N

N

A DEVS-based Modeling Behavioral Fault Simulator for
RT-Level Digital Circuits
Laurent Capocchi, Fabrice Bernardi, Dominique Federici, Paul-Antoine

Bisgambiglia

» To cite this version:

Laurent Capocchi, Fabrice Bernardi, Dominique Federici, Paul-Antoine Bisgambiglia. A DEVS-based
Modeling Behavioral Fault Simulator for RT-Level Digital Circuits. SCS Summer Computer Simula-
tion Conference (SCSC04), Jul 2004, San Jose, United States. pp.481-486. hal-00165460

HAL Id: hal-00165460
https://hal.science/hal-00165460
Submitted on 26 Jul 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00165460
https://hal.archives-ouvertes.fr

A DEV S-based M odeling and Behavioral Fault Smulator
for RT-Level Digital Circuits

Capocchi Laurent, Bernardi Fabrice, Federici Dominique, Bisgambiglia Paul
University of Corsica
UMR CNRS 6134, Quartier Grossetti
BP 52, 20250 Corte, France
{capocchi, bernardi, federici, bisgambi}@univ-cor se.fr

ABSTRACT

The domain of fault simulation for digital circuits de-
scribed at the RT-level is currently under heavy researches.
The goal of these researches is to define a fast and efficient
methodology for the validation of test patterns very early in
the design flow. We propose in this article a new approach
for the modeling and the simulation of behavioral faults for
digital circuits described in the VHDL language, using a dis-
crete event approach. This methodology, based on the DEVS
formalism, is implemented in a working prototype, and ex-
perimental results show the correctness of our approach and
the efficiency of our behavioral fault simulator called BFS-
DEVS. The fault model used to validate our results is essen-
tially based on the stuck-at fault model since a good simple
stuck-at faults coverage rate implies a good real faults cov-
erage rate.

Keywords: DEVS, fault simulation, testability, modeling,
simulation.

INTRODUCTION

With the increasing complexity of digital circuits, test pat-
terns generation and fault simulation have become very com-
plex steps in the design flow. The use of structural models
described at the gate level implies heavy and costly test en-
vironments, and also very expensive execution times unac-
ceptable for the industry. In order to answer these problems,
there is a need to define new methodologies that can be ap-
plied as soon as the behavioral level and that are also efficient
for the test at the hardware level.

For many years, researches in the simulation domain have
contributed to the development of the RT-level test. These
researches concerns fault models [8, 13, 12], fault simulators
[2, 6] and testability or test generators analysis [7]. The main
problem of the fault simulation is the difficulty to integrate
these classical algorithms inside the HDL simulators. This
problem comes from the complexity and the particular goals
of the HDL languages which are languages for hardware de-

scription. Even if these algorithms are very well known for
many years, commercial tools do not integrate them. Our
approach proposed in this paper shows that, using a VHDL
behavioral description transformation in the DEVS formal-
ism, we can easily integrate these complex simulation algo-
rithms and simulate the digital circuits faulty behavior in an
efficient and concurrent way.

Fault injection in HDL descriptions existing approaches
can be based on the modification of the HDL code [2] or on
the modification of the simulator or its interaction [5]. How-
ever the coding lines that are added during this modification
imply an increase of the simulation time, but also an access
to the source code of the simulator. On the other hand, the
interactive method implies a perfect knowledge of the very
complex simulation process. In our approach, the VHDL
code is transformed but not modified, and no interaction with
the simulation engine is needed thanks to the DEVS abstract
simulator derived directly from the whole model. As de-
scribed in [10], each VHDL instruction is transformed in a
DEVS component able to present an healthy or faulty be-
havior following a given fault model. The interconnection
composed by all the DEVS components is directly simula-
ble using the BFS-DEVS simulator.

We chose the fault model used in [8, 4] based on the
stuck-at fault model allowing a good correlation with the real
faults. We chose also the concurrent fault simulation since
this approach is fast and uses complex simulation algorithms
allowing us to show how easy is the integration inside the
BFS-DEVS methodology.

This article is organized as follows. Section 2 is devoted
to the presentation of the DEVS discrete event modeling and
simulation formalism. Section 3 presents the fault simulator
with the general simulation space architecture, the transfor-
mation of VHDL descriptions into DEVS components net-
work, and the BFS-DEVS simulator. We provide the fault
model and the fault simulation approach in Section 4, some
experimental results in Section 5 and we conclude and give
some perspectives of work in Section 6.

THE DEVS FORMALISM

Since the seventies, some formal works have been di-
rected in order to develop the theoretical basements for the
modeling and simulation of dynamical discrete event sys-
tems [14]. DEVS (Discrete EVent system Specification) has
been introduced as an abstract formalism for the modeling of
discrete event systems, and allows a complete independence
from the simulator using the notion of abstract simulator.

DEVS Modeling

DEVS defines two kinds of models: atomic models and
coupled models. An atomic model is a basic model with
specifications for the dynamics of the model. It describes
the behavior of a component, which is indivisible, in a timed
state transition level. Coupled models tell how to couple
several component models together to form a new model.
This kind of model can be employed as a component in a
larger coupled model, thus giving rise to the construction of
complex models in a hierarchical fashion [15]. As in general
systems theory, a DEVS model contains a set of states and
transition functions that are triggered by the simulator.

A DEVS atomic model AM with the healthy behavior is
represented by the following structure :

AMN =< XM YN S &0 8l AR th >
where:

o X":{(p,v)|(p€inputports,v e X7)} is the set of input
ports and values for the reception of healthy external
events,

e Y":{(p,v)|(p € outputports,ve YN} is the set of out-
put ports and values for the emission of healthy events,

e S is the set of internal sequential healthy states,

e &, : S — S is the healthy internal transition function
that will move the system to the next healthy state after
the time returned by the time healthy advance function,

o 3, : Qx X" — S is the healthy external transition
function that will schedule the states changes in reac-
tion to an input healthy event,

e A": 9 — YN is the healthy output function that will
generate external healthy events just before the healthy
internal transition takes places,

o ta: " — R is the healthy time advance function, that
will give the life time of the current healthy state (re-
turns the time to the next healthy internal transition).

The dynamic interpretation is the following:

e Q={(se)|sc I,0 < e<tal(s)} is the total state set,

e eis the elapsed time since last transition, and s the par-
tial set of healthy states for the duration of ta"(s) if no
healthy external event occur,

. 6{‘m : the model being in a healthy state sat t; , it will go
intos', s = a,(s), if no healthy external events occurs
before t; +ta'(s),

o 3, : when an healthy external event occurs, the model
being in the healthy state ssince the elapsed time e goes
in s, The next healthy state depends on the elapsed
time in the present healthy state. At every healthy state
change, eis reset to 0.

o AN the healthy output function is executed before an
healthy internal transition, before emitting an output
healthy event the model remains in a transient healthy
state.

e A healthy state with an infinite life time is a passive
healthy state (steady healthy state), else, it is an active
healthy state (transient healthy state). If the healthy
state s is passive, the model can evolve only with an
input healthy event occurrence.

The DEVS coupled model CM is a structure :
CM =< X,Y,D,{Mq € D},EIC,EOC,IC >
where:

e X is the set of input ports for the reception of external
events,

e Y is the set of output ports for the emission of external
events,

e D is the set of components (coupled or basic models),
e My is the DEVS model for each d € D,

e EIC s the set of input links, that connects the inputs of
the coupled model to one or more of the inputs of the
components that it contains,

e EOC is the set of output links, that connects the out-
puts of one or more of the contained components to the
output of the coupled model,

e IC is the set of internal links, that connects the output
ports of the components to the input ports of the com-
ponents in the coupled models.

In a coupled model, an output port from a model My € D can
be connected to the input of another My € D but cannot be
connected directly to itself.

Parser

Behavioral

Pseudo Random
Test Pattern

VHDL File

DEVS
NETWORK

i

» BFS-DEVS

Fault Model

Faults List

‘ Detected Faults List ‘

A

4>[Fault Coverage }

Figure 1: Data flow of the proposed approach for behavioral fault simulation.

DEVS Simulation

The DEVS abstract simulator is derived directly from the
model. A simulator is associated with each atomic model
and a coordinator is associated with each coupled model. In
this approach, simulators allows to control the behavior of
each model, and coordinators allows the global synchroniza-
tion between each of them. The communication between all
these elements is performed using four kinds of messages.
The initialization messages (i, t) are used to achieve an initial
temporal synchronization between all actors. The internal
transition messages (x,t) allow the processing of an inter-
nal event, while the external transition messages (xt) allow
the processing of an external event. Finally, the output mes-
sages (y,t) allow the transportation of the output values to
the parent elements and is the result of an (x,t) message.

THE BFS-DEVSBEHAVIORAL FAULT
SIMULATOR

General Architecture

For the validation of our approach proposed in this article,
we developed a simulation environment shown in Figure 1
and composed by:

e A VHDL description to DEVS components transfor-
mation module achieved using a parser that transforms
each VHDL instruction (describing the healthy behav-
ior of the digital circuit) in a DEVS representation, store
these components in a models library and generates the
list of all faults that could happen inside the circuit. The
resulting network of components is an easy-handling

oriented instruction graph. The behavioral fault model
will be later integrated in the models specifications.

e A pseudo-randomtest pattern generator providing the
stimuli that will be applied to the circuit following the
knowledge of the faults to be simulated. In order to val-
idate our approach, we chose to use a pseudo-random
test pattern generator without any knowledge of the
faults to be tested.

e A DEVSbased behavioral fault simulator called BFS
DEVS based on one of the main advantages of the
DEVS formalism that is its ability to generate auto-
matically the simulator from the models. Our simu-
lator needs the DEVS models from the transformation
but also input data from the pseudo-random test pattern
generator. Since the fault model is integrated inside
each atomic model, the faulty behavior of the whole
system is simulable. This fault simulation is performed
in order to define the quality of a test pattern. This qual-
ity is described by a coverage rate which is the number
of detected faults by the number of simulated ones.

VHDL into DEVS Transformation

The first step for the fault simulation is the transforma-
tion of each VHDL instruction into a DEVS model in order
to define a directly simulable network. This transformation
presents many advantages:

e DEVS allows to model and simulate structural lan-
guages;

e We can easily insert a behavioral fault model in an
atomic model;

VHDL Instruction Allocation

Selection

Conditional Process

m
. ALLOCATION _ —w

Atomic Model " e

ous
JUNCTION . CONDITIONAL &%
AM AM

Table 1: Mapping of the VHDL instructions with DEVS components

e \We obtain the fault simulator directly from the DEVS
model;

e DEVS allows a hierarchical and component-oriented
modeling for a better reusability of the fault models.

The selected approach for the transformation of VHDL be-
havioral descriptions with sequential instructions relies on
the association of each VHDL instruction with a DEVS
atomic model and each VHDL process with a coupled
model. We define four kinds of models described in Table 1:
The Allocation atomic model is mapped to the VHDL allo-
cation instruction, the Junction atomic model to the selec-
tion instructions (end if, end case, end loop...) and allowing
to make a junction between atomic models, the Conditional
atomic model to the if, for, case... instructions, and the Par-
allel atomic model to the management of the processes.

In the simple example provided in Figure 2, we can see
how the sequential instruction flow is transformed in an in-
terconnection of atomic models encapsulated in a coupled
model MC representing the following process:

process?2:
begin

if (conditional statement 1)

al location statenment 1

elsif (conditional statement 2)
al l ocation statenment 2

el se (conditional statement 3)
allocation statement 3

end if;

end process;

process(sensitive signal list)

The behavioral fault simulation using a fault list propagation
will happen in this network. The Generator atomic model is
used only for the activation events generation for the process.

Generator

if(conditional statement |l)

MC process2
-

elsif(conditional statement

In MA In MA
1C2 1A1
Out) Outl Out

In MA In

1A2 1A3
Out Out

Inl In2

End elsif 1S2
Out MA

N 7

In0 Inl

‘nd i IS1
E
nd if Out MA

MA

our
Parallel

Figure 2: Example of a VHDL to DEVS transformation

BFS-DEVS Simulation

The basic principles of our approach can be sum up in
some steps:

e The Generator model build the initial fault list com-
posed by the faults relative to the sensitive signals of
the processes;

e This list is propagated inside the network of all atomic
models. The list is modified by the nature of the atomic
model (and so, by the nature of the VHDL instruction)
and the nature of the traversed path;

e When the fault simulation is achieved, the Parallel com-
ponent analyzes the faults observability. If a fault is ob-
servable, it is added to the detected fault list and is no
longer propagated in order to speed up the simulation
process.

Coordinator

e

| @y b % \\
“h (220)
& (x.1)
\\“"“

Simulator Simulator

. . (. (x.)
(i) / Ml .
i I |

Figure 3: BFS-DEVS simulator architecture

The modifications we performed inside the DEVS simu-
lation engine allow us to concurrently simulate the digi-
tal circuits described using the DEVS formalism. These
modifications are the following: The integration of a fault
model inside a DEVS atomic model is performed through
the modification of the de¢ and & functions, and/or the A
function. The faulty behavior of an atomic model is man-
aged using a new external faulty transition function &¢qyt :
Sx 0§ x Xt — Sas proposed in [9] activated by the recep-
tion of a new kind of messages called (f,t).

The faulty behavior of a DEVS atomic model is activated
by a (f,t) message associated with a faulty external event as
shown in Figure 3. The coordinator, using its X input event
set, is then able to send two kinds of external events: an (x,t)
message for an healthy behavior, and a (f,t) for a faulty
behavior and the simulation. Using this distinction, we are
able to achieve concurrently the healthy and faulty simula-
tions. Indeed, the fault simulation can only be performed if
the healthy simulation has been already performed. In this
case, the healthy values are known and can be used as a ref-
erence for the fault simulation.

The simulator associated with the DEVS atomic model re-
ceiving an external event x (and supposed to present a faulty
behavior) receives two messages: an (x,t) message (for the
healthy simulation) followed by a (f,t) message (for the
faulty simulation). If the DEVS model receives a faulty ex-
ternal event x; the associated simulator will only receive a
(f,t) message from its parent coordinator.

FAULT MODEL AND FAULT SIMULA-
TION APPROACH

The fault model used in order to validate our approach
is inspired by the works presented in [11, 8]. We consider
only the permanent faults acting on the logical function of
the circuit. We defined three kinds of faults which can affect
the behavior of the DEVS models:

e The F1 fault type: these are stuck-at faults on signals

and variables corresponding to the fault type number
1 described in [8]. The signal (or the variable) get a
forced value until its next variation. Following the Ta-
ble 1, this kind of faults can appear inside the four kinds
of models.

e The F2 fault type: These are branch stuck-at faults on
control structures corresponding to the fault type num-
ber 2 described in [8]. The result of the conditional
instruction is forced to a boolean value during the sim-
ulation cycle. Following the Table 1, this kind of faults
can appear in conditional models.

e The F3 fault type: These are the jump faults on instruc-
tions corresponding to a part of the fault type number 5
described in [8]. The affectation instruction is not eval-
uated if the signal value must be updated. Following
the Table 1, this kind of faults can appear in allocation
models.

We can note that these faults are behavioral ones, and their
effects are taken into account in the atomic models behav-
iors. If the chosen fault model presents some structural
faults, their effects will only be taken into account in the
specification of the coupled models.

The selected simulation approach is concurrent. Even
if an expensive memory space is needed, this approach
presents many advantages compared to the parallel, deduc-
tive or serial approaches:

e we can apply this approach at the behavioral level, and
then we can integrate it easily in the DEVS formalism;

o this approach is fast. The fault propagation process in-
side the DEVS component allows the determination of
multiple faults in a same time. There is no need to per-
form a simulation for each fault. Moreover, the propa-
gated lists are reduced during the simulation;

e We can perform concurrently the simulation of the
healthy and the faulty circuit. This propriety is com-
pleted by the use of the DEVS formalism allowing the
parallelization of these two kinds of simulations.

EXPERIMENTAL RESULTS

The implementation of our approach has been performed
using the PythonDEVS simulator proposed by [3]. The val-
idation has been performed using the VHDL ITC’99 bench-
marks [1]. Table 2 presents our results. The total number
faults are simulated using a pseudo-random test pattern gen-
erator that generates 500 vectors. The high coverage rates
obtained using a simple pseudo random test bench show that
we are able to predict the random testability of a circuit very
early in the design process.

Total Faults | Test Sequence Length | Detected Faults | Coverage (%)
B0O1 79 54 73 92.40
B02 48 56 41 85.45
B03 134 81 125 93.28
B04 105 72 95 90.47
B05 145 102 131 90.34
B06 95 172 82 86.31
B0O7 76 63 63 82.89
B08 64 70 53 82.81
B09 68 57 60 88.23
B10 163 110 150 92.02

Table 2: Fault Simulation Results for ITC’99 benchmarks

CONCLUSIONS AND PERSPECTIVES

This article proposes a new behavioral faults modeling
and simulation approach of digital circuits described in the
VHDL language. This approach is based on the DEVS for-
malism for the modeling and the simulation of complex dis-
crete event systems. The presented BFS-DEVS simulator
allows to simulate the circuits in their healthy configuration,
but also with behavioral faults thanks to a concurrent sim-
ulation without any modification to the VHDL code. The
experimental results performed on the ITC’99 benchmarks
show the validity of our approach.

We have three main perspectives to this work. We want to
implement a whole test environment with the integration of
an automatic test pattern generator, to add the management
of structural faults and to generalize this approach to any
kind of complex discrete event systems.

References

[1] Benchmarks included in itc’99
http://www.cad.polito.it/tools/bench.

suite, 1999.

[2] F. Franco A. Fin. A vhdl error simulator for functional
test generation. pages 390-395, 2000.

[3] J.S. Bolduc and H. Vangheluwe. A modeling and sim-
ulation package for classic hierarchical devs. Technical
report, 2002.

[4] F. Buonanno, F. Ferrandi, and D. Fummi. How an
evolving fault model improves the behavioral test gen-
eration, 1997.

[5] F. Corno, G. Cumani, M. Reorda, and G. Squillero. Rt-
level fault simulation techniques based on simulation
command scripts, 2000.

[6] Farzan Fallah, Srinivas Devadas, and Kurt Keutzer.
OCCOM: Efficient computation of observability-based

code coverage metrics for functional verification. In
Design Automation Conference, pages 152-157, 1998.
citeseer.nj.nec.com/fallah98occom.html.

[7] F. Ferrandi, F. Fummi, and D. Sciuto. Implicit test gen-
eration for behavioral VHDL models. pages 587-596.
citeseer.nj.nec.com/ferrandi98implicit.html.

[8] S. Ghosh and T.J. Chakraborty. On behavior fault mod-
eling for digital designs. In Journal of Electronic Test-
ing : Theory and Applications, pages 135-151, 1991.

[9] E. Kofman, N. Giambiasi, and S. Junco. Fdevs: A gen-
eral devs-based formalism for fault modeling and sim-
ulation. In Proceedings of the ESS 2000, 2000. Ham-
burg, Germany.

[10] F. Bernardi D. Federici L. Capocchi, P.A. Bisgam-
biglia. Transformation of vhdl description into devs
models for fault modeling. In IEEE International Con-
ference on Systems, Man and Cybernetics, 2003.

[11] A.L. Courbis N. Giambiasi, J.F. Santucci. Test pattern
generation for behavioral description in vhdl. In Euro-
VHDL'’ 91, pages 228-235, 1991.

[12] T. Riesgo and J. Uceda. A fault model for vhdl de-
scriptions at the register transfer level, 1996. cite-
seer.nj.nec.com/riesgo96fault.html.

[13] K. Keutzer S. Devadas, A. Ghosh. An observability-
based code coverage metric for fonctional simulation.
1996.

[14] B.P. Zeigler. Theory of Modeling and Simulation. Aca-
demic Press, 1976.

[15] B.P Zeigler, H. Prachofer, and T.G. Kim. Theory of
the Modeling and Smulation, 2nde Edition. Academic
Press, 2000.

