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The irreversible evolution of a microscopic system under 
measurement is a central feature of quantum theory. From an 
initial state generally exhibiting quantum uncertainty in the 
measured observable, the system is projected into a state in 
which this observable becomes precisely known. Its value is 
random, with a probability determined by the initial system’s 
state. The evolution induced by measurement (known as ‘state 
collapse’) can be progressive, accumulating the effects of 
elementary state changes. Here we report the observation of 
such a step-by-step collapse by measuring non-destructively 
the photon number of a field stored in a cavity. Atoms 
behaving as microscopic clocks cross the cavity successively. 
By measuring the light-induced alterations of the clock rate, 
information is progressively extracted, until the initially 
uncertain photon number converges to an integer. The 
suppression of the photon number spread is demonstrated by 
correlations between repeated measurements. The procedure 
illustrates all the postulates of quantum measurement (state 
collapse, statistical results and repeatability) and should 
facilitate studies of non-classical fields trapped in cavities.  

The projection of a microscopic system into an eigenstate of 
the measured observable reflects the change of knowledge 
produced by the measurement. Information is either acquired in a 
single step, as in a Stern–Gerlach spin-component measurement1, 
or in an incremental way, as in spin-squeezing experiments2,3. A 
projective measurement is called ‘quantum non-demolition’4–8 
(QND) when the collapsed state is invariant under the system’s 
free unitary evolution. Sequences of repeated measurements then 
yield identical results and jumps between different outcomes 
reveal an external perturbation7,8. 

Various QND measurements have been realized on massive 
particles. The motional state of a trapped electron has been 
measured through the current induced in the trapping electrodes9. 
The internal state of trapped ions has been read out, directly by 
way of laser-induced fluorescence10, or indirectly through 
quantum gate operations entangling them to an ancillary ion11. 
Collective spin states of an atomic ensemble have been QND-
detected through its dispersive interaction with light12. 

QND light measurements are especially challenging, as 
photons are detected with photosensitive materials that usually 
absorb them. Photon demolition is however avoidable13. In non-
resonant processes, light induces nonlinear dispersive effects14 in a 
medium, without real transitions. Photons can then be detected 
without loss. Dispersive schemes have been applied to detect the 
fluctuations of a signal light beam by the phase shifts it induces on 
a probe beam interacting with the same medium15,16. Neither these 

methods, nor alternative ones based on the noiseless duplication of 
light by optical parametric amplifiers17,18, have been able, so far, 
to pin down photon numbers. 

Single-photon resolution requires an extremely strong light–
matter coupling, optimally achieved by confining radiation inside 
a cavity. This is the domain of cavity quantum electrodynamics19–

21, in which experiments attaining single-quantum resolution have 
been performed with optical22,23 or microwave photons, the latter 
being coupled either to Rydberg atoms24–26 or to superconducting 
junctions27. In a QND experiment, cavity losses should be 
negligible during a sequence of repeated measurements. We have 
realized a superconducting cavity with a very long field damping 
time28, and used it to detect repeatedly a single photon29. Here, we 
demonstrate with this cavity a general QND photon counting 
method applied to a microwave field containing several photons. It 
implements a variant of a procedure proposed in refs 30 and 31, 
and illustrates all the postulates of a projective measurement1. 

A stream of atoms crosses the cavity and performs a step-by-
step measurement of the photon number-dependent alteration of 
the atomic transition frequency known as the ‘light shift’. We 
follow the measurement-induced evolution from a coherent state 
of light into a Fock state of well-defined energy, containing up to 
7 photons. Repeating the measurement on the collapsed state 
yields the same result, until cavity damping makes the photon 
number decrease. The measured field energy then decays by 
quantum jumps along a staircase-like cascade, ending in vacuum. 

In this experiment, light is an object of investigation 
repeatedly interrogated by atoms. Its evolution under continuous 
non-destructive monitoring is directly accessible to measurement, 
making real the stochastic trajectories of quantum field Monte 
Carlo simulations20,32. Repeatedly counting photons in a cavity as 
marbles in a box opens novel perspectives for studying non-
classical states of radiation. 

An atomic clock to count photons 
To explain our QND method, consider the thought experiment 
sketched in Fig. 1a. A photon box, similar to the contraption 
imagined in another context by Einstein and Bohr1, contains a few 
photons together with a clock whose rate is affected by the light. 
Depending upon the photon number n, the hand of the clock 
points in different directions after a given interaction time with the 
field. This time is set so that a photon causes a π/q angular shift of 
the hand (here q is an integer). There are 2q values (0, 1, …2q−1) 
of the photon number corresponding to regularly spaced directions 
of the hand, spanning 360° (Fig. 1a shows the hand’s positions for 



2 

q = 4 and n = 0, 1, 3). For n ≥ 2q, the readings periodically repeat 
and the clock measures n modulo 2q. 

This description is translatable into the atomic world (Fig. 1b). 
The evolution of a two-level atom crossing the cavity C is 
described as the rotation of a spin evolving on a Bloch sphere33. 
The atomic levels, |±z 〉, correspond to up and down spin states 
along the O–z direction. Before entering C, the spin is rotated by a 
pulse R1 from |+z〉 into state |+x〉 = (|+z〉 + |−z〉)/√2, represented by 
a vector along O–x. This vector then starts to rotate in the x–O–y 
equatorial plane, in analogy with the ticking of the hand in the 
thought experiment. The atomic flight time across C is adjusted to 
result, per photon, in a π/q light-induced rotation of the spin. The 
2q final spin states |+n〉 correlated with 0 ≤ n < 2q correspond to 
vectors reproducing the positions of the classical clock’s hand. 

In general, the photon number exhibits quantum uncertainty. 
The field, initially in a superposition ∑ncn|n〉 of Fock states |n〉, 
gets entangled with the spin, the final atom–field state becoming 
∑ncn|+n〉⊗|n〉. The spin points in a fuzzy direction that the QND 
measurement is designed to pin down. As an example, consider a 
field in a coherent state34 of complex amplitude α defined by the 
C-numbers cn = exp(−|α|2/2)(αn/√n!). Its photon number 
distribution, P0(n) = |cn|2, is poissonian with an average photon 
number n0 = |α|2 and a spread Δn = √n0. 

If we could determine the final atom state, the clock’s delay—
and hence n—would be read in a single measurement. This is 
however forbidden by quantum theory35. The 2q spin states are not 
mutually orthogonal (except for q = 1, see below) and cannot be 
unambiguously distinguished (this ambiguity is exploited in 
quantum cryptography36). Only partial information can be 
extracted from a spin, namely its projection along a direction O–u 
in the x–O–y plane making an arbitrary angle φ with O–x. 

The angle between O–u and the direction of the |+n〉 spin state 
is nπ/q−φ. The conditional probabilities for detecting the |±u〉 
states when C contains n photons are 
P(j,φ|n) = [1 + cos(nπ/q − φ + jπ)]/2 (using quantum information 
notation33, we assign to the +/− spin states the values j = 0/1 and 

rename |j,φ〉 the states |±u〉). Measuring the spin along O–u is 
performed by submitting it, after cavity exit, to a pulse R2 whose 
phase is set to map O–u onto O–z (Fig. 1b). This rotation is 
followed by the measurement of the atom’s energy, equivalent to a 
spin detection along O–z. The combination of R1 and R2 is a 
Ramsey interferometer37. The probabilities for finding j = 0 and 1 
along O–z oscillate versus φ, which is a typical feature of quantum 
interference (Methods). 

The q = 1 case is a notable exception for which a single 
measurement yields complete information. There are then only 
two opposite hand positions on the atomic clock dial, 
corresponding to orthogonal states. Ideally, a single detection pins 
down n modulo 2, yielding the photon number parity. For weak 
fields with n0 << 1, the probability for n > 1 is negligible and the 
parity defines n. The telegraphic signals29 obtained by detecting a 
stream of atoms reveal the photon number evolution, with 
quantum jumps between n = 0 and 1 as the field randomly 
exchanges energy with the cavity walls. For larger fields, though, 
information must be extracted in a subtler way. 

Progressive pinning-down of photon number 
The random outcome of a spin detection modifies our knowledge 
of the photon number distribution. The conditional probability 
P(n|j,φ) for finding n photons after detecting the spin value j along 
O–u is related to the inverse conditional probability P(j,φ|n) by 
Bayes’ law38: 

P(n|j,φ) = P0(n)P(j,φ|n)/P(j,φ) = P0(n)[1 + cos(nπ/q − φ + jπ)]/2P(j,φ) (1) 

where P(j,φ) = ∑nP(j,φ|n)P0(n) is the a priori probability for j. 
This formula directly follows from the definition of conditional 
probabilities. It can also be derived from the projection postulate1. 
After detection of the spin in state |j,φ〉, the entangled atom–field 
system collapses into [∑ncn〈j,φ|+n〉|n〉]⊗|j,φ〉/√P(j,φ). This entails 
that the photon number probability is (up to a global factor) 
multiplied by |〈j,φ|+n〉|2 = P(j,φ|n). 

Equation (1) embodies the logic of our QND procedure. The 
spin measurement has the effect of multiplying P0(n) by P(j,φ|n), 
which is a periodic function vanishing for specific values of n 
when φ is properly adjusted. If we choose φ = πp/q (where p is an 
integer), O–u points along the direction of |+p〉. This entails 
P(j = 1,φ|p) = P(j = 0, φ|p + q) = 0. Detecting the spin in 1 (resp. 
0) excludes the photon number n = p (resp. p+q) as these 
outcomes are forbidden for the corresponding Fock states. One of 
the probabilities for finding n = p or n = p + q is cancelled, while 
the other is enhanced (when normalization is accounted for). At 
the same time, the probabilities of other photon numbers are 
modified according to equation (1). 

This decimation is robust against imperfections. In a realistic 
situation, the theoretical probability P(j,φ|n) becomes 
P(exp)(j,φ|n) = [A + Bcos(nΦ − φ + jπ)]/2, where A and B are the 
Ramsey interferometer fringes offset and contrast, somewhat 
different from 1. The phase shift per photon Φ may also slightly 
depart from π/q. Before a QND measurement, A, B and Φ are 
determined by independent calibration. The limited contrast of the 
interferometer corresponds to a statistical uncertainty in the final 
atomic state. The atom and the field must then be described by 
density operators instead of pure states. The formula (1) remains 
valid with P(j,φ|n) replaced by P(exp)(j,φ|n). This is justified by 
Bayes’ law or by generalization of the measurement postulate to 
statistical mixtures33. 

Figure 1 Principle of QND photon counting. a, Thought experiment 
with a clock in a box containing n photons. The hand of the clock 
undergoes a π/4 phase-advance per photon (n = 0, 1, 3 represented).  
b, Evolution of the atomic spin on the Bloch sphere in a real 
experiment: an initial pulse R1 rotates the spin from O–z to O–x (left). 
Light shift produces a π/4 phase shift per photon of the spin’s 
precession in the equatorial plane. Directions associated with n = 0 to 7 
end up regularly distributed over 360° (centre). Pulse R2 maps the 
direction O–u onto O–z, before the atomic state is read out (right). 
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In order to obtain more information, we repeat the process and 
send a sequence of atoms across C. This results in a step-by-step 
change of the photon number distribution. From one atom to the 
next, we vary φ. Calling φ(k) the detection angle for the kth atom 
and j(k) its spin reading, the photon number distribution after N 
atoms becomes:  

 ( ) ( ) ( )0

1

cos ( ) ( )
N

N
k

P n
P n A B n k j k

Z
Φ − φ

=

= + + π⎡ ⎤⎣ ⎦∏  (2) 

where Z enforces normalization. For an efficient decimation, we 
alternate between detection directions nearly coinciding with the 
vectors associated with q non-orthogonal |+p〉 states. Each atom 
has a chance to reduce the probability of a photon number 
different from the one decimated by its predecessor. After a finite 
number of steps, numerical simulations predict that a single n 
value (modulo 2q) survives. 

Observing the field-state collapse 
We have applied this procedure to a coherent microwave field at 
51.1 GHz stored in an ultrahigh-Q Fabry–Pérot cavity made of 
niobium-coated superconducting mirrors28. Our set-up is described 
in ref. 29. The cavity has a very long damping time Tc = 0.130 s. It 
is cooled to 0.8 K (average thermal photon number nt = 0.05). The 
field is prepared by coupling a short microwave pulse into C (by 
way of diffraction on the mirrors’ edges28). Its photon number 
distribution and average photon number, n0 = 3.82 ± 0.04, are 
inferred from the experimental data (see below). Our single-
photon-sensitive spin-clocks are circular Rydberg atoms of 

rubidium. They cross C successively, separated on average by 
2.33 × 10-4 s. Parameters are adjusted to realize a ~π/4 clock shift 
per photon (Methods), corresponding to eight positions of the spin 
on the Bloch sphere (Fig. 1b). This configuration is adapted to 
count photon numbers between 0 and 7. For n0 = 3.82, the 
probability for n ≥ 8 is 3.5%. 

Four phases φi (i = a, b, c, d), corresponding to directions 
pointing approximately along the spin states associated with n = 6, 
7, 0, 1, are used, in random order, for successive atoms (Methods). 
A sequence of j values can be decoded only when combined with 
the corresponding phase choices, in analogy with the detection 
basis reconciliation of quantum key distribution protocols36. 
Figure 2a shows the data from the first 50 detected atoms, 
presented as (j, i) doublets, for two independent detection 
sequences performed on the same initial field. 

From these real data, we compute the products of functions 
ΠN(n) = ∏(k = 1…N) [A + Bcos(nΦ − φi(k) + j(k)π)]. The A, B, Φ and 
φi values are given by Ramsey interferometer calibration 
(Methods). The evolutions of ΠN(n), displayed as functions of n 
treated as a continuous variable, are shown in Fig. 2b for N 
increasing from 1 to 50. The ΠN(n) functions converge into 
narrow distributions whose widths decrease as more information is 
acquired. These functions are determined uniquely by the 
experimental data. Their evolution is independent of any a priori 
knowledge of the initial photon distribution. The data sequence 
itself, however, depends of the unknown state of the field, which 
the measurement reveals. 

Figure 2 Progressive collapse of field 
into photon number state. a, Sequences 
of (j, i) data (first 50 atoms) produced by 
two independent measurements. b, 
Evolution of ∏N(n) for the two sequences 
displayed in a, when N increases from 1 to 
50, n being treated as a continuous variable 
(integral of ΠN(n) normalized to unity). c, 
Photon number probabilities plotted versus 
photon and atom numbers n and N. The 
histograms evolve, as N increases from 0 
to 110, from a flat distribution into n = 5 
and n = 7 peaks. 
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Inserting ΠN(n) into equation (2) and extending the procedure 
to N = 110, we obtain the evolution of the photon number 
histograms for these two realizations (Fig. 2c). These histograms 
show how our knowledge of the field state evolves in a single 
measuring sequence, as inferred from baysian logic. The initial 
distributions (P0(n) = 1/8) are flat because the only knowledge 
assumed at the beginning of each sequence is the maximum 
photon number nmax. Data are analysed after the experiment, but 
PN(n) could also be obtained in real time. The progressive collapse 
of the field into a Fock state (here |n = 5〉 or |n = 7〉) is clearly 
visible. Information extracted from the first 20 to 30 atoms leaves 
an ambiguity between two competing Fock states. After ~50 
atoms (detected within ~0.012 s), each distribution has turned into 
a main peak with a small satellite, which becomes totally 
negligible at the end of the two sequences. 

Reconstructing photon number statistics 
Repeatedly preparing the field in the same coherent state, we have 
analysed 2,000 independent sequences, each made of 110 (j, i) 
doublets recorded within Tm ≈ 0.026 s. This measuring time is a 
compromise. Short compared to Tc, it is long enough to allow for a 
good convergence of the photon number distribution. We have 
computed the mean photon number 〈n〉 = ∑nnPN(n) at the end of 
each sequence. The histogram of these 〈n〉 values, sampled in bins 
of width 0.2, is shown in Fig. 3. Peaks at integers appear on top of 
a small background due to sequences that have not fully collapsed, 
or that have been interrupted by field decay. 

The histogram of the peaks in Fig. 3 directly reveals the 
photon number probability distribution of the initial field, 
modified by damping during the measurement. Disregarding the 
23% background, we fit the experimental histogram of integer 
values to a Poisson law with 〈n〉ave = 3.46 ± 0.04 (blue circles), and 
normalized to 0.77 (probability of fully converged sequences). 
This is the expected distribution for a coherent field with an initial 
mean n0 = 3.82 ± 0.04, after decay during the time Tm/2 ≈ Tc/10. 
Remarkably, the non-converged sequences do not introduce any 
noticeable bias in the distribution of fully collapsed 
measurements. The experimental excess probability of 
0.019 ± 0.006 for n = 0 is well understood. It is due to the 
measurement being performed modulo 8, which attributes n = 8 

events (0.012 probability) to the n = 0 bin. The near-perfect 
agreement of the fit with the experiment provides a direct 
verification of the quantum postulate about the probabilities of 
measurement outcomes. 

Repeated measurements and field jumps 
Repeatability is another fundamental feature of an ideal QND 
measurement. To test it, we follow the evolution of the field state 
along sequences made of ~2,900 atoms. We determine PN(n) and 
〈n〉 up to N = 110. We then drop the first atom and replace it with 
the 111st one, resuming the calculation with a flat initial 
distribution and obtain a new 〈n〉. We repeat the procedure atom 
by atom. We thus decode continuously a single field history 
versus time. Measurements separated by more than Tm exploit 
independent information. 

Figure 4a shows the evolution of 〈n〉 over 0.7 s for the two 
sequences whose initial data are displayed in Fig. 2a. In each case, 
〈n〉 evolves quickly towards an integer (5 or 7). This collapse is 

Figure 3 Reconstructed photon number distribution. Histogram of 
〈n〉 values obtained from 2,000 QND collapse sequences (each 
involving N = 110 atoms). The 〈n〉s are sampled in intervals of 0.2. The 
error bars are the statistical standard deviations. The peaks at integer 
numbers reveal Fock states. The background is due to incomplete or 
interrupted collapses. Data shown as blue circles are obtained by fitting 
the distribution of integer number peaks to a Poisson law, yielding 
〈n〉ave = 3.46 ± 0.04 (the blue line represents a continuous Poisson 
distribution joining the circles as a guide for the eye). 

Figure 4 Repeated QND 
measurements. a, Mean 
photon number 〈n〉 followed 
over 0.7 s for the two 
sequences whose collapse is 
analysed in Fig. 2. After 
converging, 〈n〉 remains steady 
for a while, before successive 
quantum jumps bring it down 
to vacuum. Inset, zoom into the 
n = 5 to 4 jump, showing that it 
is detected in a time of ~0.01 s. 
b, Four other signals recording 
the evolution of 〈n〉 after field 
collapse into n = 4. Note in the 
leftmost frame the 
exceptionally long-lived n = 4 
state, and in the rightmost 
frame the n = 1 to 2 jump 
revealing a thermal field 
fluctuation. 

a

b
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followed by a plateau, corresponding in these two realizations to 
~2 independent measurements. Eventually, cavity damping results 
in a photon loss: a quantum jump occurs, decreasing 〈n〉 by one. 
This event is recorded after a delay of a fraction of Tm with respect 
to the real jump time, as several atoms are required after the 
quantum leap to build up the new photon number probability. 
Note in the inset of Fig. 4a that it takes about 0.01 s for the atoms 
to ‘realize’ that a jump has occurred. The staircase-like evolution 
of the field proceeds in this way down to vacuum. Figure 4b 
presents four other examples of signals following a collapse into 
n = 4. The randomness of the step durations is typical of quantum 
dynamics. In one of these recordings (leftmost panel), the n = 4 
step lasts 0.235 s, corresponding to ~9 independent QND 
measurements 

The lifetime of a n-Fock state, Tc/n at T = 0 K (ref. 39), is 
reduced by thermal effects to Tc/[n + nt(2n + 1)], that is, ~0.029 s, 
~0.023 s and ~0.017 s for n = 4, 5 and 7, respectively. The 
statistical analysis of 2,000 QND sequences, each of 0.7 s 
duration, provides a detailed description of the dynamical 
evolution under cavity relaxation of Fock states with n up to 7 
(J.B. et al., manuscript in preparation). The sequences of Fig. 4, in 
which some Fock states survive much longer than their lifetimes, 
are relatively rare events. We have selected them to demonstrate 
the ability of the QND procedure to generate and repeatedly 
measure large n-Fock states of radiation in a cavity. 

Beyond energy measurements 
Our QND source of Fock states operates in a way different from 
previous methods based on resonant25,40 or Raman41 processes in 
cavity quantum electrodynamics, which have so far been limited 
to smaller photon numbers (n = 1 or 2). This QND measurement 
opens novel perspectives for the generation of non-classical states 
of light. If the initial photon number distribution spans a range of 
n values larger than 2q, the decimations induced by successive 
atoms do not distinguish between n and n + 2q. The field then 
collapses into a superposition of the form ∑qcn+2q|n + 2q〉. For 
instance, c0|0〉 + c2q|2q〉 represents a field coherently suspended 
between vacuum and 2q photons. This superposition of states with 
energies differing by many quanta is a new kind of ‘Schrödinger 
cat’ state of light. 

Superpositions of field states with the same amplitude but 
different phases—‘Schrödinger cats’ of a different kind—are also 
generated in this experiment. As the photon number converges, its 
conjugate variable, the field’s phase, gets blurred. After the first 
atom’s detection, the initial state collapses into a superposition of 
two coherent states with different phases31,42. Each of these 
components is again split into two coherent states by the next 
atom and so on, leading to complete phase-uncertainty when the 
photon number has converged31. The evolution of the Schrödinger 
cat states generated in the first steps of this process could be 
studied by measuring the field Wigner function43. Decoherence of 
superpositions of coherent states44,45 containing many photons 
could be monitored in this way. 

METHODS SUMMARY 
The preparation and detection of circular Rydberg atoms, the 
cavity and the Ramsey interferometer are described 
elsewhere20,26,29. The |±z〉 states are the circular Rydberg levels of 
rubidium with principal quantum numbers 51 and 50 (transition 
frequency ~51.1 GHz). The theoretical phase shift per photon20,26 
is Ω2t/2δ, where Ω/2π = 50 kHz is the vacuum Rabi frequency at 

cavity centre, δ/2π is the atom–cavity detuning and t =  3 × 10-5 s 
is the effective atom–cavity interaction time. It is defined as 
t = (π/2)1/2w/v, where w is the waist of the gaussian cavity field 
mode (w = 6 mm) and v the atomic velocity (v = 250 m s−1). This 
effective time is obtained by averaging the spatial variation of the 
square of the atom–field coupling as the atom crosses the cavity 
mode20,26. 

More details about the experimental settings, including the 
determination of the A and B parameters, the fine tuning of the 
phase shift per photon, Φ, and the adjustment of the four phases of 
the Ramsey interferometer are given in the Methods section. We 
also analyse the adiabaticity of the atom–field coupling, which is 
an essential feature of our measurement. We describe the 
generation of sequences of atoms crossing the cavity one at a time 
with a well-defined velocity, and we discuss the effect of rare 
multi-atom events on the detection signals. We also explain why 
the sequences of detection directions φi occur randomly in a 
measuring sequence. We conclude by discussing alternative 
strategies to pin down the photon number non-destructively. 

METHODS 
Experimental settings 
To calibrate the Ramsey interferometer, we send atoms prepared 
in |−z〉 across the set-up, with C empty. We measure the 
probability P(j = 0,φ) for detecting the atom in |+z〉 as a function of 
the relative phase φ between R1 and R2. From the Ramsey fringes, 
we obtain the phase origin φ = 0 corresponding to a detection 
along the |+0〉 spin direction. 

Tuning of δ is performed by moving the cavity mirrors with 
piezoelectric actuators. In theory, a π/4 phase shift corresponds to 
δ/2π = 300 kHz. We set the detuning close to this value (with a 
15 kHz uncertainty due to imperfect knowledge of the atomic 
transition frequency affected by small residual Stark and Zeeman 
shifts). With this detuning, the photon-induced phase shift is, 
within 3%, a linear function of n for n = 0 to 7. 

By Stark-shifting the atomic spin phase with a short electric 
field pulse applied just before R2 and adjusted to different 
amplitudes, we translate the fringes and set φ to four different 
values, close to lπ/4 (l = −2, −1, 0 and 1). After preliminary 
settings of Φ and φi, we refine our calibration. We inject a small 
coherent field in C (n0 = 1.2). This field has a negligible 
probability for n > 4. For each φi, we record the fraction η0(φi) of 
spins found in |+z〉 on a sequence of atoms crossing C in a time 
short compared to Tc. Repeating the sequence many times, we find 
distributions of η0(φi)s, which we fit as a sum of five peaks 
centred on the discrete values equal to 
P(exp)(j = 0,φi|n) = [A + Bcos(nΦ − φi)]/2, with n = 0 to 4. From a 
best fit of the η0 distributions, we get the values 
A = 0.907 ± 0.004, B = 0.674 ± 0.004, Φ/π = 0.233 ± 0.004, φi/π =
 −0.464 ± 0.013, −0.229 ± 0.009, −0.015 ± 0.007 and 
+0.261 ± 0.006 (i = a, b, c, d). These values are inserted in 
equation (2). The fringe contrast B is reduced below 1 by 
experimental imperfections (stray fields, detection errors, two-
atom events, see below). The other six parameters A, Φ/π and φi/π 
(i = a, b, c, d) are close to their ideal values (1, ¼, −½, −¼, 0, ¼, 
respectively). 
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Adiabaticity 
The adiabatic variation of the coupling as the atoms cross the 
gaussian profile of the cavity mode keeps the atomic emission rate 
extremely low. The theoretical probability that an atom deposits 
an additional photon when the cavity contains a coherent field 
with n0 = 3.82 is below 1.3 × 10−6. Consistent with this very small 
value, we found on analysing our experimental data that the 
average number of photons deposited in C by a sequence of 
~2,900 atoms is negligible compared to nt. 

Atomic sequences 
They are realized by pulsing the Rydberg atom preparation. The 
atoms are excited from a thermal atomic beam, velocity selected 
by optical pumping, at a rate of 1.4 × 104 pulses per second. The 
velocity spread, Δv = ±1 m s−1 around 250 m s−1, has a negligible 
effect on the Ramsey fringe contrast. In order to limit the number 
of events with two atoms per pulse, the intensity of the exciting 
lasers is kept low (average number of detected Rydberg atoms per 
pulse is  0.3, detection efficiency 50%). Undetected atoms do not 
affect the photon number distribution. A single atom is counted in 
22% of the preparation pulses, while 3% of them contain a 
detected atom pair. When two atoms (whether detected or not) 
cross C together there is a slight reduction of the interferometer 
contrast, owing to small cavity-mediated interactions46 between 
the atoms. This reduction is taken into account in the measured B 
value. All detected events with one or two atoms per pulse are 
compiled independently in the data analysis. When three atoms are 
in C together the fringe contrast is strongly reduced, but the 
probability of these events is small (2% probability for preparing 3 
atoms or more per pulse). 

Randomness of detection directions 
The interferometer phase is changed from pulse to pulse, going 
cyclically from φa to φd. As the presence of one (or two) atoms in 
a given pulse is random, we cannot predict which phase will 
correspond to the next observed atom. We acquire this knowledge 
by detecting the atom, and i(k) is thus a randomly measured 
variable. 

Other QND measurement strategies 
Efficient photon number decimation could be obtained by 
alternative methods. As suggested in refs 30 and 31, we could 
change the atom–cavity interaction time (and hence the phase shift 
per photon) by detecting randomly atoms from a thermal atomic 
beam, without velocity selection. The optimal data acquisition 
procedure consists in applying to successive atoms a sequence of 
π, π/2,π/4 .... phase shifts per photon, while adjusting φ for each 
spin, based on the result of the previous measurement. This 
expresses n in binary code, each atom providing a bit of 
information20,47. The required number of atoms per measuring 
sequence is then minimal, equal to the smallest 
integer ≥ log2(nmax + 1). This ideal strategy requires however a 
deterministic beam of atoms, with perfect Ramsey fringe contrast 
and 100% detection efficiency. 
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