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Abstract — We propose in this article an approach for
the transformation of VHDL descriptions into DEVS
models for an easy and fast fault simulation. VHDL al-
lows description of the structure of a design, that is how
it is decomposed into sub-designs, and how those designs
are interconnected. The specification of the function of
designs are performed using familiar programming lan-
guage forms. One of the main problems is that today
tools are unable to quickly and easily create and simu-
late fault models directly from the VHDL descriptions.
A way to solve this problem is to encapsulate these de-
scriptions in easily simulable and evolutive models. We
propose to use the DEVS formalism to achieve this en-
capsulation.
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1 Introduction

Tests are a very important part in the digital systems
design process. Fault modeling is one part of the tests
that can be performed. We call "fault” the detection
of an incorrect step, process or data definition in the
design process [1, 2]. A fault model identifies targets for
testing and makes analysis possible.

VHDL is an hardware description language widely
used in the digital systems industry [3]. It allows de-
scription of the structure of a design, that is how it
is decomposed into sub-designs, and how those designs
are interconnected. The specification of the function of
designs are performed using familiar programming lan-
guage forms. One of the main problems is that today
tools are unable to quickly and easily create and simu-
late fault models directly from the VHDL descriptions.
A way to solve this problem is to encapsulate these de-
scriptions in easily simulable and evolutive models. We
propose to use the DEVS formalism to achieve this en-
capsulation.

Introduced by B.P. Zeigler in the early 70’s, DEVS
is a set-theoretic formalism that provides a mean of
modeling discrete event systems in a hierarchical and
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modular way [4]. Using this formalism, we can per-
form more easy modeling in decomposing a large system
into smaller component models with coupling specifica-
tions between them. DEVS defines two kinds of models:
atomic models and coupled models. An atomic model is
a basic model with specifications for the dynamics of the
model. It describes the behavior of a component, which
is indivisible, in a timed state transition level. Coupled
models tell how to couple several component models to-
gether to form a new model. This kind of model can
be employed as a component in a larger coupled model,
thus giving rise to the construction of complex models
in a hierarchical fashion.

Our choice for DEVS has been motivated by three
main points. First, digital systems can be represented
by discrete event systems, and DEVS is the leading for-
malism in discrete event modeling and simulation. Sec-
ond, a great advantage of DEVS is that it separates the
modeling and simulation parts in a very efficient way,
since the simulator is built directly from the model.
Last, DEVS uses a modular approach that allows an
easy introduction of the fault models [5].

In a first section, we describe the VHDL language,
and the DEVS formalism in a second one. The main
part of this article is the third section. We propose a
modeling approach for the VHDL descriptions based on
the definition of four basic DEVS atomic models. Fi-
nally, we propose an example of modeling and simula-
tion and we conclude this article.

2 VHDL Fault Modeling

VHDL allows to describe a digital structure following
two types of descriptions: the structural description and
the behavioural description. In the structural descrip-
tion, the design is described as a module with inputs
and/or outputs. The electrical values on the outputs are
some function of the values on the input. One way to
represent the function of the module is to describe how
it is composed of sub-models. However, in many cases,
it is not appropriate to describe a module structurally.
In the behavioural description, the function is described
without reference to the actual internal structure of the



module. We can find two forms for the behavioural de-
scription: the data flow form or the algorithmic form.
In this paper, we study only this last form, since it has
been demonstrated that any combinatory structure can
be described using sequential statements [6].

A digital system in VHDL consists of a design entity
containing other entities that are then considered com-
ponents of the top-level entity. Each entity is modeled
by an entity declaration and an architecture body. One
can consider the entity declaration as the interface to the
outside world that defines the input and output signals,
while the architecture body contains the description of
the entity and is composed of interconnected entities,
processes and components, all operating concurrently.

entity NAME_OF_ENTITY is
generic (generic_declarations);
port (signal_names: mode type;
signal_names: mode type;
signal_names: mode type);

end [NAME_QOF_ENTITY];

The architecture body specifies how the circuit oper-
ates and how it is implemented. As discussed earlier,
an entity or circuit can be specified in a variety of ways,
such as behavioral, structural (interconnected compo-
nents), or a combination of the above.

architecture arch_name of NAME_OF_ENTITY is
—-- components declarations
-- signal declarations
—- constant declarations
—-- function declarations
—-— procedure declarations
-- type declarations
begin
-— Statements
end architecture_name;

The statements in the body of the architecture make
use of logic operators. Logic operators that are allowed
are: and, or, nand, nor, xor, xnor and not. In addi-
tion, other types of operators including relational, shift,
arithmetic are allowed as well.

The basis for sequential modeling is the process con-
struct. A process statement is the main construct in
behavioral modeling that allows you to use sequential
statements to describe the behavior of a system over
time. The syntax for a process statement is:

[process_label:] process [(sensitivity_list)]
[process_declarations]
begin
list of sequential statements such as:
signal assignments
variable assignments
case statement

exit statement
if statement

loop statement
next statement
null statement
procedure call
wait statement

end process [process_labell;

A process is declared within an architecture and is a
concurrent statement. However, the statements inside
a process are executed sequentially. Like other concur-
rent statements, a process reads and writes signals and
values of the interface (input and output) ports to com-
municate with the rest of the architecture.

3 DEVS Formalism

DEVS formalism introduces two kind of models,
atomic models from which larger ones are built, and
coupled models (also called network of models) that con-
nects those models in a hierarchical fashion [7]. Like in
general systems theory, a DEVS model contains a set, of
states and transition functions that are triggered by the
simulator.

A DEVS atomic model AM is a structure :

AM =< X7 87 Y7 6int7661t7)\7ta >

where:

o X: {(p,v)|(p€ input ports, vé Xp)} is the set of
input ports and values for the reception of external
events,

o Y: {(p,v)|(p€ output ports, v€ Yp)} is the set of
output ports and values for the emission of events,

e S is the set of internal sequential states,

® 0t © S — S is the internal transition function
that will move the system to the next state after
the time returned by the time advance function,

e t,: S — Rt is the time advance function, that will
give the life time of the current state (returns the
time to the next internal transition),

® Jept @ QXX — Sis the external transition function
that will schedule the states changes in reaction to
an input event,

e \: @ xX — §Sisthe output function that will gen-
erate external events just before the internal tran-
sition takes places.

The dynamic interpretation is the following:

e Q= {(s,e)|(s € 85,0 <e<ta(s)} is the total state
set.



e ¢ is the elapsed time since last transition, and s the
partial set of states for the duration of ta(s) if no
external event occur.

® J;n: : the model being in a state s at ti, it will
go into s’ 8" =d;nt(s), if no external events occurs
before ti + ta(s).

® 0..t : when an external event occurs, the model
being in the state s since the elapsed time e goes
in s’ 8" =0eut(,6,2).

— The next state depends on the elapsed time in
the present state.

— At every state change, e is reset to 0.

e ) : the output function is executed before an inter-
nal transition, before emitting an output event the
model remains in a transient state.

e A state with an infinite life time is a passive state
(steady state), else, it is an active state (transient
state). If the state s is passive, the model can evolve
only with an input event occurrence.

The DEVS coupled model CM is a structure :

CM =< X,Y,D,{M, € D}, EIC, EOC,IC >

where:

e X is he set of input ports for the reception of ex-
ternal events,

e Y is the set of output ports for the emission of
external events,

e D is the set of components (coupled or basic mod-
els),

e My is the DEVS model for each 4 € D,

e FIC is the set of input links, that connects the
inputs of the coupled model to one or more of the
inputs of the components that it contains,

e FOC is the set of output links, that connects the
outputs of one or more of the contained components
to the output of the coupled model,

e JC is the set of internal links, that connects the
output ports of the components to the input ports
of the components in the coupled models.

In a coupled model, an output port from a model M, €
D can be connected to the input of another My € D
but cannot be connected directly to itself.

4 VHDL Descriptions
Transformations

Our basic approach for the transformation is to as-
sociate each VHDL instruction with a DEVS atomic
model, and each process with a DEVS coupled model.
We defined four basic atomic models kinds. The first
one is the ”allocation model” kind that represents the
VHDL allocation instructions. We can note that this
model is able to handle time delayed allocations. The
second is the ” junction model” kind that represents how
two atomic models are linked together. The third is the
“conditional model” kind that represents the classical
control instructions (if, case, for,...). Finally, the last
one is the ”parallel model” kind that manages the par-
allel execution of processes. All these basic models can
be easily personalized and combined in order to create
complex models.

4.1 The Allocation Model

The allocation model (Figure 1) is used to describe
any type of allocation that does not take into account
the notion of “delay”.

ALLOCATION
out
AM

¢ In

Figure 1: The Allocation Model
The associate atomic model is the following:

AM(alloc) =< X, Sa Y, 58£Et7 5int7 )\a ta >
where:

X ={CIn,v)|lveV}
Y ={(0ut”,v)lv eV}
S = {"active” " passive” } x Ry x {allocation} |J0

dint(phase, o, task) = (" passive”, 0o, ()

dext(phase, o, task, e, (In, message)) =
("active” 0, allocation), if phase =" passive”

A(phase, o,task) = (Out, message)
ta(phase, o, task) = o

Figure 2 presents the DEVS trajectories of an alloca-
tion model.

When an event occurs through the input port, the
component becomes "active” using the d..; function.
Then, the main task to achieve is to evaluate the assign-
ment statement and to poke the output message using
the A function.

4.2 The Junction Model

The junction model (Figure 3) is used to describe se-
quential instructions like “end if, end elsif, end case”.
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Figure 2: Allocation model trajectories
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Figure 3: The Junction Model

The associate atomic model is the following;:

AM(junction) =< X, Sa Y, 58£Et7 5int7 )\a ta >
where:

X ={("Ing”,v), -, ("Inn",v)lv eV}
Y ={0ut”,v)lv eV}

S = {"active”,” passive” } x R x
{77[,'?/077’ . 7”InN”} x V

dint(phase, o, input_port) = (" passive” , 0o, input_port)

Oext(phase, o, input_port, e, (p,v))

if (phase = "passive”) and (p € {Ing,---,Inn})
= (Pactive”,0,p,v)

else
= ("passive” , 0o, input port)

A(phase, o, input_port)
if (phase = "active”) and (Ing, message)
= (Out, Ing)

if (phase = "active”) and (Iny, message)
= (Out, Iny)

ta(phase, o, input_port) = o

If the component is in the "passive” phase and if an
event occurs on an input port, the phase becomes ”ac-

tive” using the d.;+ function and the input port is se-
lected. Then the A function is actived and returns the
selected input message.

4.3 The Conditional Model

The conditional model (Figure 4)
control structures like “if..then..else,
with..select..when, case”.

occur in
when. .else,

Out1]
CONDITIONAL 3

—=tIn outdq———~

AM

OutNg——

Figure 4: The Conditional Model

It is described by the following atomic model:
AM(conditional) =< X, 8,Y, bcat, Oint, A ta >

where

X ={CIn,v)veV}
Y = {(”Outo”,v); SRR <”OUtN”,U)|’l} c V}

S = {"active”,”passive” } x Rf x {"Swe”,-++,” Swn"}

dint(phase, o, Sw) = ("passive”, 00, Sw)
Oext(phase, o, Sw, e, (In, message))

if (phase = "passive”) and (Sw =" Swy”)
= (Pactive”,0,” Swy”)

phase =" passive”) and (Sw =" Swn”)
("active”,0,” Swy”)
(" passive” , 00, Sw)

if

other

Aphase, o, Sw)
if (phase = "active”) and (Sw =" Swy”)
= (Outy, message)

if (phase ="active”) and (Sw =" Swy”)
= (Outy, message)

ta(phase, o, Sw) = o

When an event occurs through the input port, the
component becomes "active” using the d.,; function.
Then, the main task to achieve is to evaluate the con-
ditional statement and to poke the output message into
the selected port using the A function. We can note
that it exists as many output ports than values into the
conditional statement.
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Figure 5: Conditional model trajectories

4.4 The Parallel Model

The parallel model (Figure 6) is used in order to syn-
chronize the parallel execution of the processes. It is
also used in order to manage the symbolic time.

[ —

inl 12 I3 InN

PARALLEL AM

Outl  OutM OutFeedback 1 OutFeedback N

Figure 6: The Parallel Model

This model is described by the following atomic
model:

AM(parallel) =< X, S7 Y, 6€LEt7 éintu A ta >
where

X ={CIny",v), -, Iny",v)lve V}

Y = {("OutFeedbacky”,v),- - -, (" Out Feedbackn” ,v)|
v e VIU{("Outy”,v),---,("Outp”,v)|v € V}

S = {"active”,"passive” } x R x R
x{"physique”,” symbolique” } x {" P0",” P1”,...}

dint(phase, o, ¢, status, process)
if phase =7 active”

= ("passive”, 00, activeprocesses,” physical” , null)
else

= (phase, 00, ¢,” physical” , null)

dext(phase, o, ¢, status, process, e, (p,v))

if (¢=0) and (process! = |])

= (Pactive” 0, length(process), status, process)
if (¢ =0) and (process = |])

= ("passive”, 0, n_output_ports — 1, status, process)
if (cl=0)

= ("passive”, 00, ¢, status, process)

Aphase, o, ¢, status, process)
if phase =" active”

= {(OutFeedbacky, msg), - - -, (OutFeedbacky, msg)}
else

= {(Outgy, mesg), - -, (Outprr,mesg)}

ta(phase, o, ¢, status, process) = o

In this model, we add a new state variable called ”¢”
(for ”counter”) that permits to count the number of ac-
tive processes during a VHDL delta period. This vari-
able is reduced each time a new message occurs dur-
ing an active phase. The state variable ”process” is a
list defining the active processes. It is used in the A
function in order to activate the feedback output ports
toward the processes. This list is built in the external
transition function by testing the sensitive signal sta-
tionarity. Finally, the "status” variable allows to dis-
tinguish between the physical (with a VHDL physical
simulation time) or symbolical (with a VHDL symboli-
cal delta time) modes.

5 Experiments and Results

As an example, we present the modeling of a 8-bit
register. This register is composed by three processes,
each of them defining a ”Wait” instruction. We chose
to present this example since it shows the parallelism
notion.

The VHDL description is the following code:

entity Register is
port(DI: in BIT_VECTOR(1 to 8);
STRB: in BIT; DS1: in BIT;
NDS2: in BIT;
DO: out BIT_VECTOR(1 to 8));
end Register;
Architecture behavior of Register is
signal reg : bit_vector 1 to 8
signal enbld : bit;

strobe:
begin
if (STRB = ’1’) then
reg <= DI;
endif;
end process;
enable: process(DS1,NDS2)
begin
enlbd <= DS1 and not NDS2;
end process;
output: process(reg,enbld)
begin

process (STRB)
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Figure 7: Modeling of a 8-bit Register

if (enbld = ’1’) then

DO <= reg;
else DO <= 11111111
endif;

end process;
end behavior;

We can see in this code the three processes ("strobe”,
”enable” and ”output”).

The first process is modeled using three atomic
models: a conditional model for the ”if” statement
(CMO), an allocation model for the assignment state-
ment (AMO) and a junction model for the "endif” state-
ment (JMO).

The second process is modeled using only one alloca-
tion model (AM1) since it defines only one instruction.

Finally, the third process is modeled using four atomic
models: a conditional model (CM1) for the ”if” state-
ment, two allocation models (AM2 and AM3) and a
junction model (JM1) for the "endif” statement.

At the highest level, the coupled model associated
with the register can be described in the following way:

MCregistery =< X, Y, D, Myld € D,EIC, EOC,IC >
where

X =0
Y = {(OUT,v)jv € V}
D= {MCStT‘Ob67 Mcenableu Mcoutputu MA}
EIC =0
EOC = {(MA, Outl), (MCpegister, OUT)}
IC =
(M A, OutFy), (MCyirope, IN)),
(MA, OutFy), (MConapic, IN)),
((MA7 O’LLth), (MCoutput, IN))
((M Clstrobe, Out), (M A, Iny)),
((MC’enable, Out), (MA, I’I”LQ)),
((MOoutput, Out), (MAA7 Ing))}

Figure 7 presents a representation of the modeled reg-
ister. A circle corresponds to an allocation model, a dia-
mond corresponds to a conditional model and a rectan-
gle to a junction model. We can see a new atomic model
called ”PM” which is a parallel model. The main cou-
pled model representing the register presents one output



CLK DO DI STRB | enbld reg NDS2 | DS1
0 0 00000000 0 1 1 0 0
0+ | 11111111 | 00000000 0 0 1 0 0
1 11111111 | 11100111 1 0 1 0 1
14 | 11111111 | 11100111 1 1 11100111 0 1
2 11100111 | 00001111 1 1 11100111 1 1
2+ | 11100111 | 00001111 1 0 11100111 1 1
3 11111111 | 11110000 0 0 11100111 1 1
4 11111111 | 10101010 0 0 11100111 1 0
6 11111111 | 11111111 1 0 11100111 0 0
6+ | 11111111 | 11111111 1 0 11111111 0 0
8 11111111 | 00000000 0 0 11111111 1 0

Table 1: Simulation Results

port, but no input ports, since, for the needs of the sim-
ulation, we insert a new atomic model acting as an event
generator.

The simulation has been performed using the Python-
DEVS simulator package [8] developped at the McGill
University and the results are showned in Table 1. This
table presents the signal evolutions of the register, for
each physical time step of the simulation. We show also
the internal cycles of the simulation denoted with a ”7+".

We can also point out that the simulation time step
is not regular. For example, we pass directly from time
74” to time ”6”, and from time ”6” to time ”8”. This
is because we can predict the simulation time for the
process activations since we know the input events.

6 Conclusion and Perspectives

This paper was devoted to the presentation of our
approach to transform VHDL descriptions into DEVS
models. We defined four basic kinds of atomic models
and associated a process to a coupled model. We only
presented in this paper the modeling and the simulation
of a 8-bit register, but we performed also a successful
modeling and simulation of the ITC’99 benchmarks. We
have one main perspective for this work: we want to add
a fault model to our descriptions in order to be able
to perform an easy and fast fault simulation [9]. We
would also like to develop an integrated modeling and
simulation environment dedicated to this task.
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