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Abstract

Concurrent and Comparative Simulation (CCS) with
Multi-List Propagation (MLP) provides a way to per-
form several simulations in a single execution run and
Concurrent Fault Simulation (CFS) has been one of its
first applications. The main obstacles to a wide use of
this technique are the high complexity of the concur-
rent simulation algorithms, along with the difficulty to
integrate them in a simulation kernel. We focus in this
paper on the CFS with MLP of systems described in
the BFS-DEVS formalism, an extension of the origi-
nal DEVS simulator that integrates the CCS algorithm.
Application is performed in the behavioral digital do-
main of systems described in the VHDL language.

Keywords: Discrete Event Simulation, Concur-
rent and Comparative Simulation, Fault Simulation,
DEVS, VHDL.

1 Introduction

Over the last 40 years discrete event simulation has
begun to replace physical experimentation, as model-
ing and simulation offer efficient alternatives to ex-
pensive and complex physical experiments. Discrete
event modeling allows designing an easy-to-handle
and reusable representation of a system. However
classical discrete event simulation only permits one
simulation at a time for a system. This solution can ap-
pear to be very time consuming when many successive
simulations are required for the complete experiment,
especially in terms of result analysis and observability.
In order to escape from these limitations the CCS with
MLP appears to be an adapted solution, by providing

a way to perform several simulations or other tasks in
a single execution run.

We focus in this paper on the CFS with MLP of sys-
tems described in the BFS-DEVS formalism (Behav-
ioral Fault Simulation for Discrete EVent system Spec-
ification) based on the DEVS formalism introduced by
Zeigler in the late 70’s in [1]. DEVS provides a modu-
lar and modeling approach, and automatically defines
a simulator directly from a model using formal ele-
ments and algorithms. It also allows the integration of
concurrent simulation algorithms in a simple, evolu-
tive and transparent fashion for the system modeler.

Discrete event simulation has been used in hundreds
of different domains (graph analysis, economical stud-
ies, symbolic simulation,...) and CCS can be virtually
used in each of them. However even if CFS is approxi-
mately 20 years old, it is the only real existing applica-
tion of CCS, and is not or not much used in the discrete
event domain. Indeed, for many years, fault simulation
has been an essential basic tool of CAD (Computer
Aided Design) systems for digital circuits (see [2], [3]
and [4]), but has never been used in the discrete event
domain where it could help to analyze faulty behav-
iors. [5] proposed a first approach for fault simulation
of systems described using DEVS but did not formally
integrate the concurrent algorithms. We present in this
paper the BFS-DEVS formalism integrating the CFS
with MLP algorithms in its kernel, and allowing the
modeler to specify the faulty behavior of a system us-
ing a new faulty transition function.

The main objective of our work consists in defin-
ing a behavioral concurrent fault simulator implement-
ing the BFS-DEVS formalism. We modify for that the
original DEVS formalism by introducing a new tran-
sition function allowing the modeler to describe the
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faulty behavior of a system. The BFS-DEVS simula-
tor kernel is an evolution of the original DEVS simu-
lator kernel that integrates the CCS algorithms. These
lasts are based on fault lists propagated and directed by
propagation rules inside BFS-DEVS models. Valida-
tion of our approach is performed on behavioral fault
simulation of digital circuits described in high level
description languages.

This article is structured as follows. We describe
in a first section the modeling specifications including
the DEVS formalism and its extension BFS-DEVS. In
a second section, we introduce the fault simulation en-
vironment and the general architecture of this environ-
ment is described. We introduce the BFS-DEVS li-
brary concept and the fault model used by the BFS-
DEVS simulation kernel. Finally, we provide some
results, a conclusion and some perspectives of work.

2 Modeling Specifications

2.1 DEVS Formalism

Introduced by Zeigler in the early 70’s and completed
in [6], DEVS is a set-theoretic formalism that provides
a mean of modeling discrete event systems in a hier-
archical and modular fashion. Using this formalism,
modeling can be easily performed by decomposing a
large system into smaller component models with cou-
pling specifications between them.

2.1.1 DEVS Modeling

As in General System Theory (see [7]), a DEVS
atomic model contains a set of states and transition
functions triggered by the simulator. It is represented
by the following structure:

AM =< X,Y, S, δint, δext, λ, ta >

where:

• X : {(p, v)|(p ∈ inputports, v ∈ Xp)} is the
input ports set and values for the reception of ex-
ternal events.

• Y : {(p, v)|(p ∈ outputports, v ∈ Yp)} is the
output ports set and values for the emission of
events.

• S: is the internal sequential states set.

• δint : S → S is the internal transition function
that will bring the system to the next state after
the time returned by the time advance function.

• δext : Q×X → S is the external transition func-
tion that will schedule state changes in reaction to
an input event.

• λ : S → Y is the output function that will gener-
ate external events just before the internal transi-
tion takes place.

• ta : S → R
+
∞ is the time advance function, that

will give the life time of the current state (returns
the time to the next internal transition).

A DEVS coupled model CM is a structure:

CM =< X,Y,D, {Md ∈ D}, EIC,EOC, IC >

where:

• X is the input ports set for the reception of exter-
nal events.

• Y is the output ports set for the emission of ex-
ternal events.

• D is the components set (coupled or basic mod-
els).

• Md is the DEVS model for eachd ∈ D.

• EIC is the input links set, that connects the in-
puts of the coupled model to one or more of the
inputs of the components that it contains.

• EOC is the output links set, that connects the
outputs of one or more of the contained compo-
nents to the output of the coupled model.

• IC is the set of internal links, that connects the
output ports of the components to the input ports
of the components in the coupled models.

In a coupled model, an output port from a modelMd ∈
D can be connected to the input of anotherMd ∈ D

but cannot be connected directly to itself.
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2.1.2 DEVS Simulation

As described in [8], DEVS allows a hierarchical and
modular modeling of decomposable discrete event
systems thanks to these specifications. One the main
advantages of DEVS is that the simulator is directly
and automatically extracted from the model. This
DEVS simulator uses the modeling hierarchy and as-
sociates asimulator component to each atomic model
and acoordinator component to each coupled model.
This association allows the control of the behavior
of each atomic model and the synchronization of the
whole set of models.

Figure 1: DEVS Simulator Message Exchange

Communication between elements drawn in Fig-
ure 1 is performed using four types of messages. The
initialization message(i, t) is used to perform an ini-
tial temporal synchronization between all actors of the
system (messages 1a and 1b on the figure). The in-
ternal transition message(∗, t) implies the execution
of an internal event (message 2a), while the output
message(y, t) allows the output communication to the
parent elements, and results from the reception of a
(∗, t) message (message 2b). Finally the external tran-
sition message(x, t) allows the execution of an exter-
nal event (message 3). All these messages are more
precisely discussed in the next sections.

2.2 BFS-DEVS Formalism

As [5] we consider abehavioral fault as a modification
of the transition functions, and/or of the output func-
tions of the DEVS models. Thus a fault influences the
behavior (or the state) of an affected DEVS model and
can lead to a faulty behavior.

2.2.1 BFS-DEVS Modeling

The BFS-DEVS formalism introduced in this paper al-
lows the specification and the simulation of faulty dis-
crete event models. A BFS-DEVS model is defined

by a classical DEVS structure with the following ad-
ditional features first introduced by [5]:

• Transition and/or output functions are modified if
behavioral faults are present in the DEVS model.

• Faulty behavior of DEVS models is specified by
a new faulty external transition functionδfault.

Consider a DEVS atomic model whosehealthy behav-
ior can be represented by the following DEVS struc-
ture:

AMh =< Xh, Sh, Y h, δh
int, δ

h
ext, λ

h, tah >

We define the following structure to take thefaulty
behavior into account:

AMf =< X,S, Y,F, δint, δext, δfault, λ, ta >

where,

• X = Xh
⋃

Xf is the set of input values, with
Xf representing a set of new faulty values.

• S = Sh
⋃

Sf is the set of state values, andSf

is the set of new faulty states that the model can
present due to the presence of a faulty input event.

• Y = Y h
⋃

Y f is the set of output values, with
Y f representing the set of new faulty values that
the output ports can take when a faulty input
event occurs.

• F = {F1, F2, F3}
⋃

� is the faults set, with
{F1, F2, F3} is the fault model described fur-
ther.

• δint : S × F → S is the internal transition
function modified by the presence of faults and
presents the restrictionδint(s,�) = δh

int(s).

• δext : Q × X × F → S is the external transition
function modified by the presence of faults and
verifiesδext(s, e, x,�) = δh

ext(s, e, x) if x ∈ Xh.

• δfault : Q × X × F → S is the faulty external
transition function providing the faulty behavior
when a faulty event occurs.

• λ : X × F → S is the output function, which
verifiesλ(s,�) = λh(s).

• ta : S × F → R
+
∞ is the time advance function,f

with the restrictionta(s,�) = tah(s).
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BFS-DEVS specifications are very similar with the
original DEVS ones. The difference is that any time a
faulty eventxf (xf ∈ Xf ) occurs, the new faulty state
is calculated by the faulty external transition function
δfault. If the healthy eventxh (xh ∈ Xh) occurs,
then the new healthy state is calculated by the healthy
external transition functionδh

ext.

2.2.2 BFS-DEVS Simulation

Communication between components is achieved in
the original DEVS formalism using four types of mes-
sages. To distinguish a faulty behavior inside a simu-
lation, we introduce a new message type that activates
the model as soon as afault event xf is present on one
of its ports at a given timet. Activation of the faulty
behavior of a component is performed using a mes-
sage representing a faulty external event as shown in
Algorithm 1 and Algorithm 2.

Algorithm 1 BFS-DEVS Simulator Algorithm
Variables:
parent (parent coordinator)
tl (time of last event)
tn (time of next internal event)
DEV S = {X, Y, S, δint, δext, λ, ta}
y (current output value)
Receives i-message(i,t) at time t:

tl = t − e

tn = tl + ta(s)
Receives *-message(*,t) at time t:

if (t ! = tn) then
Error: bad synchronisation

y = λ(s)
send y-message to coordinator parent
s = δint(s)
tl = t

tn = tl + ta(s)
Receives x-message(x,t) at time t:

if !(tl ≤ t ≤ tn) then
Error: bad synchronisation

e = t − tl
s = δext(s, e, x)
tl = t

tn = tl + ta(s)
Receives f-message(xf,t) at time t:

e = t − tl
s = δfault(s, e, xf )
tl = t

tn = tl + ta(s)

A coordinator, using theX set, is then able to send
two types of external messages to its imminent chil-
dren, a “x-message” for a healthy simulation, and a
“f-message” for a faulty simulation. This specification
is shown bold on the Algorithm 2.

The faulty simulation can only be performed if the

healthy simulation has already been achieved, because
values of the first are used as references for the second.

Algorithm 2 BFS-DEVS Coordinator Algorithm
Variables:
parent (parent coordinator)
tl (time of last event)
tn (time of next internal event)
DEV S = (X, Y, D, {Md}, {Id}{Zi,d, select})
listevent (list of elements (d,tnd))
d∗ (selected imminent child)
Receives i-message(i,t) at time t:

for each d in D:
send i-message to d

update listevent with tnd and select

tl = max{tld | d ∈ D}
tn = min{tnd| d ∈ D}

Receives *-message(*,t) at time t:
if (t ! = tn) then:
Error: bad synchronisation

d∗ = first(listevent)
send y-message to d∗
for each d in D:
send x and f-message to d if x ∈ Xs

send f-message to d if x ∈ Xf

update listevent with tnd and select

tl = t

tn = min{tnd| d ∈ D}
Receives x-message(x,t) at time t:

if !(tl ≤ t ≤ tn) then:
Error: bad synchronisation

receivers = {r | r ∈ D, N ∈ Ir, ZN,r(x) 6= �}
for each r in receivers:
send x-message to r with xr = ZN,r(x)

update listevent with tnd and select

tl = t

tn = min{tnd| d ∈ D}
Receives f-message(xf,t) at time t: if

!(tl ≤ t ≤ tn) then:
Error: bad synchronisation

receivers = {r | r ∈ D, N ∈ Ir, ZN,r(xf ) 6= �}
for each r in receivers:
send f-message to r with xfr = ZN,r(xf )

update listevent with tnd and select

tl = t

tn = min{tnd| d ∈ D}

Thus the simulator associated to a DEVS model re-
ceiving an external eventx (x = xh ∈ Xh), and sup-
posed to present a faulty behavior, receives in fact two
types of messages. In a first step a x-message(xs, t)
implying the activation of the external transition for
the healthy part of the simulation, followed in a sec-
ond step by a f-message(�, t) implying the execution
of the external fault transition function for the faulty
part of the simulation. If the model receives an exter-
nal faulty eventxf (xf ∈ Xf ), the associated simula-
tor will only receive a f-message(xf , t) from its parent
coordinator. Thus it is the nature of the external events
that allows the distinction on simulation paths.
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3 The Fault Simulation Environment

3.1 General Architecture

Concurrent fault simulation is approximately 20 years
old and is one of the only existing applications of the
concurrent simulation. However discrete event sim-
ulation has been employed in many applications and
CCS can virtually be applied to each of them. Fig-
ure 2 (a) extracted from [9] illustrates the relationships
between the CCS simulation kernel and applications.
We can see that this kernel implies the use of a manda-
tory modeling interface for a given application. How-
ever CCS allows the simulation of models created in-
dependently from their execution (concurrent) simu-
lation environment. Thus CCS permits simplicity in
writing simulation models and generality in how they
are used.

Figure 2: BFS-DEVS Positioning

To define the software interface, we propose the
BFS-DEVS formalism allowing:

• Concurrently modeling and simulating faults of
discrete event systems issued from one applica-
tion.

• Distinguishing between the model of the system
and the simulation kernel.

• Implementing the model and the concurrent al-
gorithms inside the simulation kernel using an
object-oriented approach.

• Plugging fault models on demand.

• An easy updating of models in a hierarchical and
modular fashion.

Figure 2 (b) shows that an application will be rep-
resented by a network of BFS-DEVS components
(atomic and/or coupled model) constituting the Li-
brary. This network is directly simulable by the simu-
lation kernel. This modeling is the interface between
the physical applications and the BFS-DEVS simu-
lation kernel based on the CCS. Thus to simulate a
given application the modeler would design a domain
specific BFS-DEVS library without thinking about the
simulation part.

3.2 BFS-DEVS Library and Fault Models

Each application owns a BFS-DEVS components li-
brary defined by the user. As shown in Figure 3, this
library is composed by models (atomic and/or cou-
pled) used to compose the final model to be simulated.
Its construct implies the knowledge of a fault model
mandatory for the definition of the faulty behaviors.
The behavioral rules associated to the data and struc-
ture graphs of the application allow defining the mod-
els, their interfaces and behaviors.

Figure 3: Building of a BFS-DEVS Library

Determining the control and data structures for a
given application is not straightforward, and implies
a strong collaboration with a studied domain special-
ist. Recurrent types of these models will constitute the
BFS-DEVS library. Building a library for a given do-
main is not easy, but is the only “delicate” phase of our
approach.

Inside the BFS-DEVS formalism, a new transition
function δfault is introduced that permits to specify a
faulty behavior for the model. This faulty behavior is
obviously related to the fault type the model is affected
by. Each fault type able to affect a BFS-DEVS model
will change its state using theδfault function.
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3.3 BFS-DEVS Simulation Kernel

A concurrent fault simulation inside a BFS-DEVS net-
work (aka. BFS-DEVS simulation) is a healthy simu-
lation of this network along with the concurrent exe-
cution of faulty simulations induced by multiple prop-
agated fault lists.

Figure 4: Concurrent Fault Simulation Scheme

Figure 4 shows howi ∈ N
+ faulty simulations are

generated starting from one unique healthy simulation.
These faulty simulations result in faults contained in
the FLi propagated lists. Moreover a faulty simula-
tion induced by the fault listFLi can implyj ∈ N

+

faulty simulations propagating the listsFLij such as
FLij ⊂ FLi ∀i, j ∈ N

+. This propagation of faulty
simulations by fault lists cutting up and re-orientation
can be performed until one fault list is found, i.e.
FLij ≥ 1.

4 Experiments and Results: Applica-
tion on Behavioral Digital Domain

Our approach has been applied in the digital circuits
domain. We designed a BFS-DEVS library that al-
low us to model and simulate a circuit described in the
VHDL hardware description language (see [10]). This
transformation is fully described in [11].

In order to show the validity of our approach, we
chose a sub-set of the VHDL ITC’99 benchmarks of
[12] shown in Table 1. Columns in this table sum up
the information at the Behavior level in terms of num-
ber of VHDL lines of code #Lines , number of pro-
cesses #Proc , number of assignment #Assig and con-
ditional statements a #Cond and number of signals #S
and variables #V.

Figure 5 shows the architecture of the developed
prototype. A parser allows obtaining the BFS-DEVS
network representation file. This network is simulated
to generate the fault list obtained from a test sequence
provided by apseudo-random test pattern generator.
This generator provides several pseudo-random test
vectors arranged in independent sequences, and each

Benchmark #Lines #Proc #Assig #Cond #S #V
b01 110 1 35 12 6 1
b02 70 1 19 7 4 1
b03 141 1 56 14 7 14
b04 102 1 40 12 7 13
b05 310 3 99 46 19 5
b06 128 1 50 11 8 1
b07 92 1 33 9 4 6
b08 89 1 22 8 8 4
b09 103 1 34 8 7 2
b10 167 1 74 19 13 8

Table 1: Benchmark Characteristics

Benchmark #Vect #Total Faults #Detected Faults FC [%]
b01 117 79 73 92,94
b02 209 48 42 87,50
b03 707 130 108 83,07
b04 103 105 89 84,76
b05 542 251 61 24.30
b06 200 95 78 82,10
b07 400 76 66 86,84
b08 373 64 63 98,43
b09 395 68 57 83,82
b10 4913 163 143 87,67

Table 2: VHDL BFS-DEVS Simulation Results

one of these sequences contains the “reset” signal with
the value “1”. The fault Model used is similar to [13]
and is based on the bit and conditional coverage met-
rics.

Calculus of the fault coverage FC is obtained by the
number of detected faults on the total number of faults
given by the parser. Results are reported in Table 2
and show the number of detected faults along with the
associated fault coverage.

BFS-DEVS Simulator
Pseudo Random 

Test Pattern

Fault Coverage

FC

 Total Fault List

Detected Fault List

BFS-DEVS Network

AM2

AM3

AM4

CM

Figure 5: General prototype architecture

Experiments show the validity of the BFS-DEVS
formalism and prototype presented in this paper. We
can indeed determine the faults effects on the VHDL
instructions of the behavioral descriptions. The use of
a pseudo-random test pattern generator allows obtain-
ing of significant fault coverages to show the validity
of our approach. However the length of the test pattern
is sufficiently large to detect the most easily observable
faults.
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5 Conclusion and Perspectives

We presented in this paper the BFS-DEVS formalism
for the simulation of discrete event systems behavioral
defaults in a simple and efficient fashion. We saw that
this formalism is based on the CCS with MLP algo-
rithms to simulate many input patterns against many
faulty scenarios inside the BFS-DEVS network.

The proposed simulation environment is homoge-
neous and allows simply and generically integrating
the domain-specific fault model. The design of a
BFS-DEVS component library following the behav-
ioral rules of a system is sufficient for the modeling
and concurrent simulation of the defaults that can ap-
pear in the network. This simulation is also automatic
and transparent for the user.

We validated this approach in the domain of behav-
ioral faults for digital circuits. The fault coverages we
obtained on the ITC’99 benchmarks are very satisfy-
ing.

More generally we have several perspectives con-
cerning this research essentially about analysis and
performance aspects. First distributed computing is
more and more used in the discrete event simula-
tion domain under the name of PDES (Parallel Dis-
crete Event Simulation). We believe that our approach
would take advantage of this technology and we plan
to develop a Distributed BFS-DEVS based simulator.
Second we think that this work can help testing and
debugging classical software programs, and that inte-
grating the CSS (Concurrent Simulation for Software)
domain metrics would be easy to perform in our archi-
tecture.
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