(labels X, column 1) proposed in references given in the last column. Corresponding scale factor values (columns 7 to 9)
calculated from Eqs. (32) to (34) (see text for detail); n.a.: nonavailable. ; asterisk indicates a value used in the present work.

γ ∆ Γ+ a+
1χ = a+

χ a+
2χ a+

3χ Tc

# (fit) (16.64°C) Ref

GCf2 pink 1.240 ± 0.002 (0.496) 0.0584 ± 0.0009 1.07 ± 0.06 (0) (0) ±0.5 mK (author?) [21]

GCf4 pink 1.246 ± 0.002 (0.496) 0.0551 ± 0.0012 1.62 ± 0.14 −2.7 ± 0.5 3.6 ± 0.8 ±0.5 mK (author?) [21]

GC4 pink (1.241) (0.496) 0.0577 ± 0.0001 1.29 ± 0.03 −1.55 ± 0.2 1.9 ± 0.5 ±0.5 mK (author?) [21]

G3 (1.240) (0.5) 0.0574 1.55 −2.0 (0) (author?) [12]

Table IV: Lines labeled GCf2, GCf4, GC4: Amplitude-exponent values obtained by Güttinger and Cannell from three rep-
resentative fitting by Eq. (43) of the isothermal compressibility data for xenon along the critical isochore; Fixed values of
the parameters are given between brackets; Line labeled G3: Amplitude-exponent values obtained by a three-point calibration
method proposed in Ref. (author?) [12] and discussed in Appendix.

3.2. Present status of crossover modeling in critical
xenon

3.2.1. Güttinger and Cannell’s analysis

Due to the primary importance of Eq. (32) in a
scheme where a single confluent amplitude is readily ex-
pected independent, in the Table IV, we have recalled
the main informations given from Güttinger and Can-
nell’s experiment, which is the common support to com-
pare theoretical fittings. Güttinger and Cannell observed
that their susceptibility data systematically and contin-
uously deviate from simple power-law behavior through-
out the temperature range 9.6 × 10−5 . ∆τ∗ . 10−1

with the effective exponent increasing from γe = 1.14
to γ = 1.246 ± 0.01. Thus the data appeared asymp-
totically consistent with the theoretical estimations pro-
vided at the end of the seventies, either using series
calculation γ = 1.250 ± 0.03 for the Ising-model (au-
thor?) [57, 58], or the renormalization-group result γ =
1.241± 0.002 for the Landau-Ginzburg-Wilson Hamilto-
nian (author?) [59, 60]. To support this conclusion,
their susceptibility data were fitted to the following (four

term) Wegner-like expansion

κ∗T,exp (∆τ∗) = Γ+ (∆τ∗)
−γ
[

1 + a+
1χ (∆τ∗)

∆
+

a+
2χ (∆τ∗)

2∆
+ a+

3χ (∆τ∗)
3∆
] (43)

with ∆ fixed at ∆ = 0.496 (author?) [60] which was
the theoretical value calculated at that time by the
renormalization-group approach. In initial fittings, the
parameters Γ+, γ, a+

1χ, a+
2χ, a+

3χ, and Tc were indepen-
dently adjusted, by variation of the data range in temper-
ature. It was then shown that when the data range was
narrowed to 9.6 × 10−5 . ∆τ∗ . 8.8 × 10−3 and the pa-
rameter a+

2χ and a+
3χ removed (i.e., with a+

2χ = a+
3χ = 0),

the fit resulted in γ = 1.240 ± 0.002 when γ was freely
adjusted, and the results for Γ+, a+

1χ and Tc are in good
agreement with all the other fits. This fit result is la-
beled GCf2 and given in the corresponding line GCf2 of
Table IV where the error bars quoted are one standard
deviation allowing for the correlation between parame-
ters, not the experimental uncertainty which increases
for the data nearest Tc, as discussed below. In fitting
over the entire range, all the terms were required and the
fit results (labeled GCf4) are given in line GCf4 of Ta-
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ble IV. The Güttinger and Cannell’s analysis to examine
the consistency with the predictions by renormalization-
group calculations was then made with γ fixed at 1.241.
The parameters for the fit result (labeled GC4) for the
entire range in ∆τ∗ are reported in line GC4 of Table IV.

As noted by the authors, in all the fitting cases, the
value of Tc found by the fitting procedure agreed to
within 0.5 mK with the value observed by noting the
temperature at which the meniscus formed upon cool-
ing in small steps. It should be also noted that a shift
of 0.5 mK in Tc amounts to a 2.5% change in fitted
value at ∆τ∗ = 9.6 × 10−5, which was a substantial ef-
fect in comparison to 0.2% deviations reported for all
the fits (see Figure 3 in Ref. (author?) [21]). More
generally, in the temperature range ∆τ∗ . 9.1 × 10−4,
the authors have accounted for the large uncertainty in
the corrections due to all the possible effects which are
not at the level of about 0.2%, by using a shift in Tc

in the fitting program as a mean of compensating the
systematic errors which increase for the points nearest
Tc. However, for the present discusion, it is essential to
account for the real level of the fit deviation attached
to the systematic experimental uncertainties. There-
fore, we have illustrated in Figure 1, the importance of
the real uncertainty using the residuals (expressed in %)

R%(κ∗T )GC4
= 100

(

κ∗
T

κ∗
T,GC4

− 1
)

betwenn the raw data

of the dimensionless susceptibility given in Table 1 of
Ref. (author?) [21] and the calculated ones from Eq.
(43) with the parameters given in line GC4. The part a
of Fig. 1, illustrates the 2%− 3% level of the true exper-
imental error at ∆τ∗ = 9.6 × 10−5, while the part b of
Fig. 1 illustrates similar residuals, but after the Tc shift
of 0.5 mK, then reproducing Figure 3 of Ref. (author?)
[21] to show the 0.2% numerical level of the fit deviation.

In summary, comparing the three fit results of Table
IV, Güttinger and Cannell have shown that the xenon
susceptibility was correctly represented by a Wegner-like
expansion whose the two first terms may be interpreted
as proposed by the renormalization-group theory with
γ = 1.241 and ∆ = 0.496 (author?) [60]. Despite a
significative increase of experimental uncertainty as ∆τ∗

decreases, the uncertainty on the “mean” determination
of the free leading amplitude Γ+ value can be estimated
of the order of 2% − 3%, while the first confluent ampli-
tude a+

χ value was found in the range 0.6 . a+
χ . 1.45 and

seriously affected by the presence of the other two con-
fluent parameters and the fitted temperature range. The
comparison between Γ+ and a+

χ values given in Tables III

and IV, especially the low dispersion of the Γ+-values in
a range 0.0570 . Γ+ . 0.0594, confirms an apparent re-
duction of the a+

χ -range, increasing the number of terms
of the Wegner like expansion.

Figure 2: (Color on line) Residuals R% (κ∗
T )GCf2

(expressed

in %), as a function of ∆τ∗, for the extrapolated descrip-
tion of the isothermal compressibility of xenon within the
Ising-like preasymptotic domain ∆τ∗ . LXe

PAD. Each curve
label X refers to the line X in Table III; subscript indicates
the number of terms of Wegner-like expansion (see also the
text); Arrows indicate the different extensions of the Ising like
preasymptotic domain (see text); horizontal (pink) segment:
Güttinger and Cannell experimental range (author?) [21];
open circle: temperature distance ∆τ∗or (see Fig. 1) of the
data calibration value; vertical (pink) segment: error bar of
a calibrated valueof the isothermal compressibility of xenon
from Hocken and Moldover measurements (author?) [55, 56]
(see text, Appendix A and Ref. (author?) [12]); upper hor-
izontal axis: theoretical dimensionless correlation length cal-
culated from the mean crossover function of Eq. (1); line
indexation with labels 1 to 8: γe- or ℓth-conditions reported
in Table II (see text)

3.2.2. Crossover analyses

Since all the amplitude values given in Table III origi-
nate from the same experimental data, we consider that
the extrapolation at ∆τ∗ → 0 of the two-term expan-
sion κ∗T,GCf2

obtained with the free parameters given in

line GCf2 of Table III, can act as an “ideal” experimen-
tal result obtained within the Ising-like asymptotic do-
main. Making then reference to this extrapolated exper-
imental behavior, the relative comparison with the pre-
dicted one using either a pure power law, or a two-term
Wegner-like expansion, or a more extended Wegner-like
expansion, or finally a complete crossover function, as-
sociated to X = {MR6max,MR,MSR,CPM,LM} mod-
els (see Table III), provides the required information
to evaluate the Ising-like characterization in the ranges
∆τ∗ < LXe

PAD ≃ 10−4 and ∆τ∗ & LXe
PAD ≃ 10−4, sep-

arately. We use the subscript 1, 2, etc., to refer for



11

one-, two-, etc., terms in the Wegner like expansion,
while the abscence of this subscript indicates a complete
crossover function (except for the MR6max case where
the crossover function does not account for the classi-
cal behavior close to the Gaussian fixed point). So that,
anticipating the discussion given in Appendix, we have
systematically enlighted (using a grey-blue area in the
next figures), the temperature range in between the two
temperatures T = Tc +1 K (i.e., ∆τ∗C2 = 3.45137×10−3)
and T = Tc+13.41 K (i.e., ∆τ∗C3 = 4.62829×10−2) where
the pV T measurements can provide two “standard” val-
ues of the isothermal compressibility (see § A.3.b). These
two temperatures are in the experimental range covered
by the optical measurements of Güttinger and Cannell
for ∆τ∗ & LXe

PAD ≃ 10−4.

Similarly, for ∆τ∗ < LXe
PAD ≃ 10−4, we have also in-

dicated in the following figures, the temperature T =
Tc + 1 mK (i.e., ∆τ∗C1 = 3.45137× 10−6) “closest” to Tc,
where a carefull analysis of the uncertainty on the theo-
retical estimations of the Ising-like exponent γ provides
a calibrated value of the isothermal compressibility (see
below and § A.3.a). This value is compatible with the in-
terferometry measurements of Hocken and Moldover cov-
ering the temperature range −5mK < T − Tc < 15mK
(i.e., −1.5 × 10−5 < ∆τ∗ < 5 × 10−5) (author?) [55].
As already shown, such a three point calibration can
be used to define a practical three-term Wegner expan-
sion with arbitrarily “fixed” values γ = γI = 1.240 and
∆ = ∆I = 0.5 for the exponents, which accounts for the
isothermal compressibility of xenon in the experimental
temperature range ∆τ∗ < ∆τ∗C3, with ±1.5% uncertainty
on the “online” values produced by the distinct measure-
ment methods around these three temperature of cali-
bration. The corresponding amplitude parameters of Eq.
(43) are given in line G3 of Table IV, and each associated
fitting curve will be labeled G3 in the next figures.

In Figure 2, we have reported the residuals (expressed

in %), R%(κ∗T )GCf2
= 100

(

κ∗
T,X

κ∗
T,GCf2

− 1

)

, as a func-

tion of ∆τ∗. Note that the indexation of the (lower
and upper) horizontal axes of this figure are conform
with the discussion of Table II, while the experimental
range of the GC measurements is given by the segment
labeled GC where the open point indicates the temper-
ature distance (noted ∆τ∗or in the following) where ligth
scattering data are calibrated by the authors. The spe-
cific analysis of the residuals obtained for the two-term
expansion fitting (see all the curves labeled X2 in Fig.
2) demonstrates that the deviations in the temperature
range LXe

PAD < ∆τ∗ . 10−3−10−2, induce a ± (1% − 2%)
uncertainty level in the estimation of the Γ+ value, which
means that the value of the confluent amplitude a+

χ is
“undetermined” due to the correlation between free lead-
ing amplitude and fixed theoretical value of γ.

More generally, Figure 2 is a well-defined tool to show
the relative importance of each term of the Wegner like
expansion as a function of each decade variation of the
theoretical correlation length (see upper axis). For ex-

ample, the successive deviations at a 1% − 2% level of
the curves X1, X2, ...., X, indicates that:

i) the pure power law can be used in the range ℓth &
(1 − 2) × 104,

ii) the range ℓth & 1000 − 2000 needs to add the first
confluent term and effectively corresponds to the Ising-
like preasymptotic domain,

iii) a three-term-expansion seems sufficient to cover the
range ℓth & 100 − 200, and, finally,

iv) the range ℓth & 10 − 20 needs to use at least four
or more terms in the Wegner-like expansion.

To readily evaluate the relative importance of the ef-
fects due to the γ ⇔ Γ+ correlation, we note that the
magnitude of the difference in γ values here considered
affects only the third digit of the theoretical estimations
and cannot be related to the realistic error-bar (one or-
der of magnitude greater) provided by the experimental
determination of this asymptotic exponent (see also be-
low the related insert of Fig. 3). Therefore, in spite of
the fact that measurements were performed beyond the
Ising-like preasymptotic domain, the closest extrapolated
Güttinger and Cannell’s fitting to Tc remains highly cor-
related to the theoretical value of γ, especially when Tc is
fixed. This exponent-amplitude correlation was recently
used by Luijten and Meyer (author?) [27] to re-evaluate
the estimation of the leading amplitude for better agree-
ment with the data for ∆τ∗ < 0.2 (see curve LM1 in Fig.
2). However, such amplitude adjustment accounting for
the data in a narrowed temperature range appears equiv-
alent to the reverse effect of the theoretical min and max
error-bar propagation outside the Ising-like preasymp-
totic domain clearly shown in reference I (or in the Fig.
7b of Appendix). Such an amplitude re-evaluation is
then without gain on the Ising-like asymptotic quality
of the crossover analysis. For example, only by addition
of the first term for confluent corrections to scaling with
a+

χ = 0.86 (see Table III, line LM), we can fit the exper-
imental results (with deviations at a 0.5% level) on the
complete experimental range (see curve LM2 in Fig. 2).
The comparison of the curves LM2, GCf4, and GC4 in
Fig. 2 then shows that this “LM” fitting result which uses
the parameters given in line LM of Table IV, agrees with
the initial four-term fitting results given in lines GCf4,
and GC4 of Table IV. The respective ranges of the ampli-
tude variations, Γ+ = 0.0584+0.0010

−0.0033 and a+
χ = 1.07+0.55

−0.25,
illustrate the real difficulty to account for a single specific
value of γ in the range γ = 1.24+0.006

−0.001. More generally, as
illustrated previously in Fig. 1, an “experimental” man-
ner to account for each fixed value of γ is to use Tc as a
free parameter in fitting the GC’s data. But, as observed
by Güttinger and Cannell from their different fitting re-
sults, the true uncertainty on the free parameter Γ+ is
then at a few percent level. Finally, we can conclude that,
due to the 2% uncertainty of the GC’s measurements at
the border of the Ising-like preasymptotic domain, the
1%−2% magnitude of the residuals for extrapolated the-
oretical fittings at ∆τ∗

(

. LXe
PAD

)

→ 0, is entirely related
to the differences γX − 1.240 between respective leading



12

exponents, while the apparent reduction of the uncer-
tainty in the a+

χ -value results from the mandatory pres-
ence of (at least two) supplementary terms to correctly
account (∼ 1%-level) for the experimental results in the
temperature range ∆τ∗ & 103 > LXe

PAD ≃ 10−4.

3.2.3. Analysis with γ fixed

For a fixed theoretical value of γ with Tc fixed, the
leading amplitude Γ+ can be obtained only using addi-
tional measurements performed well inside the Ising-like
preasymptotic domain as defined by Eq. (9). The appli-
cability of Eq. (34) [equivalently, Eq. (33) for the cor-
relation length data] is then strictly limited within the
Ising-like preasymptotic domain, thus requiring a pre-

cision < 0.1%. In the absence of such an “ideal” ex-
perimental result, one alternative way to eliminate the
“amplitude-exponent” correlation on the leading power
law term, is to introduce a smallest temperature distance
to the critical temperature where a single experimental
data for the isothermal compressibility acts as a standard
value (author?) [12]. We note ∆τ∗C1 as this temperature
distance such that ∆τ∗C1 ≪ LXe

PAD (see column 9, Table
II). For example, this method of calibration is detailed
for xenon case in Appendix A, using the interferometric
measurements of Hocken and Moldover (HM) (author?)
[55] in the range 2−3×10−6 . ∆τ∗ . 3−5×10−5. In Fig.
2, this experimental range is illustrated by the segment
labeled HM. The selected smallest temperature distance
is T − Tc = 1 mK, or ∆τ∗C1 (Xe) = 3.45× 10−6, which ef-
fectively appears within the Ising-like preasymptotic do-
main, as evidenced by the corresponding vertical dashed
line in Figure 2. Unfortunatly, the required precision is
not reached and here we only discuss the relative com-
parison between both (HM and GC) data measurements
because there is no region of overlap between them and
the two experiments rely on completely different effects.
The interferometry measurements were performed in the
very limited region of density and temperature quite close
to the critical point such that the susceptibility data was
represented by a pure power law with a highly correlated
amplitude-exponent set. For example, the curve HM1 in
Figure 2 illustrates the deviation obtained using the re-
sult γ = 1.23 and Γ+ = 0.062 initialy found by Hocken
and Moldover. The Hocken and Moldover measurements,
reanalyzed by Sengers and Moldover (SM) with γ = 1.24,
yield Γ+ = 0.058, leading to the curve SM1 in Figure
2. At ∆τ∗C1 (Xe) = 3.45 × 10−6 the deviation of ∼ 6%
between HM1 and SM1 can be considered as representa-
tive of the experimental uncertainty. These results seems
to systematically deviate from fitting the raw data (full
pink points) of Güttinger and Cannell’s measurements.
Moreover, accounting for the fitting results illustrated by
the curves LM2 and/or GCf4, such a deviation appears
to increase as the γ value increases (or as the Γ+ value
increases, equivalently).

However, the Güttinger and Cannell’s data are rela-

tive to the isothermal compresibility value κT (∆τ∗or) =
1.9641 × 10−5 Pa−1 at ∆τ∗or = 2.304 × 10−3 (i.e., Tor =
Tc + 0.6677 K) (author?) [21], and the typical experi-
mental uncertainty on the above reference value also is
at a percent level. As a typical example, the difference
on the GC value ρc (GC) = 1110 kgm−3 and our present
value ρc = 1113. kgm−3 (see Eq. (A2) in Appendix) of
the xenon critical density, contributes for a 0.6% differ-
ence on the calibration. It is then interesting to evalu-
ate the cumulative effect of a 0.5 mK shift of Tc and a
1% change (uncertainty given by Güttinger and Cannell)
of the reference value. The result is represented by the
open pink points in Fig. 2. The fit deviation of these
“corrected” points using our theoretical function is lower
than 0.5%, as illustrated by the curve labeled MR in Fig.
2.

Subsidiarily, Fig. 2 also shows that the available fit-
ting results of the Güttinger and Cannell’s data do not
lead to the same standard value used to calibrate the
mean crossover function. However, the attached relative
difference appears compatible with an estimated error-
bar of ±3% for this standard value, which is comparable
to the fitting uncertainty attached to the leading ampli-
tude due to the theoretical uncertainty on the γ estima-
tion. For example, considering the nine published pairs
γ − Γ+ (see Tables III, IV and the interferometry result
of Refs (author?) [56]) where 1.239 ≤ γ ≤ 1.24194 and
0.056 ≤ Γ+ ≤ 0.0594, the calculated mean value of the di-
mensionless isothermal compressibility at T = Tc +1 mK
is κ∗T,mean = 3.4330×105, with 3.3194×105 ≤ κ∗T,mean ≤
3.5210 × 105. Anticipating then the introduction of the
calibrated value κ∗T,C1 = 3.415 × 105 discussed in Ap-

pendix A, we note that the above mean value is 0.53%
greater than the calibrated one, while the max and min
values are 3.10% greater and 2.80% lower, respectively.

As an undeniable consequence of the differences γX −
1.240, (or the difference in leading amplitude, or the ab-
sence of one precise data inside the Ising-like preasymp-
totic domain, equivalently), the contribution of the
highly correlated leading and first-confluent terms propa-
gates in any fit procedure which uses a complete Wegner-
like expansion outside the Ising-like preasymptotic do-
main, until a temperature distance of the order of ∆τ∗ ≃
10−3. We can then reasonably estimate (and precisely
demonstrate below, in § 4.2 and Fig. 4) that the fitting
optimization occurs at finite temperature distance to the
critical point (at least of the order of ∆τ∗ ≃ 10−2), signif-
icantly outside the Ising-like preasymptotic domain (and
such as ∆τ∗ > ∆τ∗or). In such a situation already known
as due to the low convergence of the Wegner-like expan-
sion, it is not easy to define with the needed precision a
single crossover parameter which must account simulta-
neously for two opposite roles:

1) it controls the asymptotic universal features of the
Ising-like singular behavior which has the restricted form
of Eq. (5), but without constraint due to the lack of
experimental data in the corresponding validity range;

2) it detects the finite distance where classical-to-
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critical behavior and/or non-critical behavior can occur,
but may conjointly invalidate the use of the Wegner-like
expansion with unique lowest confluent exponent.

Therefore, in the absence of the “ideal” experiment
within the Ising-like preasymptotic domain, the universal
form of Eq. (32) can never be directly tested. This has
three correlative consequences:

i) the numerical value of ϑ is undoubtedly related to
the effects of many correction terms to scaling (for a more
detailed illustration, see the discussion in terms of the ef-
fective exponent and Fig. 4 of Ref. (author?) [5]). To
account for this essential result in the following, we note
ϑL as the crossover parameter which is determined be-
yond the Ising-like preasymptotic domain, to distinguish
it from ϑ of Eq. (13) which is the scale factor needed to
characterize the asymptotic critical crossover within the
Ising-like preasymptotic domain;

ii) the use of Eqs. (32) to (34) needs to have sup-
plementary information such as, for example, the unam-
biguous demonstration of the Ising-like uniqueness of the
ϑL-value (i.e. a constant ϑL-value independent of the
fitting domain and the fitted property);

iii) alternative equations valid beyond the Ising-like
preasymptotic domain which provide the equivalent scal-
ing information contained in Eqs. (32) to (34) are suit-
able to probe the identity ϑ ≡ ϑL and the application of
the linear Eq. (13) for ∆τ∗ → 0.

We recall that the first attempt (author?) [22] to un-
derstand the classical-to-critical crossover in xenon using
the MR6max scheme, was made from such a global anal-
ysis of three singular properties (correlation length, sus-
ceptibility and heat capacity) of xenon in a rather large fi-
nite temperature range (T−Tc . 30 K, i.e. ∆τ∗ . 10−1).
A rather well-defined value of ϑL = 0.0191 ± 0.0095 was
then obtained, which was subsequently analyzed in terms
of the influence of the corrections to scaling in real sys-
tems, even outside the Ising-like preasymptotic domain.
The small difference with the present hypothesized value
ϑ = 0.021069 [see Eq. (40)], only reflects the error-bar
propagation of theoretical exponent and amplitude esti-
mations in the respective fitting of the MR6max or MR
discretized values, and not the true experimental uncer-
tainty (see a detailed discussion of the experimental un-
certainty in Appendix A). In other words, the hypothe-
sized asymptotic value of ϑ appears independent of the
Ising-like Eq. (32). Similarly, in the other crossover mod-
eling, the uniqueness of the crossover temperature scale
appears independent of the theoretical approach in the
sense where it is de facto obtained at a ”single” finite
temperature distance, noted 〈∆τ∗〉ϑL

. Here single means
that, in a log-log scale, the value of the free parameter ϑL
is optimized on a fine temperature domain (covering typ-
ically less than one decade) centered on a large temper-

ature distance 〈∆τ∗〉ϑL
, such that

〈∆τ∗〉ϑL

∆τ∗
C1

≫ 1. For ex-

ample considering the Güttinger and Cannell’s measure-
ments in the next Section, we show clearly that 〈∆τ∗〉ϑL

corresponds approximately to the “largest” experimental

value 〈∆τ∗〉ϑL
≃ 0.05 − 0.1 . ∆τ∗∆ of the fitted temper-

ature range reported in Fig. 2. Then the ratio
〈∆τ∗〉ϑL

∆τ∗
C1

is greater than 104. This value is definitively outside the
Ising-like preasymptotic domain and similar to the value
of crossover temperature scale ∆τ∗X,M ≃ 0.23 obtained
from fitting using CPM and MSR crossover descriptions.

The above analysis limited to the results of Figure
2 extrapolated within the Ising-like preasymptotic do-
main, justify our special attention in the next section to
methods which account for the calibrated contribution of
the theoretical leading power law, in order to check in a
self-consistent manner the ϑL-determination beyond the
Ising-like preasymptotic domain.

4. XENON CHARACTERIZATION BEYOND

THE ISING-LIKE PREASYMPTOTIC DOMAIN

4.1. Ising-like nature of the dimensionless scale
factors

The finite and restricted ∆τ∗ range where the mean
crossover functions correctly represent κ∗T,exp and ξexp

data, determines the effective extension LXe
EAD of the

Ising-like extended asymptotic domain (EAD). Since the
theoretical expressions of Eqs. (1) and (2), are in
the form of a complete crossover, LXe

EAD may involve
correction-to-scaling terms higher than the first one. In
such a situation, the following condition LXe

PAD < ∆τ∗ ≤
LXe

EAD occurs. This is precisely the case for the isothermal
compressibility data of xenon obtained by Güttinger and
Cannell. As a consequence, the value of ϑL introduced
by the analytic relation t = ϑL∆τ∗, is related to an “un-
defined” domain of extension LXe

EAD. Here, “undefined”
means “beyond the Ising-like preasymptotic domain”, so
that we are not able to appreciate the effective influence
of all the numerous corrections neglected in the massive
renormalization scheme of the Φ4 model (see I). We must
solve new correlative difficulties concerning the effective
number (which can thus be greater than 3) and the na-
ture (which can originate from the neglected analytical
and confluent effects in the critical massive renormaliza-
tion scheme) of the fluid-dependent parameters.

Indeed, to complete Tc and αc knowledge in the ab-
sence of information concerning the true range of the
Ising-like preasymptotic domain for an actual fluid, it
is proposed (author?) [7, 17] to replace ϑ, ψ, and g0
by three new adjustable parameters X∗

0,L, L∗
0,L, and ϑL,

modifying Eqs. (23) and (20) in the following way:

1
κ∗

T,exp
(∆τ∗) =

(

X∗
0,L

)−1
Z+

χ (∆τ∗)γ

∏K
i=1

(

1 +X+
i,χt

D(t)
)Y

+
i,χ

(44)

αc

ξ∗
exp(∆τ∗) =

(

L∗
0,L

)−1
Z+

ξ (∆τ∗)ν

∏K
i=1

(

1 +X+
i,ξt

D(t)
)Y

+
i,ℓ

(45)
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with

t = ϑL∆τ∗ (46)

The new characteristic set

Qc,L =
{

(βc)
−1 ;αc; S1CP,L

}

(47)

must substitute the set Qc

(

∆τ∗ ≤ LXe
EAD

)

of Eq. (25),
while the new dimensionless set

S1CP,L =
{

ϑL; L∗
0,L; X∗

0,L

}

(48)

must substitute the set SSF of Eq. (26). The subscript
1CP,L recalls for a single crossover parameter to charac-
terize the crossover behavior observed in the finite tem-
perature range LXe

PAD < ∆τ∗ . LXe
EAD.

In comparison to Eqs. (23) and (20), the noticeable
modification of Eqs. (44) and (45) is the leading term
in which ϑL is no longer involved in the asymptotic scal-
ing part of the critical behavior expressed in terms of
the physical field ∆τ∗. As introduced, X∗

0,L and L∗
0,L are

prefactors for each corresponding property, here selected
as independent and characteristic of the fluid by virtue of
the two-scale-factor universality (provided that the same
length unit was used to define the dimensionless quanti-
ties (author?) [25]). Correlatively, ϑL is a pure crossover
parameter, with same value above and below Tc, which
exclusively controls the magnitude of many correction
terms to scaling. In addition, ϑL can also integrate some
effects of the neglected terms linked to the supplemen-
tary confluent exponents, such as ∆2 or ∆3, accounting
for practical numerical approximations such as ∆2 ≈ 2∆
or ∆3 ≈ 3∆, or the effects of using T to replace Tc in the
energy unit and in the dimensionless form of the tem-
perature distance to the critical temperature. For a fluid
f , the determination of ϑL is then equivalent to the de-

termination of Lf
EAD. In this general case, the physical

leading amplitudes can be calculated using:

ξ+L = L∗
0,L

(

Z+
ξ

)−1

(49)

Γ+
L = X∗

0,L

(

Z+
χ

)−1
(50)

i.e., without reference to ϑL. However, the subscript L
recalls for the determination of ϑL, then correlatively,
L∗

0,L and X∗
0,L, made beyond the Ising-like preasymptotic

domain. The single (system-dependent) first confluent
amplitude can be calculated from ϑL uniquely, using one
independent equation among the two following equations:

a+
χ,L = − (ϑL)

∆
Z1,+

χ (51)

a+
ξ,L = − (ϑL)

∆
Z

1,+
ξ (52)

As suggested in Ref. (author?) [7], from similar fit-
ting of the correlation length and the susceptibility in the
inhomogeneous domain, the specific heat in the homoge-
neous and non homogeneous domains, and the coexisting
density measurements in the inhomogeneous domain, one
must verify the uniqueness of the ϑL value (along the crit-
ical isochore). Considering several properties allows then
consistent tests for the determination of the set S1CP,L,
in coherence with the basic hypotheses of the renormal-
ization group approach at the origin of the theoretical
crossover functions.

To avoid this large task, in a first approach, we con-
sider xenon for which we hypothetize the existence of a
single scale factor ϑL in the temperature range LXe

PAD <
∆τ∗ . LXe

EAD. Fitting then κ∗T,exp and ξ∗exp data in this

temperature range with Eqs. (15) and (23), produces the
set S1CP,L, i.e., the determination of ϑL. Extrapolating
the results for ∆τ∗ → 0, we can identify the value of the
asymptotic scale factor ϑ to

ϑ ≡ ϑL for ∆τ∗ ≤ LXe
PAD (53)

After that identification, we can introduce the dimen-
sional prefactor L0,L = αcL

∗
0,L leading to define the

asymptotic wave number g0 of Eq. (33) by the follow-
ing parameter:

g0 ≡ g0,L = (L0,L)
−1

(ϑL)
−ν

=
[

αcL
∗
0,L (ϑL)

ν]−1
(54)

The two remaining asymptotic scale factors L{1f} [see
Eq. (21)], and ψρ [see Eq. (18)], are then obtained by
the hierarchical equations:

L{1f} = αcg0,L =
[

L∗
0,L (ϑL)ν]−1

(55)

ψρ,L =

[

(

L{1f}
)−d

X∗
0,L (ϑL)

γ

]
1
2

(56)

Finally, for ∆τ∗ → 0, the scale factor set

SSF,L =
{

ϑL; L{1f};ψρ,L

}

with 0 < ∆τ∗ < LXe
EAD (57)

has the appropriate asymptotic form to compare with
SSF [Eq. (26)], except the noticeable subscript L which
recalls the “non-asymptotic” Ising-like nature of these
numbers which originates de facto from the determina-
tion of ϑL, L∗

0,L and X∗
0,L made beyond the Ising-like

preasymptotic domain.
However, when this “hypothetical” xenon is character-

ized by Eq. (47) [or Eq. (57)], thus Eq. (55) is true and
the following variable transformations

ξ → ξ∗ =
ξ

αc

→ ℓth = L{1f}ξ∗ (58)

∆τ∗ → t = ϑL∆τ∗ (59)



15

result in the asymptotic collapse (over the extension

L{1f}
PAD (author?) [10, 11]) of any physical curves of equa-

tion ξ (∆τ∗) into the universal curve of equation

ℓth (t) = L{1f}ξ∗ (∆τ∗) = g0,Lξexp (∆τ∗) (60)

We have used this universal feature due to the scale
factor nature of ϑL to obtain the xenon values of lines 8
and 9 of Table II from theoretical values of lines 5 and 6,
respectively. In such a numerical approach, the “hypoth-
esized” xenon values of the characteristic set S1CP,L are
the following [see Eq. (A10) in Appendix]

S1CP,L =











ϑL = 0.021069

L∗
0,L = 0.443526

X∗
0,L = 0.214492











(61)

with

L0,L = αcL
∗
0,L = 0.390972 nm (62)

and, obviously

L{1f} ≡ αcg0,L = 25.6936 (63)

More generally, our hypothesized values of Eq. (61) pro-
vide the (expected) identity SSF,L ≡ SSF . Accordingly,
the universal scaling form of the correlation length of
xenon reads as follows

L{1f}ξ∗ (∆τ∗) =

ξexp(∆τ∗)
[nm]

0.0343085
[nm]

≡ ℓth (t) (64)

with

t = 0.021069∆τ∗ (65)

Either the “theoretical” value 0.0343085 nm (= [g0,L]−1)
of the length unit in Eq. (64), or the “measured” value
0.184333 nm (= ξ+0,L) of the correlation length amplitude

in Eq. (28), cannot easily be related to a real microscopic
length of xenon atom, while the fact that the “fitting”
value 0.390972 nm (= L0,L) of the dimensional prefac-
tor is comparable to the size of the xenon atom can be
considered as a fortuitous result (author?) [61].

As expected, more fundamental is the dimensionless
nature of Eq. (63) which can then provide the needed
uniqueness of the length unit for better understanding
of universality. Indeed, the above asymptotic collapse of
the correlation length implies equivalent asymptotic col-
lapse of any other singular thermodynamic property, by
virtue of hyperscaling. That means that, when the scale
factors L{1f} and ϑL are determined in the Ising-like ex-
tended asymptotic domain LXe

PAD < ∆τ∗ . LXe
EAD, the

validity range where the universal collapse onto the the-
oretical thermodynamic behavior is expected, can be al-
ternatively discussed in term of the value ℓth (t) > L{1f}.
In other words, all the crossover functions are “Ising-like”
universal:

i) only over the temperature range where the crossover

parameter is unique;

ii) only for a single dimensionless critical length L{1f}

common for all the fluids which obey to this single pa-
rameter crossover description.

For example, looking back on our previous analysis
of the residuals for the xenon isothermal compressibility
case, by reversing Eq. (64), we can transform ∆τ∗ in uni-
versal values of ℓth, as illustrated in the upper axis of Fig-
ure 2. Simultaneously, as previously mentioned, we are
also able to illustrate in this figure (or in any figure which
use a xenon ∆τ∗-coordinate) all the conditions estimated
in Table II. In the part of the Güttinger and Cannell’s
experimental range which corresponds to the theoreti-
cal condition ℓth & (2.5 − 3) L{1f} ≃ 70, the universal
behavior of the functional form χ∗ (ℓth) can then be an-
alytically “tested” in this Ising-like extended asymptotic
domain. Simultaneously, we will also confirm below the
uniqueness of the crossover parameter by using an alter-
native facet of the universality accounted for by the mean
crossover functions. As a matter of fact, to illustrate the
asymptotic Ising-like transformation of each thermody-
namic property P ∗ (∆τ∗) attached to the uniqueness of
the crossover parameter, we can also use the effective
universal behavior of the local exponent eP,th (t) to re-
place the one of the correlation length ℓth (t), in order to
construct the “universal” scaling form FP (eP,th). There-
fore, in a second approach with the objective to illustrate
this transformation in a self-consistent manner for the
susceptibility case, we consider the universal and exper-
imental effective amplitudes attached to the local power
laws with effective exponents, such as introduced in Ref.
(author?) [41].

4.2. Effective exponent and amplitude beyond the
Ising-like PAD

¿From χth (t) of Eq. (2), the related local values of
the effective exponent γe,th (t) and effective amplitude
Z+

χ,e (t) are given by the equations

γe,th (t) = −∂Ln [χth (t)]

∂Lnt
(66)

Z+
χ,e (t) =

χth (t)

t−γe
(67)

Eliminating t [then simultaneously eliminating the scale
factor ϑL, since t = ϑL∆τ∗], the theoretical classical-to-
critical crossover is characterized by a “universal” curve
Z+

χ,e (γe,th) over the complete range γMF ≤ γe,th (t) ≤ γ
(see curve labeled Φ3 (1)-MR in Fig. 3).

Our present interest is restricted to the Ising-like range
γe,th (t) ≥ γ 1

2
= γ+γMF

2 (see the corresponding Ising-like

range defined in the upper part of Fig. 3). The theoret-
ical Ising-like limiting point takes universal coordinates
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Figure 3: (Color on line) Two-parameter transformations fγe

(

X∗
0,L, ϑL

)

(see arrays), at γe = constant value, from the theoretical
universal behavior of the susceptibility (upper curve), to the xenon effective behavior of the isothermal compressibility (lower
curve) (in dimensionless variables); X∗

0,L: adjustable parameter for the general case of Eq. (44), unequivocally defined from
comparison in positions of the two Ising limiting points (right crosses); ϑL adjustable parameter unequivocally defined by
the two other points, either within the Ising-like preasymptotic domain (see the insert and the text), or outside the Ising-like
preasymptotic domain (full black circles T and P on the two curves labeled Φ3 (1) − MR and Xe − MR, respectively). Note
the inversion of the relative position between the curve labeled Φ3 (1) − MR and the curve labeled aT which is related to the
asymptotic (logarithmic) approximation of Eq. (68), beyond the Ising-like preasymptotic domain.

{

γ;
(

Z+
χ

)−1
}

(upper cross in Fig. 3). The “small” exten-

sion γ−γe,th . Z1,+
χ ∆

(

LIsing
PAD

)∆

≈ 0.006 of the Ising-like

preasymptotic domain is magnified by the curve labeled
Φ3 (1)-MR in the insert of Fig. 3. On the other hand,
the curve aT corresponds to the asymptotic behavior of

the derivative
(

∂Z
+
χ,e

∂γe

)

γe→γ
of equation

(

∂Z
+
χ,e

∂γe

)

γe,th→γ
=
(

Z+
χ

)−1







1 +

(

γ−γe,th

∆|Z1,+
χ |

)−
(

γ−γe,th
∆

)

(

1 − log

[

γ−γe,th

∆|Z1,+
χ |

])

(

γ−γe,th

∆

)

}

(68)
The vertical double arrow with label(1)indicates the

above logarithmic divergence of
(

∂Z
+
χ,e

∂γe

)

γe,th→γ
. We note

the significant difference between the curve aT and the
curve (S) which results from “analytic” error-bar corre-

lation between the Ising values of γ and
(

Z+
χ

)−1
. As a

matter of fact, the curve (S) corresponds to the linearized

slope ζ+
χ,0 =

(Z
+
χ,max)

−1
−(Z

+
χ,min)

−1

γmin−γmax
between the respective

bounded coordinates of points A and B (see inserted ta-
ble in Fig. 3 and Ref. (author?) [7] for data sources).

Since only two parameters (X∗
0,L and ϑL) are free in

fitting Eq. (44), Fig. 3 illustrates how the adjustable
prefactor X∗

0,L acts at the exact value of the Ising ex-
ponent, since each Ising point of the fluid takes the co-

ordinates
{

γ; Γ+ = X∗
0,L

(

Z+
χ

)−1
}

, as represented by the
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lower cross in Fig. 3 for the critical xenon case. The
resulting prefactor fγ

(

X∗
0,L

)

≡ X∗
0,L is schematized by

the double array between two crosses in Fig. 3. There-
fore, calibrating the Γ+ value as suggested in previous
paragraph, fixes this prefactor value which governs the
universal collapse of the Ising-like limiting point through
Eq. (50). X∗

0,L acts in a equivalent manner to L{1f}

[see Eq. (64)] for the correlation length case. In princi-
ple, the critical divergence in the initial slope at the lim-
iting points provides the second “Ising-like constraint”
which is needed to determine the asymptotic scale fac-
tor ϑ. However, our previous description of the Ising-like
preasymptotic domain and its above geometrical illus-
tration underline the challenging (theoretical and exper-
imental) difficulties to provide the exact characterization
of the asymptotic scaling when a property reaches the
Ising-like limiting point along a curve of “universal”, but
infinite, slope for all the physical systems.

At contrario, the description of the γe-variation in the
range γ − γe & 0.015 (i.e., in a temperature range sig-
nificantly beyond the Ising-like preasymptotic domain),
appears now simplified, using precisely the Güttinger and
Cannell’s results of Eq. (43) to define the following ef-
fective exponent by :

γe,exp (∆τ∗) = −
∂Ln

[

κ∗T,exp (∆τ∗)
]

∂Ln (∆τ∗)
(69)

and its attached effective amplitude by :

Γ+
e (∆τ∗) =

κ∗T,exp (∆τ∗)

(∆τ∗)
−γe,exp

(70)

The resulting single curve Γ+
e (γe,exp) is illustrated in

the lower part of Fig. 3 (see curve Xe − GC4), while the
expected (two parameter) transformation f

(

X∗
0,L, ϑL

)

able to insure the universal collapse between the theoret-
ical curves (labeled Xe−MR and Φ3 (1)-MR), is schema-
tized by a double array between two points on each curve
of well-defined finite slope. This transformation must
contain the needed both constraints for the (point) po-
sition and the related (tangent) direction. Therefore,
the scaling nature of the collapse beyond the Ising-like
preasymptotic domain is significantly different in fitting
procedure which either eliminates, or accounts for, the
contribution of the leading term. In the latter situation,
we can then replace the prefactor X∗

0,L by the calibrated

leading amplitude Γ+, as seen above.
In the first case, at large temperature distance, the fit

procedure based on Eq. (44) is mainly equivalent to a
dominant constraint in “direction” given by the following
relation between the two effective exponents:

γe,exp (∆τ∗) ≡ γe,th [ϑL (∆τ∗)] (71)

We numerically solve Eq. (71), using the Güttinger and
Cannell’s fitting results given by Eq. (43), then providing
the γe [(∆τ∗)] and ϑL (∆τ∗) values as a function of ∆τ∗.
Both results are reported as the curve labeled GC4 in

Fig. 4a [γe as a function of ∆τ∗], and the curve labeled
1 in Fig. 4b [ϑL as a function of ∆τ∗], respectively.

In the second case, to account for the contribution of
the leading term needs to use the following scaling rela-
tion between the two effective amplitudes

Γ+
e = (ϑL)

γ−γe X∗
0,LZ+

χ,e (72)

Now, the transformation f
(

X∗
0,L, ϑL

)

= (ϑL)
γ−γe X∗

0,L is

explicit in Eq. (72). Its takes a convenient effective power
law of the crossover parameter ϑL, while the prefactor
X∗

0,L has (as expected above) the same value whatever the

γe (= γe,exp = γe,th) value is. The constrained “position
and direction” are accounted for correctly. Therefore,
using Eq. (50) to eliminate X∗

0,L, infers the pure ϑL-
dependence of equation

Γ+
e

Γ+
= (ϑL)γ−γe

Z+
χ,e

(

Z+
χ

)−1 (73)

By appropriate combination between the Güttinger and
Cannell’s fitting results and the mean crossover function
for susceptibility, we numerically calculate the local value
of the crossover parameter over the complete experimen-
tal temperature range, using the equation

ϑL =

(

1

Z+
χ Z+

χ,e

× Γ+
e

Γ+

)
1

γ−γe

(74)

It is essential to note that for each fluid for which Γ+ is
known, Eq. (74), applied in the extended asymptotic do-
main ∆τ∗ . LXe

EAD, takes equivalent “Ising-like” meaning
to Eq. (32) applied within the Ising-like preasymptotic
domain ∆τ∗ . LXe

PAD. In Figure 4b, we have reported as
a curve labeled 2, the calculated value of ϑL as a func-
tion of ∆τ∗, using Eq. (74) with Γ+ = 0.0578204 [see Eq.
(39)]. The available part of these curves 1 and 2 must
be restricted to the experimental temperature range il-
lustrated by the segment labeled GC.

For both cases, the ϑL-change as a function of ∆τ∗

within the range 10−3 . ∆τ∗ . 10−1 of Fig. 4b, can
be approximated by our hypothetical Ising-like asymp-
totic value ϑ = 0.021069 of Eq. (39). In Fig. 4c the
corresponding curves (labeled 1 and 2) of the residu-
als R%(ϑL)ϑ = 100

(

ϑL

ϑ
− 1
)

(expressed in %), together
with their mean curve (labeled m), are given. In the tem-
perature range 5 × 10−3 . ∆τ∗ . 10−1 of Fig. 4c, the
green area corresponds to the error-bar of ±15% for both
determinations. Even at such large values of ∆τ∗, the
main significant result obtained from the massive renor-
malization scheme, is the estimation of the temperature-
like crossover parameter in conformity with the asymp-
totic two-scale-factor characterization of the fluid, espe-
cially using the true scaling Eq. (74).

Such a temperature range where a “measurable” value
of the exponent difference γ−γe occurs, was largely inves-
tigated in the seventy’s (author?) [42], when the scaling
approach of the fluid universality was based on the effec-
tive “universal” values of the critical exponents - as for
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example γe = 1.211 (author?) [43], γeos = 1.19 (au-
thor?) [24, 42], and γe = 1.16665 (author?) [13] - in-
volved in effective power laws and/or effective “univer-
sal” form of a rescaled equation of state. Anticipating
a more detailed discussion given in Appendix A, we can
use the data reported on Table V for these γe values
to easily demonstrate, using the corresponding arrows in
Fig. 4a, the “Ising-like nature” of the covered temper-
ature range ∆τ∗ . 0.05 − 0.1 ≪ ∆τ∗∆, or alternatively
but equivalently, the “Ising-like nature” of the covered
correlation length range ℓth & 70 > 2.5L{1f}. That also
gives interest to revisit (author?) [17] the effective uni-
versal formulation of a parametric equation of state using
the master crossover functions to validate the universal
features observed in the well-defined Ising-like extended
asymptotic domain of the fluid subclass.

Finally we note that, when Tc and αc are known, the
mean crossover functions take a convenient controlled
form to determine a single crossover parameter ϑL in
a temperature range beyond the Ising-like preasymp-
totic domain. The Ising-like nature of this crossover pa-
rameter is then revealed by the dimensionless value of
a single characteristic length. However, to define the
“minimal” set of three characteristic parameters such
as
{

ϑL; X∗
0,L; L∗

0,L

}

, or, alternatively but equivalently,

{ϑ;ψρ; g0}, and
{

a+
χ ; Γ+; ξ+0

}

, one needs a “data calibra-
tion” from measurements performed within the Ising-like
preasymptotic domain. The practical interest of this data
calibration is given in the Appendix A, without reference
to the estimated precision of the experimental method
able to provide such measurements in this closest tem-
perature range.

In the absence of explicit thermodynamic definition for
the prefactors L∗

0,L, X∗
0,L and the crossover parameter

ϑL [or for the scale factors g0, ϑ, and ψρ], the remain-
ing difficulty is to compare between distinct fluids which
show differences in their fluid-dependent amplitudes ξ+0 ,
Γ+, and a+

χ . This difficulty can be solved by application
of the scale dilatation method when the localization of
their liquid-vapor critical point is known, as shown in
Appendix A for the xenon case.

5. CONCLUSION

Using xenon as a standard critical fluid, and the mean
crossover function for susceptibility in the homogeneous
phase as an illustrative example, we have estimated the
values of the fluid-dependent parameters which are com-
patible with the universal features predicted by the mas-
sive renormalization scheme. A special mention for the
three dimensionless parameter characterization within

the Ising-like preasymptotic domain was given, in spite
of the large theoretical and experimental uncertainties at
such “closest” temperature distance to the critical tem-
perature. Using the abundant literature now available
from several fittings of Güttinger and Cannell’s data,
we have demonstrated the great advantage of the mean

Figure 4: (Color on line) Ising-like asymptotic behaviors of:
(a), the effective exponent γe for the xenon isothermal sus-
ceptibility, (b), the xenon crossover parameter ϑL, and (c),
the percent deviation between ϑL and the xenon asymptotic
scale factor ϑ calculated from the scale dilatation method, as
a function of the relative temperature ∆τ∗ (lower horizontal
axis) and the theoretical correlation length ℓth (upper hori-
zontal axis); curve labeled MR: from MR crossover function
of Eq. (23) and xenon parameters of Eq. (40); curve GC4:
from a fit of the Güttinger and Cannell’s data by Eq. (43)
and xenon parameters in Table IV line GC4; curve 1: from
Eq. (71); curve 2: from Eq. (74); Curve m: mean value of
curves 1 and 2; lines labeled CPM and MSR: with ϑX-values
of Table III obtained from the fitting results of the Güttinger
and Cannell’s data by CPM and MSR crossover functions (see
text).

crossover functions to provide an unambiguous determi-
nation of one fluid-dependent crossover parameter out-
side the Ising-like preasymptotic domain. Specifically, we
have clearly shown that the value of this crossover param-
eter is entirely governed by fitting the data at “largest”
distance to the critical point, leading for example to an
apparent reduction of the uncertainty in the determina-
tion of the amplitude of the first confluent correction-
to-scaling term. Finally, the magnitude of the resulting
deviations and the range of temperature where it is to be
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observed are exactly accounted for.

However, in the absence of controlled information
about the Ising-like preasymptotic domain description,
only the similar use of the complete set of mean crossover
functions applied to several properties is able to demon-
strate that the crossover parameter conserves its “Ising-
like” nature, even outside the Ising-like preasymptotic
domain. Alternatively, it was recently proposed in II
and herafter justified in the Appendix A for the xenon
case, an appropriate modification of the mean crossover
functions which only uses three master (i.e. constant)
parameters. The modified crossover functions represent
the master (i.e. unique) singular behaviors of the one
component fluid subclass in a well-defined Ising-like ex-
tended asymptotic domain. In such a situation, the real
extension and amplitude of the singular behavior of the
fluid properties can be estimated for any one-component
fluid for which the vapor-liquid critical point is localized
in the pV T phase surface.
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Appendix A: ISOTHERMAL COMPRESSIBILITY
OF XENON

In the first part of this Appendix we calculate the char-
acteristic parameters of xenon involved in Eqs. (38) and
(39), by using the scale dilatation method (author?)
[13, 14]. The needed information is then given by the set
Qmin

c,ap̄
made of four critical coordinates of the xenon crit-

ical point. Indeed, for any one-component fluid, Qmin
c,ap̄

reads as follows (II)

Qmin
c,ap̄

=
{

Tc; pc; vp̄,c; γ
′

c

}

(A1)

where vp̄,c =
mp̄

ρc
is the critical molecular volume and γ

′

c is

the common critical direction at the critical temperature
of the critical isochoric line and the saturation pressure
curve in the p;T diagram.

The second part shows that the xenon parameters
given by Eq. (40) can be used as entry data for the
Eqs. (3) and (23) to represent accurately the singular
behavior of the xenon isothermal compressibility in the
temperature range such as T − Tc . 5 − 10 K.

The last part discusses the data calibration and the
uniqueness of the Ising-like crossover parameter within
the extended asymptotic domain.

1. Xenon data sources from application of the scale
dilatation method

a. Xenon critical coordinates

The selected critical coordinates of xenon are:

Tc = 289.733 K;

pc = 5.84 MPa;

ρc = 1113 kgm−3 or vp̄,c = 0.19596 nm3;

γ
′

c = 0.1192 MPaK−1;

withmp̄ = 2.181 × 10−25 kg.

(A2)

They result from the combined analysis (author?)
[12, 13] of pV T measurements of Habgood and Schnei-
der (author?) [46], and coexisting density measurements
of Weinberger and Schneider (author?) [45], Cornfeld
and Carr (author?) [63], Thoen and Garland (author?)
[67], and Balzarini and coworkers (author?) [70, 71].

The xenon critical temperature and pressure were fixed
to the values recently provided by Gillis et al (author?)
[72] which are compatible with Tc = 289.740 ± 0.003 K
and pc = 5.8400 ± 0.0005 MPa obtained from Schneider
et al’s measurements.

The ρc value has an uncertainty of ±5 kgm−3 (∼
0.5%), which accounts for the ρc values of Schneider et
al’s (ρc = 1110 ± 2 kgm−3) (author?) [45, 46], Corn-
feld and Carr’s (ρc = 1111.2+1.9

−3.4 kgm−3 for three differ-
ent estimations) (author?) [63], Baidakov et al’s (ρc =
1112.8 ± n.a. kgm−3) (author?) [64], and Balzarini et
al’s (ρc = 1099 ± n.a. kgm−3 (author?) [70], ρc =
1116.0 ± 1.7 kgm−3 and ρc = 1114.0 ± 1.7 kgm−3 (au-
thor?) [71]).

The value γ
′

c = 0.1192 ± 0.0005 MPaK−1 (∼ 0.5%)
was estimated by one of us (author?) [12] by graphi-
cal analysis of the pV T measurements of Habgood and
Schneider, which agrees to other literature values γ

′

c =

0.1192 MPaK−1 (author?) [51], γ
′

c = 0.1196 MPaK−1

(author?) [52], and γ
′

c = 0.120 MPaK−1 (author?)

[64]. The γ
′

c value used in Ref. (author?) [72] differs
by 0.19%.

More generally, we note the remarkable agreement with
the critical set defined by Gillis et al (author?) [72] in
their recent analysis of the sound attenuation (in the fre-
quency range 100 < f (Hz) < 7500) within thermoacous-
tic layers between solid surfaces and xenon at critical
density.

b. Physical and master amplitudes from the scale dilatation

method

¿From Eq. (A2), the critical values [see Eq. (38)] of

the energy (βc)
−1

and length αc units of xenon are the
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following:

(βc)
−1 = kBTc = 4.0003× 10−21 J

αc =
(

kBTc

pc

)
1
d

= 0.881508 nm
(A3)

while the values of two xenon scale factors Yc and Zc are
the following:

Zc =
pcmp̄

ρckBTc
= 0.28601

Yc = γ
′

c
Tc

pc
− 1 = 4.91373

(A4)

We have calculated the values [see Eq. (39)] of the xenon
amplitudes Γ+, ξ+0 , and a+

χ , (or a+
ξ ) by using the follow-

ing relations :

a+
χ = Z1,+

χ

[

(Yc)
∆
]

= 1.23399

ξ+ = Z+
ξ

[

(Yc)
−ν
]

= 0.209111

Γ+ = Z+
χ

[

(Zc)
−1

(Yc)
−γ
]

= 0.0578204

(with αcξ
+ = 0.184333 nm)

(A5)

where the respective values of the master amplitudes Z+
ξ ,

Z+
χ , and Z1,+

χ (or Z1,+
ξ ) are (author?) [17]

Z+
ξ = 0.570481

Z+
χ = 0.119

Z1,+
χ = 0.555

(A6)

Hereabove, universal features within the Ising-like
preasymptotic domain are correctly accounted for by the
following equations

Z1,+
ξ = 0.37695

a+
ξ = Z1,+

ξ

[

(Yc)
∆
]

= 0.83812

with
Z1,+

ξ

Z1,+
χ

=
a
+
ξ

a
+
χ

= 0.67919

(A7)

The amplitude value ξ+0 = 0.184333 nm estimated using
the scale dilatation method, compares favorably with the
one ξ+0 = 0.1866 ± 0.001 nm recently used by Gillis et al
(author?) [72] to analyze sound attenuation within ther-
moacoustic layers between solid surfaces and xenon at
critical density. Moreover, this amplitude value is also in
agreement with the following ones obtained from analyses
of (static and dynamic) light scattering measurements:
(i) ξ+0 = 0.2 nm, with ν = 0.63, in the temperature range
22 mK ≤ T−Tc ≤ 3.3 K [i.e., 8×10−5 . ∆τ∗ . 10−2] (see
Refs. (author?) [49, 50, 52]); (ii) ξ+0 = 0.1934 nm, with
ν = 0.62, in the temperature range 2.6 mK ≤ T − Tc ≤
10 K [i.e., 9 × 10−6 . ∆τ∗ . 3.4 × 10−2] from Ref. (au-
thor?) [53]; (iii) ξ+0 = 0.184 ± 0.009 nm and one conflu-
ent correction term (with a+

ξ = 0.55 and ∆ = 0.5), in

the temperature range 28 mK ≤ T − Tc ≤ 3.65 K [i.e.,
9.6 × 10−5 . ∆τ∗ . 1.26 × 10−2] from Ref. (author?)
[21].

Using the above xenon parameters in the theoretical
estimation of the correlation length, we also underline
that the agreement with the experimental measurements
extends to the range ξ

αc
& 3, i.e., in a temperature range

∆τ∗ . LXe
EAD ≃ (2 − 3)×10−2 which extends largely be-

yond the Ising-like preasymptotic domain (see Ref. (au-
thor?) [10]). For example, at the calibration temper-
ature T = Tc + 1 K (∆τ∗C2 = 3.45137 × 10−3, see be-
low), our calculated value of the correlation length is

ξ = 68.6323 Å (i.e., ξ
αc

≃ 7.8), while the experimen-

tal values are ξ = 71.14 Å (author?) [50], ξ = 64.66 Å
(author?) [53], and ξ = 67.56 Å (author?) [21]. Es-
pecially considering the light scattering measurements
of the isothermal susceptibility and the turbidity of
xenon reported by Güttinger and Cannell (author?)
[21], we note that the turbidity data are fitted in the
Orstein-Zernike approximation within a 1% precision in
the temperature range 28 mK ≤ T − Tc ≤ 2.54 K [i.e.,
9.6× 10−5 . ∆τ∗ . 8.76× 10−3] , using the present the-
oretical estimation of the correlation length and isother-
mal compressibility. In particular, we estimate the refer-
ence value τ (Tor = Tc + 0.6677 K) = 4.1067 m−1 of the
turbidity, in excellent agreement with the Güttinger and
Cannell’s one τ (Tor) = 4.1 m−1 (author?) [21], without
any adjustable parameter.

c. Mean and master forms of a theoretical crossover

function

The master modifications of the mean crossover func-
tions of Eqs. (1) and (2) use the following values of three
master (i.e., constant) factors (author?) [17]

Θ{1f} = 4.288× 10−3

L{1f} = 25.6936

Ψ{1f} = 1.73847× 10−4

(A8)

The two scale factors ϑ and ψρ [see Eq. (40)] needed by
the massive renormalization scheme are related to Yc and
Zc through the equations

ϑ = YcΘ
{1f} = 0.021069

ψρ = (Zc)
− 1

2 Ψ{1f} = 3.2507× 10−4
(A9)

In addition, the values of Eq. (61) for the metric prefac-
tors L∗

0,L and X∗
0,L are calculated by using the following

equations

L∗
0,L = Z±

ξ Z±
ξ (Yc)

−ν

= (Yc)
−ν

[L{1f}×(Θ{1f})ν ]
= 0.443526

X∗
0,L = Z±

κ
Z±

χ (Zc)
−1

(Yc)
−γ

= (Zc)−1(Yc)
−γ

[

(L{1f})
−d

(Ψ{1f})
−2

(Θ{1f})
γ
] = 0.214493

(A10)
These two independent prefactors are two characteristic
parameters of xenon, which permit to calculate all the
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other xenon prefactors of the modified crossover func-
tions, in conformity with the two-scale-factor universal-
ity.

2. Theoretical representation of the isothermal
compressibility in the temperature range

T − Tc . 5 − 10K

We can immediately compare all the published

κT (∆T ) = 1
ρ

(

∂ρ
∂p

)

T
data for xenon at ρ = ρc, to the esti-

mated values by using the mean crossover function of Eq.
(2) and the xenon parameter set of Eq. (39). A complete
view of the results is shown in Fig. 5 which covers about
six decades on the temperature distance (the data sources
are given below; see Table V). The related numerical res-
olution of this picture is such that the size of each data
point (including the calibration data points defined be-
low) corresponds to a relative error-bar of ±5%, while the
thickness of the theoretical curve (label MR) accounts
for one of ±3%. As expected from our previous analysis
(author?) [10], no difference larger than ±5% is visible
between the curve and the experimental data points on
the extended asymptotic domain (labeled EAD) such as

T − Tc . 5 K, i.e., ∆τ∗ . LXe
EAD =

L
{1f}
EAD

Yc
≈ 2 × 10−2

(see also below the Fig. 7 and the related discussion).
In addition, the thickness of each (colored) line, having
characteristic slope γe,pV T , amplitude Γ+

e,pV T , and color

indexation given in Table V, represents ±1.5% relative
error-bar.

a. Data sources for xenon isothermal compressibility

As shown in the lower part of Figure 5, the complete
temperature range 1 mK . ∆T . 400 K (i.e. 3× 10−6 .
∆τ∗ . 1) is covered by successive overlap between κT

data which originate from three distinct experimental
methods: pV T measurements with labels pV T (B) (au-
thor?) [44], (M) (author?) [47], and (HS) (author?)
[46]; light diffusion or turbidity measurements with label
LS (GC)(author?) [21], and Franhauffer interferometry
measurements with label IF (HM) (author?) [54, 55].

Within the main part of the temperature distance to Tc

[typically 0.1 K . ∆T . 400 K, (i.e., 3 × 10−3 . ∆τ∗ .
1)], κT is obtained from pV T measurements (author?)
[44, 46, 47], generally using graphical (author?) [12] or
numerical fitting (author?) [42] of the [p (ρ)]T isotherms

to obtain the slope
(

∂ρ
∂p

)

T
at the selected critical density.

We have also reported in Table V the κT -values obtained
from pV T measurements which were used in our analysis.
A noticeable specific situation occurs for xenon where the
high precision of the pV T measurements of Habgood and
Schneider (author?) [46], can be used to check carefully
the overlap [in the temperature range 0.2 K . ∆T .
1.8 K, (i.e. 6× 10−4 . ∆τ∗ . 6× 10−3)] with the optical

methods.
In the intermediate temperature range [typically

30 mK . ∆T . 15 K, (i.e., 10−4 . ∆τ∗ . 5 × 10−2)],
the analyses of the light (diffusion or transmission) in-
tensity measurements (author?) [21], as a function of
∆T = T − Tc, provide interrelated data of the correla-
tion length ξ and isothermal susceptibility χρ,T . κT is

related to χρ,T by χρ,T =
(

∂ρ
∂µρ

)

T
= ρ2κT .

In the closest temperature range [1 mK . ∆T . 10 K,
(i.e., 10−4 . ∆τ∗ . 3 × 10−2)], the fluid density profile
versus the cell height subjected to the gravitational field
generates Franhauffer interferograms (author?) [54, 55]
which are related to the isothermal compressibility (au-
thor?) [55, 56]. However, as already noted by Levelt-
Sengers et al (author?) [43], the published results in
Ref. (author?) [54] needs to be reconsidered before a
quantitative comparison with other ones in overlaping
temperature ranges.

In order to focus our attention in the restricted tem-
perature range 0.3 K . ∆T . 5 K, around the central
value T ≃ Tc + 1.25K (see below next §), we have also
used the isothermal compressibility data obtained from
the dynamic ligth scattering data of Cannell and Benedek
(author?) [51], and from the static ligth scattering data
of Smith et al (author?) [50], as complementary data
sources.

A realistic estimation of the experimental uncertainty
is of the order of 10% when comparison is made between
the data obtained from the different methods (the op-
tical method being of high relative precision but lower
absolute precision; see for example Fig. 6 below).

b. Effective fitting results

To complete our analysis of the Güttinger and Can-
nell’s measurements, we have also made a comparison
with the published fitting results, obtained from pV T
data, using the following effective power law with an ad-
justable non-Ising exponent,

κ∗T = Γ+
e,pV T (∆τ∗)

−γe,pV T (A11)

The γe,pV T and Γ+
e,pV T values are reported in Table VI, in

addition with the related finite extension ∆τ∗min −∆τ∗max

of the experimental temperature range. The labels
#6, 5, 4, of the lines of Table VI correspond to the re-
spectives labels #6, 5, 4, of the columns of Table II. The
typical error-bar values of these fitting results are given in
line #6. At each restricted temperature range, we have
attached the central value

〈

∆τ∗e,pV T

〉

=
√

∆τ∗min∆τ∗max

(in log scale). So that, in the next Fig. 7, each effective
power law result is illustrated as a form of a (colored)
point-segment (with γe,pV T -value as a label) covering the
range ∆τ∗min ≤ ∆τ∗ ≤ ∆τ∗max, around a central (full)
point fixed at

〈

∆τ∗pV T

〉

.

In this Table VI, results (author?) [12] given in line
labeled #γMF correspond to a fit of the pV T data of
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Figure 5: Isothermal compressibility of xenon along the critical isochore; Only the points corresponding to the pV T data given
in Table V are reported; Inserted labels are common for all the figures (see text).

Beattie et al (author?) [44], where the mean-field value
γe = γMF = 1 of the effective exponent can be observed at
large temperature distance from Tc (typically ∆τ∗ > 0.5,
see also Ref. (author?) [22]).

A similar introduction of the effective power law to
analyse the results of light scattering experiments gives
access to a quantitative comparison between the pV T
and light scattering measurements of the isothermal com-
pressibility. As a matter of fact, Güttinger and Cannell
have claimed that the correction to scaling terms are im-
portant by demonstrating that the susceptibility deviates
systematically from a simple power law behavior with the

effective exponent value γe = 1.206. More precisely, Fig.
2 of Ref. (author?) [21] shows that γe ≃ 1.206 is the
slope of the tangent line to the rough experimental be-
havior at ∆τ∗γe=1.206 ≃ 4.5 × 10−3, i.e., the temperature
distance which corresponds to the minimum of the de-
viation curve in this Fig. 2. We have used this result
to renew a fit of twelve compressibility data measured in
the restricted temperature range 9.115 × 10−4 ≤ ∆τ∗ ≤
1.95×10−2 (i.e., 0.26 K ≤ ∆T ≤ 6.90 K), i.e., a tempera-
ture range with a central value

〈

∆τ∗e,GC

〉

= 4.215×10−3,
very close to the ∆τ∗γe=1.206 one. As expected, our fit-

ting values γe = 1.205879 and Γ+
e = 0.07551466 (re-
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T − Tc 283.41 233.41 183.41 133.41 108.41 83.41 58.41 33.41 23.41 13.41 10.41 8.41 6.41 Ref.

106κT 0.01883 0.02348 0.02912 0.04078 0.05095 0.06772 0.10074 0.18695 0.8961 (author?) [44]

0.04145 0.05185 0.06904 0.10227 0.19268 0.29065 0.56344 1.0099 (author?) [47]

0.54791 0.73594 1.3020 (author?) [12]

0.555 (author?) [12]

(±0.008)

T − Tc 4.91 3.41 2.41 1.80 1.4 1.0 0.6677∗ 0.8 0.6 0.4 0.2 0.1 0.001

106κT 5.7371 7.8543 11.858 22.701 36.640 79.11 204.86 (author?) [46]

1.7835 2.7224 4.1139 15.432 (author?) [12]

11.95 19.64∗ 58562 (author?) [12]

(±0.15) (±1%) (±800)

Table V: Values of the isothermal compressibility κT (expressed in Pa−1) of xenon obtained from the pV T measurements along
the critical isochore ρc = 1113 kgm−3, as a function of T − Tc (expressed in K); The lower part corresponds to data obtained
within the Ising-like extended asymptotic domain; Asterisk indicates the reference values used by Güttinger and Cannell to
calibrate their light scattering measurements of the isothermal compressibility; (see text).

γe,pV T Γ+
e,pV T Ref. ∆τ∗min ∆τ∗max

〈

∆τ∗pV T

〉

∆τ∗th R%
(

Γ+
e,pV T

)

Γ+
e,th

ϑL

(Table II) Eq. (74)

#6 1.211 (±0.02) 0.0743 (±0.015) (author?) [43] 6.9 × 10−4 6.2 × 10−3 2.07 × 10−3 2.95 × 10−3 2.3 0.04676

#5 1.190 0.0793 (author?) [42] 2.8 × 10−3 4.6 × 10−2 1.13 × 10−2 1.135 × 10−2 −1.9 0.01429

#4 1.1665 0.089 (author?) [14] 6.2 × 10−3 8.1 × 10−2 2.24 × 10−2 3.338 × 10−2 0.1 0.02618

#γMF 1 0.11 (author?) [12] 0.5 1 7.1 × 10−1 (∞) 30. n.a.

Table VI: Lines with labels #6, 5, 4 (corresponding to the columns with same labels in Table II): Effective exponent γe,pV T

(column 2) and amplitude Γ+
e,pV T (column 3) of a power law description of Eq. (A11), for κ∗

T obtained from xenon pV T

measurements in the temperature range and (geometrical) mean temperature
〈

∆τ∗pV T

〉

=
√

∆τ∗min∆τ
∗
max (column 6); see

references given in column 4; Calculated values of the local temperature distance ∆τ∗th (column 7) are from Table II line10;
Residuals R%

(

Γ+
e,pV T

)

Γ+
e,th

(column 8), expressed in %, between experimental (Γ+
e,pV T ) xenon amplitude and calculated ( Γ+

e,th

) xenon amplitude from Table II line 12; Calculated values of xenon crossover parameter ϑL (column 10) from Eq. (74); Line
with label #γMF : Equivalent results for γe = γMF = 1 (see text); n.a.: non available.

ported in line #GCe of Table VII), are in excellent agree-
ment with the Güttinger and Cannell’s ones γe = 1.206
and Γ+

e = 0.075135. The latter amplitude value was
calculated applying a −4% correction (corresponding to
the fit deviation observed in this restricted tempera-
ture range) to the effective amplitude of the published
original fit. This resulting power law behavior may be
seen from Fig. 6 which gives the % residual between
the dimensionless isothermal compressibility and the fit-
ting equation κ∗T,GCe

= 0.07551466 (∆τ∗)−1.205879. For
us, the most important consequence of the high rela-

tive precision of the Güttinger and Cannell’s measure-
ments is the demonstration that a well-defined local value
γe ≃ 1.20588 of the effective exponent can be mea-
sured at a well-defined local value (T − Tc ≃ 1.260K)
of the temperature distance to Tc. Accordingly, by ex-
pressing now the condition γe,th = 1.205879 in comple-
ment to the similar eight conditions given in Table II for
the theoretical crossover function of Eq. (2), such a lo-
cal value of the effective exponent must be observed at
∆τ∗th (γe,th = 1.2058) = 4.347×10−3, while the calculated
local values of the effective theoretical and xenon ampli-

tudes are Z+
χ,e = 0.396926 and Γ+

e,th (γe,th = 1.2058) =
0.0747481. We will exploit the noticeable agreement be-
tween the experimental and theoretical local value of the
effective power law behavior in the last § of the Ap-
pendix. We note that the calculated value of the cor-

relation length is then ξ(γe≃1.20588)
αc

≃ 6.764, i.e, within
our expected range for the Ising-like extended asymptotic
domain previously defined by the condition ℓ∗ = ξ

αc
& 3.

Previously, in a first approach independent of any one-
parameter crossover theory, it is necessary to control that
the compressibility data obtained by any other measure-
ment method covering a similar restricted temperature
range, are satisfying this effective power law behavior
with comparable values of the related effective ampli-
tudes. This is the object of the results given in lines
#pV T, CB, SGB of Table VII (see also Fig. 6), where
we have used:

i) line #pV T , the pV T data of Table V covering the
temperature range 0.1 K ≤ T−Tc ≤ 10.41 K (i.e., 3.451×
10−4 ≤ ∆τ∗ ≤ 3.593 × 10−2);

ii) lines #CB, the dynamic ligth scattering data of
Cannell and Benedek (author?) [51] covering the tem-
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γe Γ+
e Ref.

∆τ∗min

∆τ∗max

〈

∆τ∗γe

〉

∆τ∗th Γ+
e,th R%

(

Γ+
e

)

Γ+
e,th

Z+
χ,e ϑL

Eq. (

GCe 1.205879 0.07551466 t.w.
9.115 ×10−4

1.95 ×10−2
4.215 × 10−3 4.347 × 10−3 0.0747481 1.03 0.396926 0.0285147

pV T 1.204519 0.07590869 t.w.
3.451 ×10−4

3.593 ×10−2
3.521 × 10−3 4.778 × 10−3 0.075298 0.81 0.40195 0.0265262

CB(a) 1.21 0.076845 (author?) [51]
6.9 ×10−4

6.9 ×10−2
6.9 × 10−3

(b) 1.201586 0.0780485 t.w.
3.451 ×10−4

2.5886 ×10−2
2.989 × 10−3

(c) 1.201586 0.0768207 t.w. 5.804 × 10−3 0.076466 0.46 0.41283 0.0238014

SGB(a) 1.21 ± 0.03 0.06742 (author?) [50]
1.553 ×10−4

1.76 ×10−2
1.653 × 10−3

(b) 1.204381 0.0679096 t.w.
1.5877 ×10−4

1.723 ×10−2
1.653 × 10−3

(c) 1.204381 0.0755227 t.w. 4.823 × 10−3 0.075354 0.22 0.40246 0.0224563

Table VII: Fitting results using an effective power law equation κ∗
T = Γ+

e (∆τ∗)−γe in a restricted temperature range ∆τ∗min ≤
∆τ∗ ≤ ∆τ∗max (see text); The calculated local values of the temperature distance ∆τ∗th (column 7), the xenon amplitude Γ+

e,th

(column 8), the universal amplitude Z+
χ,e (column 10), and the xenon crossover parameter ϑL (column 11), are for each condition

γe,th = γe ; t.w.: this work.

perature range 0.2 K ≤ T − Tc ≤ 20 K, i.e., 6.9× 10−4 ≤
∆τ∗ ≤ 6.9 × 10−2, and

iii) lines #SGB, the static ligth scattering data of
Smith et al (author?) [50] covering the temperature
range 0.045 K ≤ T − Tc ≤ 5.1 K, i.e., 1.553 × 10−4 ≤
∆τ∗ ≤ 1.76 × 10−2 .

In the pV T case, the fitting values of the exponent-
amplitude pair confirm the power law behavior observed
from Güttinger and Cannell’s measurements of high rel-
ative precision. On the other hand, we have reported the
initial fitting results [lines #CB, SGB, (a)] of Refs. (au-
thor?) [50, 51]. They are only used to illustrate quanti-
tatively the effects due to a large uncertainty on measure-
ments of the geometrical factors in light scattering exper-
iments(author?) [50], or to an indirect estimation of the
magnitude of the compressibility from an elaborate and
complex analysis of the Brillouin spectra of xenon (au-
thor?) [51]. For example, the numerical values found
from Ref. (author?) [50] with γe = 1.21 can be multi-
plied by a factor 1.63

1.43 = 0.076845
0.06742 ≃ 1.14 to match those

reported in Ref. (author?) [51]. However, in spite of
the importance (≃ (10 − 20)%) of these effects, we have
confirmed with our fitting results [lines #CB, SGB, (b)]
that the value of the effective exponent is well in the range
γe ≃ 1.20− 1.21 for the restricted temperature range se-
lected here. In addition, the large uncertainty on the
experimental value of the effective amplitude can be de-
creased by using our calibrated value of the isothermal
compressibility at T = Tc + 1K. For example, after cal-
ibration [lines #CB, SGB, (c)], the effective amplitude
for Cannell and Benedek’s data was lowered by 1.573%,
while the one for Smith et al’s data was increased by

11, 21%, in agreement with around ≃ 14% initial devia-
tion between these two data set.

Finally, as reported in column 9 of Table VII, the per-

cent deviation %R (Γ+
e )Γ+

e,th
= 100

(

Γ+
e

Γ+
e,th

(γe,th=γe)
− 1

)

between the experimental and theoretical effective am-
plitudes for the four experimental values of the effective
exponent γe is on the 1%-level. In Fig. 6, we have also

reported the residuals %R (κ∗T )GCe
= 100

(

κ∗
T,

κ∗
T,GCe

− 1
)

(expressed in %) between each experimental data κ∗T and
the calculated one κ∗T,GCe

using the effective power law

κ∗T,GCe
= 0.07551466 (∆τ∗)−1.205879 as reference (see line

#GCe in Table VII). We note the data agreement at the
same percent level that the precision on the calibrated
values of the isothermal compressibility, which leads to a
conclusion that the “experimental” values of the effective
amplitude Γ+

e are estimated with an uncertainty of 1%.
Therefore, in a second approach focussed on the valid-

ity test of the one-parameter crossover modelling in pure
fluids, which will be discussed below in § A.3, all these
fitting results with effective values of the exponents ob-
served in a small restricted temperature range at large
temperature distance to Tc are appropriate:

i) to check the calibration of the leading asymptotic
amplitude Γ+ (with γ fixed);

ii) to verify the uniqueness of the scale factor ϑ by
estimating the related local values of ϑL, and then,

iii) to control the master values of the leading ampli-
tude Z+

χ = 0.119 [related to Γ+, see Eq. (A5)] and the

confluent amplitude Z1,+
χ = 0.555, [related to ϑ, see Eq.

(A5)].
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Figure 6: Residuals %R (κ∗
T )GCe

(expressed in %) of
the κ∗

T data from the effective power law κ∗
T,GCe

=

0.07551466 (∆τ∗)−1.205879 (see text); The horizontal and ver-
tical (pink) lines permit to define the local values of the
effective amplitude (Γ+

e,γe
= 0.99 × 0.07551466) and the

temperature distance [∆τ∗th (γe) = 4.347 × 10−3, see Table
VII ] where the line of slope γe = 1.205879 and equation
κ∗

T = Γ+
e,γe

(∆τ∗)−γe , is tangent to the experimental singular
behavior measured by Güttinger and Cannell, at the contact
point of coordinates

{

∆τ∗th (γe) ; 0.99κ∗
T,GCe

[∆τ∗th (γe)]
}

(see
also Table VII and text); Horizontal segment labeled GCe:
restricted temperature range of the fit by the effective power
law κ∗

T,GCe
= 0.07551466 (∆τ∗)−1.205879 ; (colored) symbols:

see inserted legend and Tables V and VII; All the other in-
serted labels are identical to the ones previously used.

c. Data comparison from reference to the master crossover

function

Data comparisons are magnified in the three parts (a),
(b), and (c), of Figure 7 (in lin-log scale), either as a func-
tion of ∆τ∗ in the lower horizontal axis, or as a function
of the theoretical (ℓth) and master (ℓ∗ = ξ

αc
) correlation

lengths (author?) [10] in the upper horizontal axis. The
extensions of the Ising-like preasymptotic and extended
asymptotic domains, the selected γe-conditions of Table
II, and each experimental temperature range, are illus-
trated as in Fig. 2.

The asymptotic behavior of the quantity
κ∗

T

(∆τ∗)−γ es-

timated from the crossover function [(black) curve MR]
is given in Figure 7a. Such a presentation magnifies the
role of the theoretical γ-value on the determination of
the leading amplitude Γ+close to Tc (given by an hor-
izontal asymptotic limit for ∆τ∗ → 0). Correlatively,
at large values of ∆τ∗, the increasing contribution of
the confluent corrections is well demonstrated by the de-
creasing γe,pV T -values, here given by the direction of each
point-segment closely tangent to the MR curve (see Ta-
ble VI). Only the published experimental data points

Figure 7: Fitting results of xenon isothermal compressibility
κ∗

T , as a function of ∆τ∗(lower horizontal axis) or correla-
tion lengths (upper horizontal axes), by using Eq. (23) with

xenon parameters of Eq. (40); (a)
κ∗

T

(∆τ∗)−γ (full black line:

calculated confluent correction from the crossover function);
(b) Residuals R% (κ∗

T )MR (expressed in %), for all the ex-
perimental data and fitting results selected in this work from
reference to the theoretical estimation by the crossover func-
tion; (c) Same as Fig. 4(b), calculated ϑL [line MR: using the
scale dilatation method; line 1: from Eq. (71); line 2: from
Eq. (74); colored point-segments: from Table VI, column 10;
crosses: from Table VII, column 11]; All the inserted labels
and symbols are identical to the ones of the previous figures
(see text).
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[(pink) small circles] and fitting result [GC4 (pink) line]
of Güttinger and Cannell’s measurements are reported in
this Fig. 7(a).

The residualR%(κ∗T )MR = 100
[

κ∗
T

κ∗
T,MR

− 1
]

, expressed

in %, for all the selected data, are reported in part
(b). The accurate (∼ ±3%) theoretical representation
of pV T data of Habgood and Schneider and light scat-
tering data of Güttinger and Cannell confirms that the
extended asymptotic domain is well such that ∆τ∗ .
LXe

EAD ∼ 0.02− 0.03, which well corresponds to the range

ℓ∗ = ξ
αc

& 2 − 3 of accurate theoretical representation of
the master singular behavior of the correlation length, as
previously observed.

In Figs 7(a) and (b), a significant difference occurs in
the case of the actual mean field like behavior represented
by the segment γpV T = γMF = 1 (see line 5 of Table
II). In the temperature range 90 K . ∆T . 300 K, (i.e.,
3 × 10−1 . ∆τ∗ . 1), the effective classical-to-critical
crossover for xenon is not accounted for by the mean
crossover function. In addition, each part (a) and (b) also
contains the relative position of a grey segment (labeled
vdW) which corresponds to the mean-field-like equation
κ∗T ∆τ∗ = 1

6 , where xenon is assimilated to a van der

Waals fluid (i.e. with γe,vdW = 1 and Γ+
e,vdW = 1

6 ).
That clearly illustrates the failure of the van der Waals
equation of state close to the liquid-gas critical point.

Figure 7(c) is similar to Figure 4(b). Now we have
added the point-segment representation of the values of
ϑL,pV T calculated using Eq. (74) and the fitting results
of the pV T measurements with Eq. (A11), as reported in
Table V. We will return below to the discussion of these
pV T results which confirm that the xenon crossover is
characterized by a unique value [Eq. (61)] of the scale

factor ϑ (Xe) over the temperature range where ξ
αc

&
2 − 3.

3. Data calibration and related discussion to the
uniqueness of the crossover parameter

As already evidenced in the seventy’s (author?) [42],
fitting the experimental singular behavior using Wegner-
like expansion with a limited number of terms generates
large uncertainty in the amplitude determination, due
to the low convergence of this expansion. Examining
more carefully the isothermal compressibility data ob-
tained from interferometry (author?) [55], light scat-
tering (author?) [21], and pV T (author?) [44, 46, 47]
measurements, it was noted by one of us (author?) [12],
that a restricted three-term Wegner-like expansion, with
fixed exponent values γI = 1.24±0.01 and ∆I = 1

2±0.05,
can provide satisfactory representation of the κT singular
behavior in the range T −Tc . 13 K (see for example the
curve G3 in Figure 7b) which corresponds to Eq. (43)
with Γ+ = 0.0577, a+

1χ = a+
χ = 1.55, a+

2χ = −1.3, and

a+
3χ = 0; see Table IV, last line). It was conjointly shown

that Γ+, a+
χ , and a+

2χ can also be calculated using three

calibrated values at three selected temperature distances
(in logarithmic scale, see below). The correlative main
results were the estimation of min (a+

χ,min ≃ 0.6) and

max (a+
χ,max ≃ 1.8) values of a+

χ and the evaluation of
the correlated error-bars which can then be controlled
by a careful analysis of the residuals.

We recall the main advantages of such a three points
calibration approach, first by examining the estimation
of the leading amplitude and its attached uncertainty for
the closest point to the critical point.

a. Calibration of the leading amplitude the closest to the

critical point

At T − Tc = 1 mK (∆τ∗C1 = 3.45137 × 10−6), which
corresponds to the “lowest” temperature distance
accessible by interferometry experiments of Hocken
and Moldover (HM) (author?) [55], the standard
dimensionless value of the isothermal compressibility
was defined such that κ∗T,1 (∆τ∗C1) = Γ+

I (∆τ∗C1)
−γI =

Γ+
MR6max

(∆τ∗C1)
−γMR6max = (3.415± 0.035) × 105

with
{

γI = 1.240; Γ+
I = 0.0574± 0.0006

}

and
{

γMR6max
= 1.24194; Γ+

MR6max
= 0.0563± 0.0006

}

.

These initial values of the leading amplitude Γ+ were
re-evaluated accounting for the small difference with
γ = 1.2395935. Similar re-evaluation was conjointly
made for the leading amplitudes ξ+ (of the dimensionless
correlation length ξ∗) and B (of the dimensionless order
parameter density ∆ρ∗LV ) due to the small differences in
ν and β values. The updated values of the corresponding
leading amplitudes (such as Γ+ (Xe) = 0.05782± 0.0006)
were then used to optimize the new central values of the
corresponding master amplitudes (such as Z+

χ = 0.119
reported here), using Eqs. (A6), corresponding values
of the critical parameters [see Eq. (A2)], and the
updated value of the universal amplitude combina-

tion (ξ+)
−d Γ+

B2 =
(

Z+
ξ

)−d Z+
χ

Z2
M

=
(

Z+
ξ

)d
1

Z
+
χ Z

2
M

=
(

R+
ξ

)−d

R+
C = 2.92638 (with R+

ξ = 0.2696967 and

R+
C = 0.057406 (author?) [7]). Finally, selecting

Z+
χ = 0.119 and ZM = 0.468 (author?) [73] as “cen-

tral” values for two independent master amplitudes, any
other (master and physical) leading amplitude can be
calculated with the numerical precison of the massive
renormalization scheme. For example, the number of
digits in the quoted value Z+

ξ = 0.570481 is similar to

the numerical precision of Z+
ξ = 2.121008 (see Table

Ia), and more generally, data of Eqs. (A6) to (A11) are
obtained according to this scheme.

Considering now the γ differences between the theo-
retical estimations, we can admit that the mean value
γ = 1.2395935 (see Table Ib) is on the range γlow ≃
1.235 ≤ γ ≤ γhigh ≃ 1.242. The max value γhigh ≃ 1.242
was used in our initial fitting of the GC data (see line
2 of Table III), while the min value γlow ≃ 1.235 was
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recently estimated from the minimal subtraction scheme
(author?) [29]. The correlative effect on the Γ+ value is
of the order of ±3%, as shown by the curves (labeled
γhigh and γlow in Fig. 7c) related to the power law

κ∗high,low = Γ+
high,low (∆τ∗)

−γup,down , with Γ+
high = 0.056

and Γ+
low = 0.062, respectively. This theoretical uncer-

tainty level appears then comparable to the experimen-
tal one (∼±5%), when the γ and Γ+ values are obtained
from interferometry measurements close to the critical
point. For example, the initial “free” values are γ = 1.23
and Γ+ = 0.062 ± 0.006 (author?) [55], while a subse-
quent analysis made for fixed γ = 1.24 gives Γ+ = 0.058±
0.002 (author?) [56]. As a result, we note that the cal-
ibrated value of κ∗T,1 (∆τ∗C1) = (3.415 ± 0.035) × 105 re-
mains well representative of the theoretical analyses of
the interferometry measurements at this closest temper-
ature distance to Tc. However, we also recall that the
uncertainty associated to the experimental determination
of the critical temperature (roughly estimated of the or-
der of ±0.5 mK) cannot be accounted for in the above
analyses of the interferometry measurements.

To partly conclude, when the exponent γ is fixed
to its Ising-like theoretical value γ = 1.2395935, the
above standard value of the isothermal compressibility
at T − Tc = 1 mK is a realistic asymptotic constraint to
fix the “central” value Γ+ (Xe) = 0.05782(±0.0006) of
the leading amplitude, before to analyse the isothermal
compressibility data over larger temperature distances to
the (known) critical temperature with the objective to
estimate the contribution of the confluent corrections to
scaling in the xenon case.

b. Calibration of the first amplitude of the critical confluent

correction to scaling beyond the Ising-like preasymptotic

domain

As indicated above, by using two other points of cali-
bration properly selected to cover the temperature range
of optical and pV T measurements, provides an ana-
lytical estimation of a+

χ ≡ a+
1χ and a+

2χ in Eq. (43)

[with γ, ∆ fixed, and a+
3χ = 0]. Indeed, from the cali-

brated values
{

∆τ∗C2;κ
∗
T,2

}

and
{

∆τ∗C3;κ
∗
T,3

}

, we can de-

fine the pairs

{

∆τ∗2 =
∆τ∗

C3

R32
;Y2 =

κ∗
T,2

Γ+(∆τ∗
C2)

−γ − 1

}

and
{

∆τ∗C3;Y3 =
κ∗

T,3

Γ+(∆τ∗
C3)

−γ − 1

}

. We obtain

a+
χ ≡ a+

1χ =
Y2 (R32)

2∆ − Y3

∆τ∗C3

[

(R32)
∆ − 1

] (A12)

and

a+
2χ =

Y3 − Y2 (R32)
2∆

(∆τ∗C2∆τ
∗
C3)

∆
[

(R32)
∆ − 1

] (A13)

Equations (A12) and (A13) have convenient analytic
forms to check the influence of the selected values for

the exponents and calibrated points (author?) [12].
For example, we can choose the calibrated points at
T2 − Tc = 1 K (∆τ∗C2 = 3.45137 × 10−3) with κT,2 =

(1.195 ± 0.012) × 10−5 Pa−1 (κ∗T,2 = 69.8 ± 0.7), and

T3 − Tc = 13.41 K (∆τ∗C3 = 4.62829× 10−2) with κT,3 =

(5.55 ± 0.08)×10−7 Pa−1 (κ∗T,3 = 3.24±0.04) (see Table

V). Using the updated theoretical values γ = 1.2395935,
∆ = 0.50189 (see Table Ib), Γ+ (Xe) = 0.0578204, and
the two calibrated pairs {R32 = 13.41;Y2 = 0.071051}
and

{

∆τ∗C3 = 4.62829 10−2;Y3 = 0.242478
}

, Eq. (A12)

gives a+
χ ≡ a+

1χ = 1.25557, while Eq. (A13) gives

a+
2χ = −0.569934. The small difference with the value

a+
χ = 1.22961 calculated using Eq. (39), is due to the

similar “constrained” adjustment of the first amplitude
a+

M of the order parameter density (not reported here),

which maintains the universal value
a
+
M

a
+
χ

= 0.9 of the

related amplitude ratio (author?) [9]. In such an opti-
mized result from two properties, the best central values
of the master confluent amplitudes are Z1,+

χ = 0.555 and

Z1
M = 0.4995, respectively. However, as previously indi-

cated, a true error-bar of the order of ±35% (at least) can
be attached to these confluent amplitudes in the absence
of data calibration closer to Tc.

c. The uniqueness of the crossover parameter and the

effective extension of the critical domain beyond the

Ising-like preasymptotic domain

Since the asymptotic amplitude Γ+ is now fixed, the ef-
fective exponent-amplitude pair γe,pV T ; Γ+

e,pV T reported
in columns 2 and 3 of Table VI, can be used to calcu-
late the value of a crossover parameter ϑL,pV T at each
“local” temperature distance

〈

∆τ∗pV T

〉

, using the scale

transformation of Eq. (73), and the theoretical values
of Z+

χ and Z+
χ,e (γe,pV T ) given in Tables I and II. The

corresponding values of ϑL,pV T |γpV T =cte
are given in last

column of Table VI. Each pV T result for ϑL,pV T |γpV T

as a function of ∆τ∗, has then been illustrated in Fig. 7
(c) as a point-segment form. The “local” value

〈

∆τ∗pV T

〉

is close to the calculated one ∆τ∗th (see columns 6 and
7 in Table VI). In addition, the %-residuals RΓ+

e,th
=

100

(

Γ+
e,(γe,pV T )

Γ+
e,th

(γe,pV T )
− 1

)

between the effective amplitudes

compare favorably with the estimated experimental pre-
cision (see column 8 in Table VI). Therefore, at large
temperature distance from Tc, we obtain a significant
confirmation that the values of the effective crossover pa-
rameter are close to the one of the asymptotic scale factor
ϑ = 0.021069, and can then be considered as independent
of ∆τ∗ in the Ising-like extended asymptotic domain.

Using in a similar manner the fitting results given
in Table VII, we have obtained the corresponding val-
ues of ϑL given in column 11. However, we have now
a better control of the related uncertainty, thanks to
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the high precision of the ligth scattering experiment of
Güttinger and Cannell. As a matter of fact, admit-
ting in a first approach that the values of Γ+,

〈

∆τ∗γe

〉

,

Z+
χ and Z+

χ,e (γe) are known with zero uncertainty, while

Γ+
e = Γ+

e,th (1 + δΓ), with δΓ ∼ 1−2%, it is easy to show

from Eq. (74) and ϑ =

(

1
Z
+
χ Z

+
χ,e

× Γ+
e,th

Γ+

)
1

γ−γe

that

ϑ =
θL

(1 + δΓ)
1

γ−γe

≃ θL
(

1 + δΓ
γ−γe

) (A14)

Looking then to the percent deviation reported in Fig.
6, we can observe that the true tangent (pink) line
of slope γe = 1.20588 has an amplitude ≃ 1% lower
than the amplitude of the effective power law κ∗T,GCe

=

0.07551466 (∆τ∗)
−1.205879

used as a reference (see also
Table VII column 9, where the calculated value of the
residual is −1% in line #GCe) . From Eq. (A14) with
δΓ = 0.01 and ϑL ≃ 0.02851 (see line #GCe, colum
11, Table VII), we obtain ϑ ≃ 0.021988 which is in ex-
cellent agreement (+4.38%) with our initial estimation
ϑ ≃ 0.21069 from the scale dilatation method. As previ-
ously underlined, the precise description by a local expo-
nent value defining the slope of the tangent line to the sin-
gular behavior of the isothermal compressibility of xenon
at a well-defined temperature distance to Tc, is one of the
major points of interest of the Güttinger and Cannell’s
results to validate the one-parameter crossover modelling
predicted by the massive renormalization scheme. In
a similar manner, using Eq. (A14) with δΓ and ϑL
given in lines #pV T , CB(c), SGB(c) of Table VII, we
obtain ϑ ≃ 0.02160, 0.021232, 0.021136, and the corre-
sponding deviations+2.52%, 0.77%, 0.32%), respectively
for the three other fitting results reported in Table VII.

Obviously, similar effect is produced by the uncertainty
level attached to the determination of the leading ampli-
tude Γ+, justifying oncemore its independent estimation
from a “standard” value of the isothermal compressibil-
ity at a temperature distance well-inside the Ising-like
preasymptotic domain.

Henceforth, the importance of the scaling form of Eq.
(74) in the determination of a unique asymptotic value
for the scale factor ϑ is clearly established. Moreover,

Eq. (74) is valid in the range ξ
αc

& 2.5 − 3, or ∆τ∗ .

LXe
EAD ≃ 0.02 in xenon case.

One complementary remark can be formulated.

Outside the Ising-like extended asymptotic domain,
i.e., typically for ∆τ∗ ≥ 10−1 in xenon case, it is well-
established that the Ising-like universality is not valid.
For example, increasing the temperature distance to Tc

on the pV T data analyzes, we are able to observe the con-
tinuous decreasing behavior of γe,pV T until a value close
to mean-field value γe,pV T ≈ γMF = 1 when ∆τ∗ / 1 (see
Table VI). That unambiguously discriminates a sharp
domain, i.e. typically 0.3 ≤ ∆τ∗ ≤ 0.5, where γe,pV T

crosses the “mean” crossover value γ 1
2

= γ+γMF

2 ≈ 1.12

(as initially reported in Ref. (author?) [22]). For xenon,
this classical-to-critical crossover “crossing” is expected
close to ξ

αc
. 1, that means that the correlation length is

of the same order of magnitude or lower than the short-
range molecular interaction. In Table VI, the non-defined
value ϑL,pV T |γpV T =1 (∼ ∞), corroborates that the mean-

field behavior predicted by the theoretical crossover func-
tion with ϑ = 0.0210, is not compatible with the pV T ex-
perimental result Γ+

e,γMF
≃ 0.11. Such a typical limit of

the mean-field-like range (see upper part of Figure 3) is
well-illustrated by the corresponding transformation be-
tween the opened squares represented in Figure 3, which
cannot account for the “experimental” location of the
opened circle when γe = γMF = 1.

Finally, Figure 7 (c) confirms that the effective ex-
tended critical domain of xenon, corresponding to the
condition ξ

αc
& 3 discussed in a detailed manner in

Ref. (author?) [10], is well characterized by a single
crossover parameter whose value at the largest temper-
ature range is comparable to the one of the asymptotic
scale factor estimated from the scale dilatation method.
We can conclude that singular behavior of any property
in this extended critical domain of xenon can be calcu-
lated in conformity with the universal features predicted
by the massive renormalization scheme, only using the
required four critical coordinates to define the position
and tangent surface of its actual liquid-gas critical point
on the p, vp̄, T phase surface, as expected by one of us
two decades ago.
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