
HAL Id: hal-00165444
https://hal.science/hal-00165444

Submitted on 26 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BFS-DEVS: A General DEVS-Based Formalism For
Behavioral Fault Simulation

Laurent Capocchi, Fabrice Bernardi, Dominique Federici, Paul-Antoine
Bisgambiglia

To cite this version:
Laurent Capocchi, Fabrice Bernardi, Dominique Federici, Paul-Antoine Bisgambiglia. BFS-DEVS: A
General DEVS-Based Formalism For Behavioral Fault Simulation. Simulation Modelling Practice and
Theory, 2006, 14 (7), pp.945-970. �hal-00165444�

https://hal.science/hal-00165444
https://hal.archives-ouvertes.fr

BFS-DEVS: A General DEVS-Based

Formalism For Behavioral Fault Simulation

Laurent Capocchi, Fabrice Bernardi

Dominique Federici, Paul-Antoine Bisgambiglia

University of Corsica, SPE Laboratory, UMR CNRS 6134

20250 Corte, France

{capocchi, bernardi, federici, bisgambi@univ-corse.fr}

Abstract

Discrete event modeling allows designing an easy-to-handle and reusable represen-
tation of a system but, in its classical form, only permits one simulation at a time
for a system. Concurrent and Comparative Simulation (CCS) with Multi-List Prop-
agation (MLP) appears to be an adapted solution, by providing a way to perform
several simulations in a single execution run. Concurrent Fault Simulation (CFS)
has been one of the first applications of the CCS. The main obstacles to a wide use
of this technique are the high complexity of the concurrent simulation algorithms,
along with the difficulty to integrate them in a simulation kernel. We focus in this
paper on the CFS with MLP of systems described in the new BFS-DEVS formal-
ism, which is an evolution of the original DEVS simulator that integrates the CCS
algorithm. The application is performed in the behavioral digital domain of systems
described in the VHDL language.

Key words: Discrete Event Simulation, Concurrent and Comparative Simulation,
Fault Simulation, DEVS, VHDL.

1 Introduction

Over the last 40 years discrete event simulation has begun to replace physi-
cal experimentation, as modeling and simulation offer efficient alternatives to
expensive and complex physical experiments. Discrete event modeling allows
designing an easy-to-handle and reusable representation of a system. However
classical discrete event simulation only permits one simulation at a time for
a system. This solution can appear to be very time consuming when many
successive simulations are required for the complete experiment, especially in

Preprint submitted to Elsevier Science 27 January 2005

terms of result analysis and observability. In order to escape from these lim-
itations the Concurrent and Comparative Simulation (CCS) with Multi-List
Propagation (MLP) appears to be an adapted solution, by providing a way to
perform several simulations or other tasks in a single execution run.

Concurrent Fault Simulation (CFS) to simulate faults (mainly inside digital
systems) has been one of the first applications of the CCS. The main obsta-
cles to a wide use of this technique are the high complexity of the concurrent
simulation algorithms, along with the difficulty to integrate them in a simula-
tion kernel. Essentially for these reasons, fault simulation is not widely used
in the domain of discrete event systems, whereas analysis of faulty behavior
of discrete event systems could take profit from the established knowledge of
digital domain.

We focus in this paper on the CFS with MLP of systems described in the
BFS-DEVS formalism (Behavioral Fault Simulation for Discrete EVent sys-
tem Specification) based on the DEVS formalism introduced by Zeigler in the
late 70’s in [1]. DEVS provides a modular and modeling approach, and auto-
matically defines a simulator directly from a model using formal elements and
algorithms. It also allows the integration of concurrent simulation algorithms
in a simple, evolutive and transparent fashion for the system modeler.

Discrete event simulation has been used in hundreds of different domains
(graph analysis, economical studies, symbolic simulation,...) and CCS can be
virtually used in each of them. However even if CFS is approximately 20 years
old, it is the only real existing application of CCS, and is not or not much
used in the discrete event domain. Indeed, for many years, fault simulation
has been an essential basic tool of CAD (Computer Aided Design) systems for
digital circuits (see [2], [3] and [4]), but has never been used in the discrete
event domain where it could help to analyze faulty behaviors. [5] proposed a
first approach for fault simulation of systems described using DEVS but did
not formally integrate the concurrent algorithms. We present in this paper the
BFS-DEVS formalism integrating the CFS with MLP algorithms in its kernel,
and allowing the modeler to specify the faulty behavior of a system using a
new faulty transition function.

Many fault models (see [6], [7] and [8]) and concurrent fault simulators for dig-
ital circuits (see [9], [10] and [11]), essentially occurring at the gate level, have
been implemented in past years. The increasing complexity of integrated cir-
cuits has led to the development of test tools occurring at higher abstraction
levels than the gate level (see [12], [13] and [8]). In order to sooner oper-
ate in the integrated circuits conception phase, commercial behavioral fault
simulators such as HYPERFAULT or TURBOFAULT have been developed,
allowing tests to be performed on circuits described in Hardware Description
Languages (HDL). However these simulators use heterogeneous simulation en-

2

vironments occurring on various description levels or do not allow performing
the CFS with MLP. In this paper we show that the proposed BFS-DEVS
formalism permits the modeling of a behavioral HDL description control and
data graphs to perform a CFS based on the MLP technique.

The main objective of our work consists in defining a behavioral concurrent
fault simulator implementing the BFS-DEVS formalism. We modify for that
the original DEVS formalism by introducing a new transition function allowing
the modeler to describe the faulty behavior of a system. The BFS-DEVS
simulator kernel is an evolution of the original DEVS simulator kernel that
integrates the CCS algorithms. These lasts are based on fault lists propagated
and directed by propagation rules inside BFS-DEVS models. Validation of
our approach is performed on behavioral fault simulation of digital circuits
described in high level description languages.

This article is organized as follows. In a first section we present a state of
the art of the CCS domain. A second section is devoted to the presentation
of the original DEVS and the new BFS-DEVS formalisms. We show in this
section how DEVS is modified in order to integrate the concurrent simulation
algorithm. We present in a third section the fault simulation environment
along with the essential concepts of BFS-DEVS that are the component library
and the fault model. The next two section show how BFS-DEVS is applied
in the behavioral digital domain of systems described in the VHDL (VHSIC
High level Description Language, described for instance in [14]) language with
some experiments and results. Finally the last section concludes this paper
and provides some perspectives of work.

2 Related Work

2.1 Concurrent and Comparative Simulation

As claimed by [15], “based on the discrete event simulation, the serial simula-
tion of single experiments is a widely used alternative for physical experimen-
tation. For example, building a model and serial simulation of a model is often
superior to building, analyzing and testing physical prototypes of engineering
designs. However, usually many similar experiments must be simulated, and
each experiment requires manual work.”

Since the early 70’s, many digital systems fault simulation methods have been
simultaneously developed to become superior to the serial simulation: this in-
clude parallel, deductive and concurrent simulation approaches (respectively
proposed by [16], [17] and [18]). Many fault simulators have been implemented

3

like DECSIM, MOZART, CREATOR, COSMOS or MOTIS, and these meth-
ods allow gains in generality, speed, observability and methodological power.
Moreover they can be used beyond digital circuits and fault simulation.

CCS is an algorithmic method that applies, and is limited, to systems simu-
lated using discrete events. Its speed increases with the experiments number
and similarity: results of a CCS execution are proportional to the number of
simulated experiments. This method is parallel/concurrent and minimizes the
manual work since it is more systematic, exhaustive and statistical than the
serial approach. Moreover its scope is greater because it permits the compar-
ative experimentation of thousands of experiments.

Serial simulation involves a lot of manual work. Therefore initial experiments
receive the maximum amount of user’s attention, and later are often neglected
and not simulated. Results arise in an arbitrary order in which experiments
are simulated. For CCS no arbitrariness exists, all experiments are simulated,
results appear in a race-like style, in time order and in parallel, and simul-
taneous results appear simultaneously. Thus all results can be analyzed in a
comparative/statistical fashion at any time.

CCS is similar to a multi-processor simulation with one processor by exper-
iment. However there is no need in a parallel computer and costly commu-
nication between processors are avoided. CCS obtains a similar efficiency to
a parallel computer using only one processor and an equivalent number of
virtual processors. In contrast with typical hardware, it is a precise time syn-
chronous method. Being a software solution method, it is more general and
flexible than hardware.

Other major properties of CCS are:

(1) CCS is a general and precise method as it permits the simulation of
complex sub-systems such as memories. This is essentially due to the
MLP technique which allows propagating several object lists into the
system in a same time.

(2) CCS is fast in several ways. It minimizes the development time because
it aggregates experiments into one simulation run, avoiding interruptions
and manual work between successive serial experiments. It also mini-
mizes the CPU time because it is based on similarity and on the unique
initialization of the simulations.

(3) Observation, relative to the observation of the serial simulation, is easy
to perform because experiments are performed in parallel. Based on ex-
periment signatures handling and on an artificial experiment average,
observation is largely automatic. Signatures may contain deterministic
and statistical information about an experiment, its size (relative to a
reference experiment) and a statistical distance (a similarity measure)

4

starting from average experiments. Signatures can determine similarities
between experiments allowing the elimination of non informative ones.

(4) Modeling and simulation are tightly related and modeling requires the
testing of sub-models. An optimal testing method is a systematic sub-
models simulation, which is naturally and easily done with CCS.

(5) Many applications using CCS are available, and one particularly inter-
esting is the Concurrent Software Simulation (CSS, used in [19]). CSS
simulates variant executions of a computer program, and is useful for
testing/debugging most kinds of computer programs, finding bugs more
quickly and exhaustively than with non-simulating tools.

(6) Based on automatic observation, a CCS can be automatically controlled.
Deletion or addition of experiments and run terminations can be per-
formed automatically. While serial experiment requires much manual
work, CCS is a more automatic, systematic, error-free method.

(7) Many scientific fields require similar physical experiments in parallel like
biology, chemistry, meteorology..., but they are too costly due to the
needed parallel resources. However when discrete event simulation is a
substitute for physical experimentation, then CCS is usually an alterna-
tive to serial simulation.

2.2 Concurrent Fault Simulation

Fault simulation for digital networks has been the first application of concur-
rent simulation and is widely used nowadays. Gate level simulation has been
the first (and is today the most) implemented application in commercial tools
(Mentor or Synopsys), while networks represented at other levels are less easily
managed. For instance the DECSIM simulator described in[20] can simulate
faults at four logic levels (switch, gate, register, and behavioral), but requires
five distinct sub-systems to do this: the four logic levels plus an additional
level to manage the information flow between them. The CREATOR simula-
tor described in [21] reduces in a significant way the number of needed CCS
sub-systems using MLP and other generalizations.

Originally concurrent fault simulation has not be defined to speed up the se-
rial fault simulation. However it appeared to be very powerful and the real
experience speedups are typically above 1,000:1. Fault simulation is character-
ized by the need to simulate thousands of faulty experiments. This is usually
still impossible due to storage and CPU time limitations, but CSS runs with
10,000 to 50,000 are very efficient. However simulating so many experiments is
normally neither necessary nor desirable. For most preliminary experiments,
it is sufficient to simulate approximately 1,000 faulty experiments.

5

The most important works in the fault simulation domain are based on the
MLP technique. Interesting approaches such as hierarchical concurrent fault
simulations are presented by [22], but the most difficult for fault simulation
appears to be fault detection and diagnosis, in conjunction with the execution
of diagnostic programs as described by [23].

3 Modeling Specifications

3.1 DEVS Formalism

Introduced by Zeigler in the early 70’s and completed in [24], DEVS is a set-
theoretic formalism that provides a mean of modeling discrete event systems
in a hierarchical and modular fashion. Using this formalism, modeling can
be easily performed by decomposing a large system into smaller component
models with coupling specifications between them. DEVS defines two kinds of
models: atomic and coupled models.

An atomic model is a basic model with specifications for the dynamics of
the model. It describes the behavior of a component, which is indivisible,
in a timed state transition level. Coupled models tell how to couple several
component models together to form a new model. This kind of model can
be employed as a component in a larger coupled model, thus leading to the
construction of complex models in a hierarchical fashion.

3.1.1 DEVS Modeling

Figure 1 shows a hierarchical structure of a coupled model CM0 containing
two atomic models AM0, AM1 and one coupled model CM1. The closer under
coupling property allows the inclusion of CM1 inside CM0.

Fig. 1. DEVS Model Couplings Example

As in General System Theory (see [25]), a DEVS atomic model contains a set
of states and transition functions triggered by the simulator. It is represented
by the following structure:

AM =< X, Y, S, δint, δext, λ, ta >

6

where:

– X : {(p, v)|(p ∈ inputports, v ∈ Xp)} is the input ports set and values for
the reception of external events.

– Y : {(p, v)|(p ∈ outputports, v ∈ Yp)} is the output ports set and values for
the emission of events.

– S: is the internal sequential states set.
– δint : S → S is the internal transition function that will bring the system to

the next state after the time returned by the time advance function.
– δext : Q×X → S is the external transition function that will schedule state

changes in reaction to an input event.
– λ : S → Y is the output function that will generate external events just

before the internal transition takes place.
– ta : S → R

+
∞ is the time advance function, that will give the life time of the

current state (returns the time to the next internal transition).

We can sketch a dynamic interpretation of these definitions:

– Q = {(s, e)|s ∈ S, 0 < e < ta(s)} is the total state set.
– e is the elapsed time since last transition, and s the partial set of states for

the duration of ta(s) if no external event occur.
– δint: the model being in a state s at ti, it will go into s′, s′ = δint(s), if no

external events occurs before ti + ta(s).
– δext: when an external event occurs, the model being in the state s since the

elapsed time e goes in s′. The next state depends on the elapsed time in the
present state. At every state change, e is resetted to 0.

– λ: the output function is executed before an internal transition, and before
emitting an output event the model remains in a transient state.

– A state with an infinite life time is a passive state (steady state), else, it
is an active state (transient state). If the state s is passive, the model can
evolve only with an input event occurrence.

A DEVS coupled model CM is a structure:

CM =< X, Y, D, {Md ∈ D}, EIC, EOC, IC >

where:

– X is the input ports set for the reception of external events.
– Y is the output ports set for the emission of external events.
– D is the components set (coupled or basic models).
– Md is the DEVS model for each d ∈ D.
– EIC is the input links set, that connects the inputs of the coupled model

to one or more of the inputs of the components that it contains.
– EOC is the output links set, that connects the outputs of one or more of

7

the contained components to the output of the coupled model.
– IC is the set of internal links, that connects the output ports of the com-

ponents to the input ports of the components in the coupled models.

In a coupled model, an output port from a model Md ∈ D can be connected
to the input of another Md ∈ D but cannot be connected directly to itself.

3.1.2 DEVS Simulation

As described in [26], DEVS allows a hierarchical and modular modeling of
decomposable discrete event systems thanks to these specifications . One the
main advantages of DEVS is that the simulator is directly and automatically
extracted from the model. This DEVS simulator uses the modeling hierarchy
and associates a simulator component to each atomic model and a coordinator
component to each coupled model. This association allows the control of the
behavior of each atomic model and the synchronization of the whole set of
models. As shown in Figure 2, the DEVS simulator is hierarchical and is
composed by a tree composed by simulators and coordinators.

ROOT

Coordinator

Simulator Simulator Simulator

(i,t) (y,t)

(x,t)
(i,t)

(*,t)

(y,t)(y,t)
(*,t)

(x,t)
(i,t)

(y,t)
(*,t)

(x,t)
(i,t)

AM2

AM3

AM4

CM1

Fig. 2. Simulator Hierarchy

As shown in Figure 3, each simulation cycle consists in three steps: first, the
coordinator searches among its subordinates (coordinator and/or simulator)
the smallest activation time of their next event. Next the coordinator collects
outputs from these imminent models (i.e. models presenting an activation
time for the next event equal to the minimal time) and sends outputs on the
models coupled to the imminent models. Finally the coordinator calls each of
the imminent models to execute their transition function.

Communication between elements drawn in Figure 3 is performed using four
types of messages. The initialization message (i, t) is used to perform an initial
temporal synchronization between all actors of the system (messages 1a and
1b on the figure). The internal transition message (∗, t) implies the execution

8

Fig. 3. DEVS Simulator Message Exchange

of an internal event (message 2a), while the output message (y, t) allows the
output communication to the parent elements, and results from the reception
of a (∗, t) message (message 2b). Finally the external transition message (x, t)
allows the execution of an external event (message 3). All these messages are
more precisely discussed in the next sections.

For [27] DEVS brings many advantages. First it uses a hierarchical and mod-
ular modeling approach allowing the description of the multiple levels of a
system as shown by [28]. It also supports the definition of models defined
in different paradigms, allowing the definition of multi-components, each de-
fined using a different technique (see [29]). DEVS allows any existing model
to be easily extended, and formal definitions of coupled or atomic models can
be modified. Moreover each model can be associated with an Experimental
Framework (a set of DEVS atomic models that can be coupled with other
DEVS models, designing an environment for conducting experiments) used as
a testing module. This approach improves testing facilities.

3.2 BFS-DEVS Formalism

3.2.1 BFS-DEVS Modeling

The BFS-DEVS formalism introduced in this paper allows the specification
and the simulation of faulty discrete event models. A BFS-DEVS model is
defined by a classical DEVS structure with the following additional features
first introduced by [5]:

– Transition and/or output functions are modified if behavioral faults are
present in the DEVS model.

– Faulty behavior of DEVS models is specified by a new faulty external tran-
sition function δfault.

9

Consider a DEVS atomic model whose healthy behavior can be represented
by the following DEVS structure:

AMh =< Xh, Sh, Y h, δh
int, δ

h
ext, λ

h, tah >

We define the following structure to take the faulty behavior into account:

AMf =< X, S, Y,F, δint, δext, δfault, λ, ta >

where,

– X = Xh ⋃
Xf is the set of input values, with Xf representing a set of new

faulty values.
– S = Sh ⋃

Sf is the set of state values, and Sf is the set of new faulty states
that the model can present due to the presence of a faulty input event.

– Y = Y h
⋃

Y f is the set of output values, with Y f representing the set of
new faulty values that the output ports can take when a faulty input event
occurs.

– F = {F1, F2, F3}
⋃
� is the faults set, with {F1, F2, F3} is the fault model

described further.
– δint : S×F → S is the internal transition function modified by the presence

of faults and presents the restriction δint(s,�) = δh
int(s).

– δext : Q × X × F → S is the external transition function modified by the
presence of faults and verifies δext(s, e, x,�) = δh

ext(s, e, x) if x ∈ Xh.
– δfault : Q × X × F → S is the faulty external transition function providing

the faulty behavior when a faulty event occurs.
– λ : X × F → S is the output function, which verifies λ(s,�) = λh(s).
– ta : S × F → R

+
∞ is the time advance function,f with the restriction

ta(s,�) = tah(s).

BFS-DEVS specifications are very similar with the original DEVS ones. The
difference is that any time a faulty event xf (xf ∈ Xf) occurs, the new
faulty state is calculated by the faulty external transition function δfault. If the
healthy event xh (xh ∈ Xh) occurs, then the new healthy state is calculated
by the healthy external transition function δh

ext.

We note that BFS-DEVS models coupling is not changed. But if the fault
model contains a structural fault type, this coupling becomes different from the
original DEVS coupling. Moreover, we can prove that the property of closure
under coupling allowing the hierarchical composition of model is preserved.

10

3.2.2 BFS-DEVS Simulation

Communication between components is achieved in the original DEVS for-
malism using four types of messages. To distinguish a faulty behavior inside
a simulation, we introduce a new message type message that activates the
model as soon as a fault event xf is present on one of its ports at a given time
t. Thus we are able to activate the faulty behavior of a component using such
a message representing a faulty external event as shown in Figure 4.

A coordinator, using the X set, is then able to send two types of external
messages to its imminent children, a “x-message” for a healthy simulation,
and a “f-message” for a faulty simulation.

Fig. 4. Fault Simulator Architecture

Thanks to this distinction we can concurrently perform the faulty and healthy
simulations. Indeed the faulty simulation can only be performed if the healthy
simulation has already been achieved, because values of the first are used as
references for the second. Consequently the healthy simulation precedes the
faulty one.

Thus the simulator associated to a DEVS model receiving an external event x

(x = xh ∈ Xh), and supposed to present a faulty behavior, receives in fact two
types of messages. In a first step a x-message (xs, t) implying the activation
of the external transition for the healthy part of the simulation, followed in a
second step by a f-message (�, t) implying the execution of the external fault
transition function for the faulty part of the simulation. If the model receives
an external faulty event xf (xf ∈ Xf), the associated simulator will only
receive a f-message (xf , t) from its parent coordinator. Thus it is the nature
of the external events that allows the distinction on simulation paths.

11

4 The Fault Simulation Environment

4.1 General Architecture

Concurrent fault simulation is approximately 20 years old and is one of the
only existing applications of the concurrent simulation. However discrete event
simulation has been employed in many applications and CCS can virtually be
applied to each of them. Figure 5 (a) extracted from [15] illustrates the re-
lationships between the CCS simulation kernel and applications. We can see
that this kernel implies the use of a mandatory modeling interface for a given
application. However CCS allows the simulation of models created indepen-
dently from their execution (concurrent) simulation environment. Thus CCS
permits simplicity in writing simulation models and generality in how they
are used.

Fig. 5. BFS-DEVS Positioning

To define the software interface, we propose the BFS-DEVS formalism allow-
ing:

– Concurrently modeling and simulating faults of discrete event systems is-
sued from one application.

– Distinguishing between the model of the system and the simulation kernel.
– Implementing the model and the concurrent algorithms inside the simula-

tion kernel using an object-oriented approach.
– Plugging fault models on demand.
– An easy updating of models in a hierarchical and modular fashion.

Figure 5 (b) shows that an application will be represented by a network of BFS-
DEVS components (atomic and/or coupled model) constituting the Library.
This network is directly simulable by the simulation kernel. This modeling is
the interface between the physical applications and the BFS-DEVS simulation
kernel based on the CCS. Thus to simulate a given application the modeler

12

would design a domain specific BFS-DEVS library without thinking about the
simulation part.

4.2 BFS-DEVS Library and Fault Models

Each application owns a BFS-DEVS components library defined by the user.
As shown in Figure 6, this library is composed by models (atomic and/or
coupled) used to compose the final model to be simulated. Its construct implies
the knowledge of a fault model mandatory for the definition of the faulty
behaviors. The behavioral rules associated to the data and structure graphs
of the application allow defining the models, their interfaces and behaviors.

Fig. 6. Building of a BFS-DEVS Library

Determining the control and data structures for a given application is not
straightforward, and implies a strong collaboration with a studied domain
specialist. This determination follows from the discrete event modeling and
its result is translated into a network of models. Recurrent types of these
models will constitute the BFS-DEVS library. Building a library for a given
domain is not easy, but is the only “delicate” phase of our approach.

Before going further in our development we need to introduce some notions.
First a behavioral fault is described by [5] as a modification of the transition
functions, and/or of the output functions of the DEVS models. Thus a fault
influences the behavior (or the state) of an affected DEVS model and can lead
to a faulty behavior we previously described. Inside the BFS-DEVS formalism,
a new transition function δfault is introduced that permits to specify a faulty
behavior for the model. This faulty behavior is obviously related to the fault

13

type the model is affected by. Each fault type able to affect a BFS-DEVS
model will change its state using the δfault function.

Second a fault model is the set of type of faults that can modify the behavior
of a BFS-DEVS model. It strongly depends on the nature of the modeled
and simulated physical system. Indeed behavioral fault types inside the BFS-
DEVS network must be the most representative of the behavioral defaults of
the physical system. The fault model strongly depends on the control and
data structures of the application and is integrated into the behavior and the
structure of each BFS-DEVS model.

Another important notion is the fault signature which is the consequence of
a fault on the behavior of the affected BFS-DEVS models. Each fault owns
a signature in which the faulty behavior of all affected BFS-DEVS models is
stored.

We call a detectable fault on a BFS-DEVS model a significant fault on a
model, i.e. whose signature presents a faulty behavior distinct from the healthy
behavior at the end of the simulation.

Finally a locally observable fault is a fault that modifies the behavior of the
model during the simulation. A fault is locally observable as long as the be-
havior is faulty.

4.3 BFS-DEVS Simulation Kernel

A concurrent fault simulation inside a BFS-DEVS network (aka. BFS-DEVS
simulation) is a healthy simulation of this network along with the concurrent
execution of faulty simulations induced by multiple propagated fault lists.

Fig. 7. Concurrent Fault Simulation Scheme

Figure 7 shows how i ∈ N
+ faulty simulations are generated starting from one

unique healthy simulation. These faulty simulations result in faults contained
in the FLi propagated lists. Moreover a faulty simulation induced by the fault
list FLi can imply j ∈ N

+ faulty simulations propagating the lists FLij such
as FLij ⊂ FLi ∀i, j ∈ N

+. This propagation of faulty simulations by fault lists
cutting up and re-orientation can be performed until one fault list is found,
i.e. FLij ≥ 1.

14

Before going further in our development we need to introduce some very es-
sential notions. A propagated fault list groups all faults presenting same sig-
natures. Indeed different faults belonging to a same fault model can imply the
same faulty behavior on a BFS-DEVS network. This is one of the main rea-
sons why we can detect different faults in a single BFS-DEVS simulation run.
During the simulation the fault list propagation is performed using messages
carried on the models ports.

A healthy simulation (aka. reference simulation) is a BFS-DEVS simulation
in which no behavioral fault is present. A fault list is built for each model met
on this path.

We use the single fault hypothesis defining that only one fault is present in a
model at a time and that the effect of the fault is present during the whole
simulation. However we can still simulate many faults inside one BFS-DEVS
model using the concurrent simulation based on fault lists propagation.

A faulty simulation (aka. concurrent simulation) is a BFS-DEVS simulation in
which at least one model is affected by a unique fault list, which can modify the
final result of the healthy simulation. However a BFS-DEVS network can be
composed by models presenting many possible faulty behaviors (models pre-
senting many output ports). Consequently faults present inside the propagated
list can imply different faulty behaviors, leading to a fault list presenting dif-
ferent signatures. Since faults present in the propagated list must have unique
signatures (cf. the propagated fault list definition), the initial list is decom-
posed in sub-lists with the same signature. As a faulty simulation propagates
a unique fault list, previous sub-lists are propagated on new faulty concur-
rent simulations. Thus a faulty “parent” simulation can give birth to “child”
faulty simulations propagating sub-lists of the initial fault list. A BFS-DEVS
concurrent fault simulation can be then viewed as several faulty simulations
concurrencing the healthy one. This property allows us to simulate many faults
inside a BFS-DEVS network while respecting the single fault hypothesis.

A healthy (resp. faulty) message is an object allowing the communication
and the activation of BFS-DEVS models for a healthy simulation (resp. faulty
simulation). It also allows the propagation of the fault lists, the simulation time
and several other information inside the network. A faulty message containing
an initial fault list can be divided and can give birth to messages containing
sub-lists of the initial list.

A healthy path (aka. reference path) is the sequence of (atomic and/or coupled)
BFS-DEVS models activated by a healthy simulation of the network.

A faulty path (aka. concurrent path) is the sequence of (atomic and/or coupled)
BFS-DEVS models activated by a faulty simulation. This path is concurrent
to and obviously different from a healthy path. A faulty path can be divided

15

in some concurrent faulty paths.

Fig. 8. Concurrent Fault Simulation of a Sample BFS-DEVS Network

In order to illustrate the previous notions, consider Figure 8. Let’s assume
that the healthy simulation activates the models AM0, AM1, AM4, AM5,
AM6, AM15 and AM16 (in grey) thus defining the healthy path (bold lines).
Each one of these models builds its own fault list: FL0 for AM0, FL1 for
AM1, etc. In our approach faulty simulations are executed concurrently to the
healthy simulation, and activate the other atomic models (in white) to give
birth to faulty paths (plain lines). Let’s also consider that the dashed models
and paths on the figure are not simulated because FL1 1 is not divided.

At the beginning of the simulation FL1 is propagated using a faulty message
to build the fault signatures for each activated model (for instance AM7 and
AM8). However this list is cut up and is reoriented all along the main faulty
path. Indeed all faults belonging to FL1 and evaluated by AM2 do not imply
the same faulty behavior for this last model. Consequently the main fault list
FL1 is divided into two sub-lists FL1 0 and FL1 1. These lists are composed
by faults implying the same behavior for AM2. This division ensures that it
exists only one unique signature inside each propagated fault.

As soon as faulty paths join (AM14 and AM15) propagated faults are merged
and their signatures analyzed to build the detected fault list. Finally the main

16

fault list FL0 will be analyzed at the end of the healthy simulation, i.e. when
all faulty behaviors have been simulated.

4.4 General Object Oriented Implementation

We propose in this section an object oriented implementation based on the
previously described notions, and that follows the original DEVS object ar-
chitecture. The DEVS package shown in Figure 9 is composed by two main
abstract classes called AtomicDEVS and CoupledDEVS inheriting the proper-
ties of the other abstract class BaseDEVS. These two classes allow the imple-
mentation of the atomic and coupled DEVS models and are associated with
a Port class used to represent their ports. The whole structure of the sys-
tem is then represented by an interconnection of instances of these classes. In
the DEVS formalism atomic models represent the behavior of the model and
coupled models the structure. Thus, to be generic, we define two new classes
DomainBehavior and DomainStructure in an other package called Domain.

Classes belonging to this package are the basis of our architecture. The main
class Master is a specialization of a CoupledModel class and shall represent
the highest level coupled model of the whole model. Only one instance of
this class is allowed which will be statically accessed by the DomainBehavior,
DomainStructure and SDB classes. The δfault function is defined inside the
DomainBehavior. DomainStructure allows describing the structural elements
used by the Master class, and presents methods like check rules() allowing
the validation of the structure using a domain parser. The SDB (Symbolic
DataBase) class is introduced to facilitate access to the studied domain data
structure. This class, used by a Master is used to store objects handled by the
domain, and can also be instancied only one time.

As shown in Figure 9, the XDomainBehavior, XSDB and XDomainStructure
are specific to the studied domain, and for each domain these three classes
need to be implemented.

To sum up, it will exist only one Master instance that will contain one in-
stance of XSDB as a static attribute. BFS-DEVS atomic models will be repre-
sented by specialization instances of XDomainBehavior, and coupled models
by class specialization instances of XDomainStructure. The set composed by
these classes will define the BFS-DEVS library for the X domain.

We can note that we use a Singleton Design Pattern defined by [30] to ensure
the unicity of the Master and XSDB instances that do not appear on the
diagram for simplicity reasons.

17

DEVS

BaseDEVS

CoupledDEVS

Port

*

AtomicDEVS

Domain

MasterDomainBehavior

+ delta_fault ():
*

DomainStructure

+ chek_rules ():

*

SDB

X BFS−DEVS Library

X DomainBehavior X SDB X DomainStructure

Fig. 9. Diagram of the Main Classes of the Architecture

5 Application on Behavioral Digital Domain

5.1 Basics of the VHDL Language

Hardware Description Languages are used in the digital circuits domain. These
languages are classified following three types: structural, register transfer level
(RTL) and behavioral. The VHDL language was created in the 80’s and has
been normalized in 1987 (IEEE 1076). It allows capturing the circuit behavior
using an algorithmic representation.

The VHDL model represents two aspects of the process: computation and
control. Computation represented by data flow part of the model can be mod-
eled by data flow graph. Control represented by control flow part of the model
dictates the partial ordering of data operations and can be modeled by control

18

flow graph. Both models are used for test generation.

A VHDL description is composed by two parts. First the description of the
circuit interface with its environment called entity and composed by the signals
list, their direction, their nature, etc.; Second the description of the circuit
called architecture that can contain three types of description, the structural
description of the sub-circuits interconnections, the functional description of
the used boolean functions, and the behavioral description which is represented
by algorithms allowing simulating the behavior of the system.

We only focus in this paper on the behavioral description, which is the most
used today. This description is composed by a collection of parallel processes
containing sequential statements (assignment, conditions, etc.), functions, pro-
cedures, signals and variables only used for calculus. Signals are used to allow
processes to communicate, and are stored in their respective sensitive lists.
Each signal owns a pilot which is a 3-columns table containing the current
and future values and the assignment time of the future value. A signal can be
“multi-source”, i.e. can be affected in several processes. But in order to avoid
assignment conflicts we consider that a signal is “uni-source”.

Figure 10 presents a multi-process behavioral description of a 8 bits regis-
ter containing three processes STROBE, ENABLE and OUTPUT along with
their sensitive lists (STRB), (DS1,NDS2) and (REG,ENBLD).

5.2 Behavioral Fault Model

In the past years several high level behavioral fault models associated with
some fault simulation techniques have been proposed by [8], [6],[31], [4] and [7].
However [32] shows that none of them formally establishes the relationships
existing between the high level and gate level fault coverages, but considers
that the closest fault model is consituted by the bit and conditional coverages.
As in [13] the fault model we propose in this paper is based on techniques of
test of software.

This fault model is mainly based on stuck-at signals and variables present in a
VHDL behavioral description. To take into account faults inside the descrip-
tion control graph, we consider also the conditional branch stuck-at faults.
Finally we consider the jump of assignment statements fault since it can allow
us analyzing the redundant code in a VHDL description. We can note that
this fault model is evolutive and has not been conceived to validate a specific
metric of the HDL. Moreover it can use several fault models through the use
of the fault transition function.

19

entity Register is

Port(DI: in bit vector(1 to 8);

STRB, DS1, NDS2: in bit;

DO: out bit vector(1 to 8));

end Register
architecture Arch of Register is

signal REG : bit vector(1 to 8);

signal ENBLD : bit;

begin

STROBE: process(STRB)

begin

if (STRB=’1’) then

REG<=DI;

end if;

end process STROBE;

ENABLE: process(DS1, NDS2)

begin

ENBLD<=DS1 and not NDS2;

end process ENABLE;

OUTPUT: process(REG, ENBLD)

begin

if (ENBLD=’1’) then

DO<=REG;

else

DO<=’’11111111’’;
end if;

end process OUTPUT;

end Arch;

Fig. 10. VHDL Description of a 8 bits Register

As in [13] we adopt the single fault hypothesis. We use three behavioral fault
types acting on the VHDL instructions present in the description to be simu-
lated:

– F1 Fault Type: These faults are value stuck-at (signals or variables) faults
present in the description. For instance, consider the assignment instruction
E : S1 <= (S2 and S3) or S4, where the type of S1, S2, S3 and S4 is T : bit.
Evaluation of E gives a healthy value vh to S1, and all S1i faults of type F1
on S1 implying a faulty value vf will be the stuck-at values of its definition
domain minus the healthy value: {S1i|vf ∈ T − {vh}}. In this example if
vh =′ 1′, stuck-at faults on S1 will be stored in the list LS1 = [S10]. In
the same way faults of type F1 implying a faulty evaluation of E will be
determined following their healthy current values. Some of the fault models
used by [6] convert VHDL objects such as “integer” into the equivalent bit

20

vector according to synthesis conventions, and each element is considered
separately as a bit. We can also perform this kind of translation, but the
type F1 appears sufficient to show the validity of our approach. This type
corresponds to the bit coverage described in [32].

– F2 Fault Type: These faults are branch stuck-at faults (stuck-at-true, stuck-
at-false) of the conditional instructions. When a conditional instruction is
evaluated, a healthy conditional branch is chosen between a finite set of pos-
sibilities. The stuck-at of other branches different from the healthy branch
constitutes the F2 type. This type corresponds to the conditional coverage
described in [32].

– F3 Fault Type: These faults prevent an assignment instruction to be eval-
uated. This fault type allows the deletion of redundant assignment instruc-
tions inside a VHDL description (see [33]).

5.3 VHDL to BFS-DEVS Translation

The VHDL to BFS-DEVS translation allows describing the control and data
flows of a VHDL description as a BFS-DEVS network. This translation brings
several advantages. Indeed it provides an homogeneous and modular integra-
tion of the simulation algorithms inside the δfault transition functions. It also
permits a simplification of the analysis and observability treatments and an
easy adaptation of the behavioral (or even structural) fault models.

In VHDL a fault will be considered as a bad evaluation of an instruction.
In BFS-DEVS a fault inside an atomic model representing a VHDL instruc-
tion modifies its behavior implying a faulty simulation. The three fault types
previously described become in this case:

– The F1 Fault Type, a faulty state transition of a model.
– The F2 Fault Type, the selection of a faulty output port of a model.
– The F3 Fault Type, a non-activation of a model.

We use for this paper behavioral VHDL descriptions using sequential instruc-
tions composed by one or several process instructions. Each of them is com-
posed by sequential instructions such as assignment, conditional (“if-then-else,
case”), and loop statements. We show in [34] that these descriptions can be
represented using four BFS-DEVS atomic models:

An Assignment atomic model represents a VHDL assignment statement.
This association allows us giving a faulty or healthy behavior to the instruc-
tion. When such a model is found in the network a fault list of the F1 type
is built.

A Conditional atomic model represents a VHDL conditional statement.
This association allows us developing the functions used to determine the

21

F1 and F2 faults.
A Junction atomic model is associated with end-code statements such as

“endif, endcase”. Algorithms for fault local observability are defined inside
these components.

A Process coupled model is associated with the VHDL “process” statement.
It is a coupled model for the structuring of the previous atomic models.

Two new atomic models are introduced:

A Generator atomic model that generates events for the activation of
the components inside the BFS-DEVS network. A model of this type is
mandatory for the simulation.

A ProcessEngine atomic model that manages the processes synchroniza-
tion and the fault list propagation. This model participates also in the ob-
servability analysis, and in the detected fault list update.

Fig. 11. VHDL to BFS-DEVS Translation

These six BFS-DEVS components represent the BFS-DEVS library associated
with the behavioral VHDL domain as shown in Figure 11. The fault model
(F1, F2, F3) is integrated inside the transition functions of the components.
The VHDL to BFS-DEVS translation is performed using a parser that uses
the library, provides the BFS-DEVS network and the total fault list.

Figure 12 shows the generated BFS-DEVS network starting from the 8 bits
register description presented in Figure 10.

22

Fig. 12. BFS-DEVS network of 8 bit register

5.4 VHDL BFS-DEVS Simulation

In order to explain the VHDL BFS-DEVS simulation we need to introduce or
complete some notions.

A fault signature corresponds to the trace TFi
= {((S|V)j, P(S|V)j

)|i, j ∈ N} of
the Fi fault on a healthy or faulty path. It is represented by the set of couples
((S|V)j∈N, P(S|V)j

) where: Sj (or Vi) is the influenced signal (or the influenced
variable) by Fi, and P(S|V)j

= [vcf , vff , time] is the pilot of the current vcf and
future vff faulty values of Si (or Vi) by Fi at time cycle time. A fault can be
associated to several signatures.

The locally observable fault list LO is a list of faults implying a different result
from the healthy simulation. This result is locally observable on signals and
variables of the description.

The detected fault list LD is a list of the detected faults visible on output
signals during the concurrent fault simulation. We have LO ∩ LD = ∅.

A healthy simulation is the parallel execution of the coupled models with no
atomic model presenting a faulty behavior.

A faulty simulation is the parallel execution of the coupled models with one
or more atomic models presenting a faulty behavior.

An active process is the activation of a coupled model for a healthy or faulty
simulation.

An inactive process is the activation of a coupled model for a faulty simulation.
However if no atomic model presents a faulty behavior, the coupled model is
not activated to speed the simulation up.

23

A healthy path is composed by the set of BFS-DEVS models activated during
a healthy simulation run. However because of the concurrency a healthy path
can obviously be divided in several independent healthy sub-paths.

A faulty path is composed by the set of BFS-DEVS models activated during
a faulty simulation run.

A reference database is an object storing the VHDL constants and pilots of
all signals, variables belonging to this description. This database is accessed
by the four basic atomic models previously seen.

We can now define the BFS-DEVS concurrent fault simulation of VHDL sys-
tems represented by N > 0 coupled models, as the parallel execution of x < N

coupled models for a healthy simulation, and of 1 ≤ i ≤ N −x coupled models
for i faulty simulations induced by Li propagated fault lists inside the network.

To illustrate these definitions consider a BFS-DEVS network of a multi-processes
behavioral description. During a simulation run, n > 0 coupled models are
active for n healthy simulations, and m > 0 coupled models are active for
m faulty simulations. We also consider that each coupled model has several
paths, implied by the presence of conditional atomic models. Healthy simula-
tions are executed inside the n coupled models, thus defining the n healthy
paths. In order to highlight faults implying the faulty paths, faulty simulations
are concurrently executed with the healthy simulation in the n + m coupled
models.

We can see on Figure 13 that faulty paths derive directly (resp. indirectly)
from the n = 2 healthy paths inside the CM1,2 coupled models (resp. the
CM3 coupled model).

Figure 13 (a) shows the healthy paths (bold) resulting from a healthy simu-
lation of the two coupled models CM1 and CM2 corresponding to two active
processes AP1 and AP2. Since IP1 is inactive CM3 is not activated.

Figure 13 (b) shows the faulty paths (dashed) generated by the concurrent
faulty simulations. We see that faulty paths inside the coupled models CM1

and CM2 are directly concurrent to the healthy paths. On the other side faulty
paths inside CM3 are indirectly concurrent to the healthy paths. Moreover the
propagation of the fault list #FL3 ≥ 4 of the inactive CM3 by cut up allows
the simulation of the faults contained in the lists #FL30 ≥ 1, #FL31 ≥ 2,
#FL310 ≥ 1 and #FL311 ≥ 1.

We can note that even if IP1 is inactive for the VHDL simulation, CM3 would
become active whether a simulation of faults in FL3 is activated.

24

(a) Healthy Simulation

Healthy Path

Faulty Path

(b) Concurrent Fault Simulation =
 Healthy Simulation + Faulty Simulations

FL0

FL1

FL2

FL3

FL0

FL1

FL2

FL30 FL31

FL310

FL311

Coupled Model CM3Coupled Model CM2Coupled Model CM1 Coupled Model CM3Coupled Model CM2Coupled Model CM1

BFS-DEVS Network

Inactive Process IP1Active Process AP2Active Process AP1

VHDL Description

BFS-DEVS Network
FL3

Fig. 13. Schematic View of a BFS-DEVS Concurrent Fault Simulation

5.5 VHDL Simulation Cycles

VHDL simulation is managed through events on the communication signals
between processes. The simulation cycle called symbolic cycle (or delta cy-
cle) is divided in three distinct phases (grey in Figure 14): the EXECUTION
phase corresponding to the parallel execution of the processes, the UPDATE
phase corresponding to the update of the signals pilot values attributes, and
the ANALYSIS phase establishing the list of the processes to be activated
following programmed events on sensitive signals.

As shown in Figure 14 the concurrent fault simulation relies on these three
phases and complete them with two new phases relative to the concurrent
simulation technique used: the fault OBSERVABILITY phase to build the
LD list, and the FAULT COVERAGE CALCULUS.

Thus the simulation scheme can be divided in five phases:

(1) The CONCURRENT FAULT SIMULATION phase that consists in a
healthy simulation whose results are stored in a reference database, and
in concurrent faulty simulations to construct or update LO.

(2) The local OBSERVABILITY phase of the propagated faults occurring
as soon as all processes have been simulated. This phase consists in com-

25

Fig. 14. Concurrent Fault Simulation Scheme

paring each fault signature included in LO with the results of the healthy
simulation. This comparison will allow highlighting the locally observable
faults on signals or variables of the VHDL description.

(3) The UPDATE phase is applied to the signals pilots values present in
the reference database. If no process has been activated for a healthy
simulation, no update is performed.

(4) The future process activity ANALYSIS that presents a supplementary
procedure to manage the fault influence inside the sensitive signals. In-
deed if a sensitive signal is affected by faults, these lasts can give birth
to faulty simulations on the processes the signal belongs to.

(5) The FAULT COVERAGE CALCULUS only occurs when the future pro-
cess activity analysis is negative. A fault belonging to LO will be de-
tectable if it implies, in its signature, a current faulty value different
from the current pilot value of an output signal. All detected faults are
transfered from LO to LD. The fault coverage is given by:

C(%) =
number of detected faults

total fault number
∗ 100

26

5.6 Fault List Propagation

The BFS-DEVS concurrent fault simulation can be composed by several faulty
simulations driving fault lists to obtain the signatures. Propagation of this
list is achieved using a cutting up and an initial list reorientation. Fault list
propagation can be divided in two parts: the intra-process (list propagation
inside coupled models) and the inter-process (list propagation between coupled
models) propagations. To describe these two propagations, we define:

– A VHDL description presenting N processes: P0<n≤N .
– The sensitive signals lists for processes activation: Ln = {Sk∈N}.
– The propagated fault lists: FLn = {Fi|i, n ∈ N}.
– The locally observable fault list: LO.
– The signatures describing the fault propagation during the concurrent sim-

ulation: ∀Fi ∈ N, TFi
= {((S|V)j, P(S|V)j

)|j ∈ N}.

5.6.1 Intra-process Propagation

At the beginning of a VHDL simulation cycle (except for the initialization
cycle) each process can present an activity depending on the sensitivity of the
signal belonging to Ln.

If a VHDL process Pn is active (cf. Figure 15 (a)) the corresponding coupled
model CM is also activated by a Generator atomic model in order to run the
healthy simulation along with:

– The simulation of the faults Fi implying a non activation of CM , and stored
in an initial fault list built by the Generator using LO (FLO in Figure 15).
Observability of these faults depends on the result of the healthy simula-
tion. Faults will only be appended to LO at the end of the simulation by a
ProcessEngine atomic model.

– The simulation of the faults Fi able to appear inside the Assignment and
Conditional atomic models activated by the healthy simulation (bold in
Figure 15 (a)). These faults are stored in lists FLn (FL1 for AM1, FL4 for
AM4 etc.). In the case where these lists come from an Assignment atomic
model (AM1,AM4, AM5, AM6), they are directly appended to LO, the list
of locally observable faults. If they come from a Conditional atomic model
(AM16) they will be appended to LO by the corresponding Junction model
only when once having been simulated on the faulty paths they imply (plain
line on the figure). Indeed these lists FLn can give birth to other sub-lists
FLnm (FL1 = FL1 0 +FL1 1 on the figure). LO is acting as a reference. On
the one hand because if a fault is highlighted on a Assignment atomic model
and is already in the fault list, an update of the trace is performed, otherwise
the fault is appended. On the other hand because if a fault is highlighted

27

on a Conditional model and is already in the fault list, it will be copied
and inserted in the list FLn that will be propagated on the faulty paths.
Observability of the contents of the list will be analyzed at the junction of
the faulty paths.

If a VHDL process Pn is inactive (cf. Figure 15 (b)), the associated coupled
model is activated by a Generator atomic model in order to simulate the faults
Fi ∈ FLn that would have activate it. These faults are essentially directed
towards the signals of Ln. But contrary to the previous case, the faults Fi

can present initial signatures during the list propagation. These signatures
are issued from the reference list LO and will be updated during the faulty
simulation of Pn. All faults initially contained in FLn can not take the same
path. In the example shown in Figure 15 (b), the initial fault list FL1 is cut
up in two sub-lists FL1 0 and FL1 1 such as FL1 = FL1 0 + FL1 1, since
faults of FL1 0 do not have the same consequences than faults of FL1 1 in
the AM2 Conditional model. For the same reasons, FL0 0 is cut up in two
sub-lists FL0 0 0 and FL0 0 1 such as FL0 0 = FL0 0 0 + FL0 0 1.

Analysis of fault signatures is performed in the ProcessEngine model at the
end of the faulty simulations. Every observable fault will be appended to LO.
If a fault is already present in the list a signature update is achieved. Following
this update each fault presenting an empty signature is deleted from LO.

Fig. 15. Intra-Process Propagation

28

5.6.2 Inter-Process Propagation

The VHDL language defines the internal sensitive signals in order to establish
links and parallelization between the processes of a description. Thus faults
which can be present on these signals are also linked with the processes. If a
fault is locally observable on a sensitive signal it will be simulated inside one
or several processes.

In order to establish the building rules for this kind of faults, it is necessary
to recall the properties of the sensitive signals defined by VHDL:

(1) No (internal or input) sensitive signal can be affected in the process it
activates (auto-activation). This property is illustrated in Figure 16 (a).
This configuration can bring to a loop in the process activation.

(2) A (internal or input) sensitive signal can be affected in several processes.
However in order to avoid conflicts, a conflict resolution function must
be implemented for such a signal. In our method these functions are not
taken into account. Thus we consider the configuration shown in Figure 16
(b).

(3) A sensitive signal can activate several processes. This property is illus-
trated in Figure 16 (c) and allows the parallelization of the processes
activated by a same signal.

Fig. 16. Process Auto-Activation, Assignment Conflict and Process Multi-Activation

These properties allow us defining the following faults characteristics:

(1) A fault can belong to several lists FLn of the n inactive processes Pn.
This characteristic comes from the property number 3 of the sensitive
signals.

(2) A fault can not imply different values for a same signal. This characteristic
comes from the property number 2 of the sensitive signals.

We can now introduce the inter-process propagation rules for locally observ-
able faults:

(1) If one fault belonging to LO implies the faulty simulation of n different
processes P0≤n<N , it will be duplicated and inserted in LFn. At the end
of the simulation run the fault becomes unique again with the fusion of

29

the duplicated faults signatures (from the fault property number 1).
(2) The analysis of the future processes activity is performed against the

signatures of the faults in LO. Every fault present in LO, except those of
F1 type on sensitive signals, can activate the associated processes.

Fig. 17. Inter-Process Propagation

We can find two origins for the fault lists FLn. First if a model associated
to a process is active for a physical cycle, these fault lists are created by the
Generator. This last build these lists with reference to the locally observable
fault list LO. If a fault already belongs to LO, it is copied and inserted in FLn.
It then will be simulated using the inter-process propagation and analyzed at
the end of the simulation run inside the ProcessEngine model. If two faults
belonging to different messages arrive at the ProcessEngine model in a same
time, their signatures are merged in order to obtain only one signature for the
fault.

Second If a coupled model associated with a process is active for a symbolic
cycle, the fault lists FL′

n are generated by the ProcessEngine model. Indeed if
coupled model needs to be reactivated by a fault present in LO and implying
a variation of a signal of Ln, a faulty message is sent to the output port of
the ProcessEngine model using the Generator. This last only transmits the
message.

5.7 Object Oriented Implementation

Figure 18 presents the object-oriented implementation we performed for this
application of our formalism. We can see the four classes AtomicJunction,
AtomicAssignment, AtomicProcessEngine and CoupledProcess implementing

30

VHDL BFS−DEVS Library

VHDLDomainBehavior VHDLSDB VHDLDomainStructure

AtomicJunction AtomicConditional

CoupledProcess

Generator AtomicProcessEngine

AtomicAssignment

Fig. 18. Class Diagram for the VHDL Domain

the VHDL instructions and specializing the classes VHDLDomainBehavior
and VHDLDomainStructure. The three first cited classes implement their
faulty behavior using a delta fault() method.

The VHDLSDB class implements the SDB class and represents the data struc-
ture of the VHDL language. It is used to store pilots, attributes and update
methods.

6 Experiments and Results

The general CFS with MLP approach presented in this paper has been ap-
plied to digital systems described in the VHDL language using a BFS-DEVS
simulator prototype and a library of BFS-DEVS VHDL components. This
implementation derives from a simulation kernel conform to Zeigler’s speci-
fications. The whole prototype is composed by about 8,000 lines of Python
code.

In order to show the validity of our approach, we chose a sub-set of the VHDL
ITC’99 benchmarks of [35] shown in Table 1. Columns in this table sum up
the information at the RTL level in terms of number of VHDL lines of code,
number of processes, number of assignment and conditional statements and
number of signals and variables.

Figure 19 shows the architecture of the developed prototype. A parser based
on GENESI (see [36]) allows obtaining the BFS-DEVS network representa-
tion file. This network is simulated to generate the fault list obtained from a
test sequence provided by a pseudo-random test pattern generator. This gen-

31

erator provides several pseudo-random test vectors arranged in independent
sequences, and each one of these sequences contains the “reset” signal with
the value “1”.

Calculus of the fault coverage is obtained by the number of detected faults
on the total number of faults given by the parser. Results are reported in
Table 2 and show the number of detected faults along with the associated
fault coverage.

Fig. 19. General prototype architecture

Experiments show the validity of the BFS-DEVS formalism and prototype pre-
sented in this paper. We can indeed determine the faults effects on the VHDL
instructions of the behavioral descriptions. The use of a pseudo-random test
pattern generator allows obtaining of significant fault coverages to show the
validity of our approach. However the length of the test pattern is sufficiently
large to detect the most easily observable faults.

The pseudo-random patterns testability can be anticipated by the analysis
of the fault coverages shown in Table 2. We note that the b05 benchmark is
random pattern-resistant because it presents low fault coverage. Benchmarks
b05, b03 and b10 are difficult to test because their fault coverages are obtained
with a high number of test vectors. The fault model used in this test sequence
is based on the F1, F2 and F3 fault types. [32] shows that the fault model
based only on the F1 and F2 types can be used for estimating the gate-level
stuck-at fault coverage by reasoning on a behavioral model of the benchmarks.
However the majority of undetected faults on the benchmarks are of type
F3. A way to improve the fault coverage would be to remove the F3 type
from our global fault model. Considering the F3 type is however interesting
since it allows removing redundant instructions in the VHDL code. Indeed an
assignment model in which a F3 fault is not detected can be removed from
the network. This implies a reduction of the number of lines of the description
leading to a simulation speed-up.

32

Benchmark #Lines #Proc #Assignments #Conditionals #Signals #Variables

b01 110 1 35 12 6 1

b02 70 1 19 7 4 1

b03 141 1 56 14 7 14

b04 102 1 40 12 7 13

b05 310 3 99 46 19 5

b06 128 1 50 11 8 1

b07 92 1 33 9 4 6

b08 89 1 22 8 8 4

b09 103 1 34 8 7 2

b10 167 1 74 19 13 8

Table 1
Benchmark Characteristics

Benchmark #Vect #Total Faults #Detected Faults Fault Coverage [%]

b01 117 79 73 92,94

b02 209 48 42 87,50

b03 707 130 108 83,07

b04 103 105 89 84,76

b05 542 251 61 24.30

b06 200 95 78 82,10

b07 400 76 66 86,84

b08 373 64 63 98,43

b09 395 68 57 83,82

b10 4913 163 143 87,67

Table 2
VHDL BFS-DEVS Simulation Results

7 Conclusion and Perspectives

We presented in this paper the BFS-DEVS formalism for the simulation of
discrete event systems behavioral defaults in a simple and efficient fashion.
We saw that this formalism is based on the CCS with MLP algorithms to
simulate many input patterns against many faulty scenarios inside the BFS-
DEVS network.

33

The proposed simulation environment is homogeneous and allows simply and
generically integrating the domain-specific fault model. The design of a BFS-
DEVS component library following the behavioral rules of a system is sufficient
for the modeling and concurrent simulation of the defaults that can appear in
the network. This simulation is also automatic and transparent for the user.

The object architecture of our prototype is generic and extensible to several
domains thanks to the abstract classes DomainBehavior and DomainStruc-
ture, respectively used to describe the behavior and the structure of a new
domain to be managed.

We validated this approach in the domain of behavioral faults for digital cir-
cuits. The fault model we used does not present an important correlation with
the fault model at the gate level, but the genericity of our approach permits to
specify some other fault models at lower abstraction levels. The fault coverages
we obtained on the ITC’99 benchmarks are very satisfying.

In this digital domain the main perspective is to design an ATPG (Automatic
Test Pattern Generator) to measure the effectiveness of the test patterns used
to perform the fault simulation. We shall based this work on signature analysis
and also on genetic algorithms for their proved efficiency.

More generally we have several perspectives concerning this research essen-
tially about analysis and performance aspects. First distributed computing is
more and more used in the discrete event simulation domain under the name
of PDES (Parallel Discrete Event Simulation). We believe that our approach
would take advantage of this technology and we plan to develop a Distributed
BFS-DEVS based simulator. For instance when applied to the digital circuits
domain, this distribution would allow simulating processes in parallel. Sec-
ond we think that this work can help testing and debugging classical software
programs, and that integrating the CSS (Concurrent Simulation for Software)
domain metrics (path coverage, statement coverage, branch coverage,...) would
be easy to perform in our architecture.

Finally we are currently applying this work to other domains in order to show
its genericity of use. First applications are fire forest propagation and graph
analysis.

References

[1] B. P. Zeigler, Theory of Modeling and Simulation, Academic Press, 1976.

[2] M. Larsson, Behavioral and structural model based approaches to discrete
diagnosis, Ph.D. thesis, linkping University, Sweden (1999).

34

[3] N. Giambiasi, J. Santucci, A. Courbis, Test pattern generation for behavioral
descriptions in VHDL, in: Proceedings of the Euro-VHDL Conference, 1991.

[4] J. Santucci, A. Courbis, N. Giambiasi, Behavioral testing of digital circuits,
Journal of Microelectronic System Integration 1 (1).

[5] E. Kofman, N. Giambiasi, S. Junco, FDEVS: A general DEVS-based formalism
for fault modeling and simulation, in: Proceedings of the European Simulation
Symposium, 2000.

[6] F. Corno, G. Cumani, M. S. Reorda, G. Squillero, An RT-level fault model
with high gate level correlation, in: Proceedings of the IEEE International High
Level Design Validation Workshop, 2000.

[7] G. Buonanno, L. F. F. Ferrandi, F. Fummi, D. Sciuto, How an ”evolving” fault
model improves the behavioral test generation, in: Proceedings of the IEEE
Seventh Great Lakes Symposium on VLSI (GLS-VLSI ’97), 1997.

[8] P. A. Thaker, V. D. Agrawal, M. E. Zaghloul, Register-transfer level fault
modeling and test evaluation techniques for VLSI circuits, in: Proceedings of
the IEEE International Test Conference, 2000.

[9] S. Gai, P. Montessoro, F. Somenzi, The performance of the concurrent fault
simulation algorithms in MOZART, in: Proceedings of the Design Automation
Conference, 1988, pp. 692–697.

[10] D. Machlin, D. Gross, S. Kadkade, E. Ulrich, Switch level concurrent fault
simulation based on a general purpose list trasversal mechanism, in: Proceedings
of the International Test Conference, 1988, pp. 574–581.

[11] P. Montessoro, S. Gai, Creator: General and efficient multilevel concurrent fault
simulation, in: Proc. Design Automation Conf, 1991, pp. 160–163.

[12] A. Fin, F. Fummi, A VHDL error simulator for functional test generation, in:
Design, Automation and Test in Europe (DATE ’00), 2000.

[13] G. S. Fulvio Corno, Matteo Sonza Reorda, RT-level fault simulation techniques
based on simulation command scripts, in: Proceedings of the XV Conference
on Design of Circuits and Integrated Systems, 2000, pp. 825–830.

[14] P. J. Ashenden, The designer guide to VHDL, Morgan Kaufmann Publishers,
2001.

[15] E. Ulrich, V. Agrawal, J. Arabian, Concurrent and Comparative Discrete Event
Simulation, Kluwer Academic publisher, 1994.

[16] S. Seshu, On a improved diagnosis program, IEEE Transactions on Electronic
Computers 12 (1965) 76–79.

[17] D. Armstrong, A deductive method for simulating faults in logic circuits, IEEE
Transactions on Computers 21 (1972) 464–471.

35

[18] M. Abramovici, M. Breuer, K. Kumar, Concurrent fault simulation and
functional level modeling, in: Proceedings of the IEEE Design Automation
Conference, 1977, pp. 128–137.

[19] S. Demba, E. Ulrich, K. Panetta, D. Giramma, Experiences with concurrent
fault simulation of diagnostic programs, in: IEEE Transactions on CAD, Vol. 9,
1990, pp. 621–628.

[20] M. Kearney, DECSIM: A multi-level simulation system for digital design, in:
Proceedings of the International Conference on Computer Design, 1984, pp.
206–209.

[21] S. Gai, F. Somenzi, E. Ulrich, Advance in concurrent multilevel simulation,
IEEE Transactions on CAD 6 (1987) 1006–10012.

[22] C. Y. Lo, H. Nham, A. Bose, Algorithms for an advanced fault simulation
system in MOTIS 6 (1987) 232–240.

[23] M. A. Breuer, A. C. Parker, Digital system simulation: Current status and futur
trends, in: Proceedings of the IEEE Design Automation Conference, 1981, pp.
269–275.

[24] B. P. Zeigler, H. Praehofer, T. G. Kim, Theory of Modeling and Simulation,
Second Edition, Academic Press, 2000.

[25] B. P. Zeigler, An introduction to set theory, Tech. rep., aCIMS Laboratory,
University of Arizona (2003).

[26] A. C. Chow, B. P. Zeigler, Abstract simulator for the parallel DEVS formalism,
in: S. Editions (Ed.), Proceedings of AIS94, 1994.

[27] G. Wainer, S. Daicz, A. Troccoli, Experiences in modeling and simulation of
computer architectures in DEVS, Trans. Soc. Comput. Simul. Int. 18 (4) (2001)
179–202.

[28] B. P. Zeigler, S. Vahie, DEVS formalism and methodology - unity of conception
diversity of application, in: S. Editions (Ed.), Proceedings of the 1993 Winter
Simulation Conference, 1993, pp. 573–579.

[29] B. P. Zeigler, DEVS theory of quantized systems, Tech. rep., aCIMS Laboratory,
University of Arizona (2004).

[30] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, elements of
reusable object-oriented software, Addison-Wesley, 2002.

[31] F. Corno, P. Prinetto, M. S. Reorda, Testability analysis and ATPG on
behavioral RT-level VHDL, in: Proceedings of the IEEE International Test
Conference, 1997.

[32] O. Goloubeva, M. S. Reorda, M. Violante, Behavioral-level fault models
comparison: An experimental approach, in: Proceedings of the IEEE Computer-
aided Technologies in Applied Mathematics Conference, 2002.

36

[33] P. Bisgambiglia, D. Federici, J.-F. Santucci, Fault modeling and simulation at
behavioral level, in: S. Editions (Ed.), Proceedings of LTAW01, 2001, pp. 45–50.

[34] L. Capocchi, F. Bernardi, D. Federici, P. Bisgambiglia, Transformation of
VHDL descriptions into DEVS models for fault modeling and simulation, in:
Proceedings of the IEEE Systems, Man and Cybernetics Conference, 2003, pp.
1205–1211.

[35] High time for high-level test generation, 1999, pp. 1112–1119, panel at the IEEE
International Test Conference.

[36] C. Paoli, M. Nivet, F. Bernardi, L. Capocchi, Simulation-based validation of
VHDL descriptions using constraints logic programming, in: Proceedings of the
5th IEEE Workshop on RTL and High Level Testing (WRTLT’04), 2004, osaka,
Japan.

37

