N

N
N

HAL

open science

Behavioral Fault Simulation for VHDL Description
using DEVS Formalism

Laurent Capocchi, Fabrice Bernardi, Paul-Antoine Bisgambiglia, Dominique

Federici

» To cite this version:

Laurent Capocchi, Fabrice Bernardi, Paul-Antoine Bisgambiglia, Dominique Federici.
Fault Simulation for VHDL Description using DEVS Formalism. IEEE Pacific Rim Dependable Com-

puting International Conference (PRDC), Aug 2004, Papeete, France. hal-00165465

HAL Id: hal-00165465
https://hal.science/hal-00165465
Submitted on 26 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Behavioral

https://hal.science/hal-00165465
https://hal.archives-ouvertes.fr

Behavioral Fault Simulation for VHDL Description using
DEVS Formalism

Laurent Capocchi, Dominique Federici, Fabrice Bernardi and Paul Bisgambiglia
University of Corsica, SPE Laboratory, UMR CNRS 6134
20250 Corte, France
{capocchi, federici, bernardi, bisgambii@univ-corse.fr

1. INTRODUCTION

Due to the ever-increasing complexity of VLSI circuits, the
use of VHDL behavioral descriptions (see [1] for more expla-
nations) in the fields of test generation and fault simulation
becomes advised. Test generation tools research has been
oriented for the last fifteen years towards generation tools
for circuits modeled at a high abstraction level according to
a behavioral view as shown by (2, 3, 4, 5, 6, 7, §].

The aim of the test pattern generation process is to define
patterns to apply on primary inputs. This is used to test
eventual physical defects, eg. the defects can be detected
only if they induce an irregular behavior called a fault. The
fault effect or error is measured by a difference between the
state of the fault-free model (reference model) and the state
of the faulty model (model in which a fault hypothesis is in-
jected). The fault simulation process consists of simulating
a circuit in the presence of faults, and comparing the results
of fault simulation with the fault free simulation of the same
circuit with the same input test pattern.

J. Lee and al. defined in [9] a fault simulator for behavioral
descriptions; the inconvenient is that the circuit description
is not purely behavioral. In their approach described in [10],
P.C. Ward and J.R. Armstrong proposed a Behavioral Fault
Simulation (BFS) method based on simulation of behavioral
VHDL descriptions. However this fault simulation process
involves as many VHDL simulations as number of fault hy-
pothesis.

Thus, one of the main problems is that today the tools for
test generation are unable to quickly and easily create and
simulate behavioral fault models directly from the VHDL
descriptions. A way to solve this problem is to encapsulate
these descriptions in easily simulable and evolutive models
using DEVS formalism [11] and to define a Behavioral Fault
Simulator based on fast fault list propagation technique al-
lowing the reduction of the number of VHDL simulation.

2. TRANSFORMATION OF VHDL DESCRIP-

TIONS INTO DEVS MODELS

Introduced by B.P. Zeigler in the early 70’s, DEVS is a set-
theoretic formalism that provides a mean of modeling dis-
crete event systems in a hierarchical and modular way [11].
Using this formalism, we can perform more easy modeling in
decomposing a large system into smaller component models
with coupling specifications between them. DEVS defines
two kinds of models: atomic models and coupled models.
An atomic model is a basic model with specifications for
the dynamics of the model. It describes the behavior of a
component, which is indivisible, in a timed state transition
level. Coupled models tell how to couple several component
models together to form a new model. This kind of model
can be employed as a component in a larger coupled model,
thus giving rise to the construction of complex models in a
hierarchical fashion.

Our choice for DEVS has been motivated by three main
points. First, digital systems can be represented by dis-
crete event systems, and DEVS is the leading formalism in
discrete event modeling and simulation. Second, a great
advantage of DEVS is that it separates the modeling and
simulation parts in a very efficient way, since the simulator
is built directly from the model. Last, An important feature
of DEVS is the possibility to define, in addition to the model
scheme, the way the various components interact in the time
evolution. We can easily add a desired faulty behavior to
our models by changing the transition and output functions
and by adding a new fault transition function.

Our basic approach for the transformation is to associate
each VHDL sequential statements with a DEVS atomic model,
and each process with a DEVS coupled model. We defined a
library composed by four basic atomic models. The first one
is the ”allocation model” kind that represents the VHDL al-
location instructions. We can note that this model is able
to handle time delayed allocations. The second is the ”junc-
tion model” kind that represents how two atomic models are
linked together or classical control instructions (end if, end
case). The third is the “conditional model” kind that repre-
sents the classical control instructions (if, case, for,...). Fi-
nally, the last one is the ”parallel model” kind that manages
the parallel execution of processes. All these basic models
can be easily personalized and combined in order to create
complex behavioral models.

3. BEHAVIORAL FAULT SIMULATION US-
ING FAULT LIST PROPAGATION TECH-
NIQUE

A fault modeling scheme allows to derive a set of fault hy-
pothesis on the previously described model. Fault hypoth-
esis are defined according to the elements involved in the
model of the circuit under test. In order to have a behav-
ioral fault model for which some measures of confidence are
provided, we select fault hypothesis according to the fault
model proposed in [12]. The selected fault hypothesis are
classified into the following three groups:

e F'1: Stuck-at of a signal or variable object.

e ['2: Faults on conditional model. F2t (resp. F2f) : the
true branch (resp. the false branch) of the conditional
model is always selected whatever the resulting value
implies on the end reporting value.

e '3 : Jump of statement instruction.

The first step for BFS is performed by the parser and con-
sists in determining the global fault list. In the second step,
we have to choose the test sequence which will be applied
at the input of the circuit under test. It is obtained using
the pseudo-random generator. The third step is the fault
simulation. The free simulation is performed concurrently
with the fault simulation thanks to DEVS transformation of
the circuit under test.

The fault propagation is achieved using fault lists that are
propagated through the DEVS model associated with the
VHDL description under test. The propagation is performed
according to the rules detailled below:

e Principle 1 - Generalities : The fault lists propagation
is driven by the architecture of DEVS model.

Principle 2 - Assignment : During the simulation with
fault list propagation, when an assignment model (D1 <
E(D;) with E is a function with VHDL operators) is
found, the fault list associated to D; is determined us-
ing the list associated to D; representing the locally
observable faults on D;, the F3 type fault on D; and
the D; list of faults calculated at the last cycle.

Principle 3 - Selection: In the case of a selection model,
the fault free path and the faulty path are determined.
We put in no-safe ports all the faults involving a faulty
path. The fault lists are propagated along the fault
free path according to the principles 1, 2 and 3.

4. EXPERIMENTS AND RESULTS

The proposed BF'S approach have been implemented in python

and evaluated on behavioral VHDL descriptions designs of
the ITC’99 benchmarks [13].

Table 1 shows the following information : the number of
behavioral faults, the length of the test sequence obtained
by the pseudo-random generator, the detected faults and the
achieved behavioral fault coverage.

Faults | T.S length | Detected Faults | Coverage (%)
BO1 79 54 73 92.40
B02 48 56 41 85.45
B03 134 81 125 93.28
B04 105 72 95 90.47
B05 145 102 131 90.34
B06 95 72 82 86.31
BO7 76 63 63 82.89
B08 64 70 53 82.81
B09 68 57 60 88.23
B10 163 110 150 92.02

Table 1: Fault Simulation Results for ITC’99

5. REFERENCES
[1] P. Ashenden, “The vhdl-cookbook,” tech. rep., 1990.

[2] F. Ferrandi, F. Fummi, and D. Sciuto, “Implicit test
generation for behavioral VHDL models,”
pp. 587-596.

[3] F. Corno, P. Prinetto, and M. S. Reorda, “Testability
analysis and ATPG on behavioral RT-level VHDL,” in
International Test Conference, pp. 753-759, 1997.

[4] F. Ferrandi et al., “Testing Core-Based Systems: A
Symbolic Methodology,” IEEFE Design € Test of
Computers, vol. 14, no. 4, pp. 69-77, 1997.

[5] C. C. M.D. Oneill, D.D. Jani and J. Armstrong, “Btg
: a behavioral test generator,” in 9th Computer
Hardware Description Languages and their
Application, pp. 347-361, 1990.

[6] F. Norrod, “An automatic test generation algorithm
for hardware description language,” in 26th Design
Automation Conference, pp. 76-85, 1989.

[7] H. V. H.D. Hummer and H. Toepfer, “Functional tests
for hardware derived from vhdl description,” in CHDL
91, pp. 433-445, 1991.

[8] J. S. A.L. Courbis and N. Giambiasi, “Automatic test
pattern generation for digital circuits,” in Ist IEEE
Asian Symposium, Hiroshima, pp. 112-118, 1992.

[9] J. Lee and al., “Architectural level fault simulation
using symbolic data,” in European Design Automation
Conf. (EDAC), 1993.

[10] P. Ward and J. Armstrong, “Behavioral fault
simulation in vhdl,” in Proc. Design Automation
Conference, pp. 586-593, 1990.

[11] B. Zeigler, H. Praehofer, and T. Kim, Theory of the
Modeling and Simulation, 2nde Edition. Academic
Press, 2000.

[12] S. Ghosh and T. Chakraborty, “On behavior fault
modeling for digital designs,” in Journal of Electronic
Testing : Theory and Applications, pp. 135—-151, 1991.

[13] S. Davidson, “Itc?99 benchmark circuits, preliminary
results,” in IEEE ITC 99, p. 1125, 1999.

