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Dishes of the day 

•  Part I  -  Fitness Landscapes (Sébastien Verel)

•  Definition of Fitness Landscape  
•  Types of Fitness Landscapes

•  Multimodal
•  Rugged
•  Neutral

•  Measures to quantify multimodality and  
    ruggedness
•  Measures to study neutrality

•  Part II  -  Problem Difficulty in GP (Leonardo Vanneschi)

• Binding between Fitness Landscapes and 
   Problem Difficulty

• Measures of difficulty applied to GP



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionFitness lands
ape from biologi
al s
ien
e (Wright1930 [30℄) :Modelisation of spe
ies evolutionUsed to model dynami
alsystems :statisti
al physi
,mole
ular evolution,e
ology, et
Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionIn 
ombinatorial optimization
Fitness lands
ape (S,V, f ) :

S : set of potential solutions,
V : S → 2S : neighborhoodfun
tion,f : S → IR : �tness fun
tion.

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionDe�nition of neighborhood
V : S → 2S : neighborhood fun
tion
∀x ∈ S,

V(x) = {y ∈ S | y = op(x)}
V(x) = {y ∈ S | d(y , x) ≤ 1}

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionGoal of the �tness lands
apes studythe "geometry" of �tness lands
ape 
orresponds to thedynami
 of a lo
al sear
h algorithmthe geometry is linked to the problem hardness :probability or time to have a �tness level for a given lo
alheuristi
Study of the geometry of the lands
ape allows to study thedi�
ulty.Two main geometries :multimodal / ruggednessneutralSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionMultimodal Fitness lands
apesLo
al optima :no neighbor solution with higher �tness valueAdaptive walk : (s0, s1, . . .) where si+1 ∈ V(si ) and f (si ) < f (si+1)Attra
tion basin of sopt :set of solutions of adaptive walks to sopt
Search space

Fitness

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionMultimodal Fitness lands
apes
Search space

Fitness

Optimisation di�
ulty :number and size of attra
tivebassins (Garnier et al [8℄)The idea :if the size of attra
tive bassinof global optima is smallthe problem is di�
ult tooptimizeSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionRugged/smooth �tness lands
apes
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Auto
orrelation of
(f (s1), f (s2), . . .) along a randomwalk (s1, s2, . . .) (Weinberger1990 [29℄) :
ρ(n) =

E [(f (si )− f̄ )(f (si+n)− f̄ )]var(f (si ))auto
orrelation length τ = 1
ρ(1)small τ : rugged lands
apelong τ : smooth lands
apeSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionResults on rugged �tness lands
apes (Stadler 96 [23℄)
Problem parameter ρ(1)symmetri
 TSP n number of towns 1− 4nanti-symmetri
 TSP n number of towns 1− 4n−1Graph Coloring Problem n number of nodes 1− 2α

(α−1)n
α number of 
olorsNK lands
apes N number of proteins 1− K+1NK number of epistasis linksRuggedness de
reases with the size of thoses problems :small variation has less e�e
t on the �tness valuesSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionMultimodality, ruggedness, epistasis ?
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multimodality/ruggedness :
onje
ture (Stadler 92 [24℄, Gar
ia 97[7℄) :on average, 1 lo
al optimum persphere of rayon τepistasis/ruggedness :NK �tness lands
apes (Kau�man [14℄)
τ = −1ln(1−K+1N )

et d = Nlog2(K+1)2(K+1)But some 
ounterexamples...
∑Ni=1 exp(i)xi et ∏Ni=1 xi... open question ?Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionFitness Distan
e 
orrelation (FDC) (Jones 95 [13℄)Correlation between distan
e to global optimum and �tness
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DistanceExperimental s
ale :
ρ < −0.15, easy optimization
ρ > 0.15, hard optimization
−0.15 < ρ < 0.15, unde
ided zoneSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionFitness lands
ape and 
rossover ?Crossover of 
omplementary strings (Culberson 94 [6℄) :
omparison with mutation-lands
apeGeneralisation of graph theory :Hypergraph of Git
ho� [9℄P-stru
ture of Stadler [25℄
rossover with a random solutionSpa
e of pair of solutions (Jones, Defoin [19℄ : study of linearGP 
rossover)Maybe the s
hemata theorem or the study of distan
es betweenpairs give better results ?...Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionSynthesisMetaphor from the biologyStudy of multimodal �tness lands
apes :
→ optimization algorithms (SA, Tabu Sear
h, Island Model...)Goal of study of �tness lands
apes :Links with problem hardness : to make better 
hoi
es(mapping, �tness fun
tion, operators), design of algorithms,et
.Proof of 
onvergen
e (with speed of 
onvergen
e)Autoadaptation of parameters of resear
hLimits :1 operator = 1 lands
ape ?Crossover ? and link with population ?Edges : usefull information ?Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral Fitness Lands
apesNeutral theory (Kimura ≈ 1960 [15℄)Theory of mutation and random driftA 
onsiderable number of mutations have no e�e
ts on �tnessvalues
genotypes space

Fitness plateausneutral degreeneutral networks[S
huster 1994 [22℄,RNA folding℄Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral �tness lands
apesCombinatorial optimizationRedundant problem (symetries, ...) (Goldberg 87 [10℄)Problem �not well� de�ned or dynami
 environment (Torres 04[12℄)
genotypes space

Fitness Appli
ative problems :Robot 
ontrolerCir
uit designgeneti
 programmingProtein Foldinglearning problemsSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskWhat optimizers do with neutrality ?
Three possibilities :De
rease the neutralityUse a spe
i�
 metaheuristi
In
rease the neutrality with redundant genetype/phenotypemapping

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDe
reasing the neutrality (minLA : E. Rodriguez, PPSN05[20℄)Redundant en
oding is a drawba
k, la
k of informationgraph G = (V ,E ) : labeled ea
h nodesLA(G , ϕ) =
∑

(u,v)∈E |ϕ(u) − ϕ(v)| ∈ IN�LA represents a potential drawba
k be
ause di�erent linear arrangments 
anresult in the same total edge length. This in
omplete information 
an preventsthe sear
h pro
ess from �nding better solution.�
φ(G , ϕ) = LA(G , ϕ) + Inorm(G , ϕ)with Inorm(G , ϕ) ∈ [0, 1]Inorm is higher when the di�erents 
ould be optimizedInorm makes di�erent between equivalent labellingSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskUse a spe
i�
 metaheuristi
Neutrality of the problem 
an not be 
hangedNet
rawler (L. Barnett [2℄)step ← 0Choose initial solution s ∈ Srepeat
hoose s ′ ∈ V(s) randomlyif f (s) ≤ f (s ′) thens ← s ′end ifstep ← step +1until stepMax ≤ stepGood results on ǫ-
orrelated lands
apes :low probability to �nd a better solutionhigh probability to �nd a solution with same �tnessSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskUse a spe
i�
 metaheuristi
Neutrality of the problem 
an not be 
hangedExtrema sele
tion (Stewart 2001 [26℄) :�It is su�
ient to re
ognise that the neutrality of a �tness fun
tion maybe a signi�
ant issue when evolving solutions. With this in mind, theremainder a novel modi�
ation to the standard GA whi
h is spe
i�
allydesigned to take in advantage of Neutral Network�When the solutions are in the same plateaus (at 90% frombest solution)
−→ sele
tion a

ording to the distan
e from the 
entroide ofthe populationSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskIn
rease the neutrality of the lands
ape with a redundant
odingEs
ape from lo
al optima
rossing a Barrier (Nimwegen et Crut
h�eld 99 [18℄) :�tness barrier : de
reases the �tness by 
roosing a valleyEntropy barrier : la
k of information on a plateausen Cartesian GP (Vassilev et al 00 [27℄) :�(...) the role of lands
ape neutrality for adaptive evolution is to provide apath for 
rossing lands
ape regions with poor �tness.�Duality (Collard, Clergue 00 [5℄) : add one bit and use aspe
i�
 operatorf (x0) = f (x), f (x1) = f (x̄) et op(x1) = x̄0Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskWhat do we do ?
In our knowledge, there is no de�nitive answerabout neutrality / problem hardnessCertainly, it is depend on the nature of neutrality of the �tnesslands
ape

⇒ A better des
ription of the geometry of neutral �tnesslands
apes is needed
Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral sets
Search space

Fitness

Set of solution with �tness value  0
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral sets
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Performan
e of randomsear
hthe tail of the distribution isan indi
ator of di�
ulty :the faster the de
ay, theharder the problemBut do not 
are about theneighborhood relation

Sébastien Verel, Leonardo Vannes
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskMake a roundabout with Sir F. Galton
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskMake a roundabout with Sir F. Galton
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskMake a roundabout with Sir F. Galton
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskFitness CloudCombinatorial optimization
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hi Fitness lands
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskFitness 
loudMeasure of evolvability
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskFitness 
loudPredi
tion of evolution (CEC 2003)
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral �tness lands
apes
Neutral sets : set of solution with same �tness → no stru
tureFitness 
loud : neighborhood relation between neutral setsIntrodu
tion of neighborhood struture on neutral sets →Neutral Networks

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral networks (S
huster 1994 [22℄)
genotypes space

Fitness

Fitness

Reseau de Neutralite

Portes

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDe�nitionsA test of neutrality is a predi
ateisNeutral : S × S → {true, false}For example, isNeutral(s1, s2) is true if :f (s1) = f (s2).
|f (s1)− f (s2)| ≤ 1/M with M is the sear
h population size.
|f (s1)− f (s2)| is under the evaluation error.The neutral neighborhood of s is the set of neighbors whi
hhave the same �tness f (s)

Vneut(s) = {s ′ ∈ V(s) | isNeutral(s, s ′)}The neutral degree of a solution is the number of its neutralneighbors nDeg(s) = ♯(Vneut (s)− {s}).Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDe�nitionsA neutral walk : Wneut = (s0, s1, . . . , sm)for all i ∈ [0,m − 1], si+1 ∈ V(si )for all (i , j) ∈ [0,m]2 , isNeutral(si , sj) is true.A Neutral Network : graph G = (V ,E )V ⊂ S : for all s and s ′ from V , there is a neutral walk Wneutbelonging to V from s to s ′ ,Two verti
es are 
onne
ted by an edge of E if they are neutralneighbors. A �tness lands
ape is neutralif there are many solutions with high neutral degree.Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskMeasures on neutral �tness lands
apesTo introdu
e measure of neutrality,we will use three possible families of neutral �tness :based on NK �tness lands
apes :
S : bit strings of length N,f (x) = 1N ∑Ni=1 fi(xi , xj1 , . . . , xjK )
orresponding to three possible ways to introdu
e redundan
ein additive �tness fun
tionstwo parameters :one for non-linearity (epsistasis K), one for neutralitythe measures 
ould be analyse with the parameters andsupposed di�
ultySébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral NK �tness lands
apesNK (Kau�man 1993)f (s) = 1N ( 0.02 + 0.31 + 0.91 + . . . + 0.20 )NKq (Newmann et al 1998) [17℄ : q values for the termsf (s) = 1N(q−1) ( 1 + 3 + 3 + . . . + 0 )NKM (Lobo 2004 [16℄) : M di�erent valuesf (s) = 1N.ME [M. ( 0.02 + 0.31 + 0.91 + . . . + 0.20 )]NKp (Barnett 1998 [1℄) : prob. p to have 0f (s) = 1N ( 0.02 + 0.31 + 0 + . . . + 0.20 )Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskIntra network MeasuresClassi
al measures of graph to des
ribe NN :1 the size : number of nodes of NN,2 neutral degree distribution :measure of the quantity of �neutrality�3 Auto
orrelation of neutral degree during neutral walk (Bastolla03 [3℄) :
omparaison with random graph,measure of the 
orrelation stru
ture of NN
Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskIntra network MeasuresSizeClassi
al measures of graph to des
ribe NN :1 The size : number of nodes of NN,rank-size of NN in log-log :
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskSize of neutral networks
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskSize of neutral networks
When epistasis and neutrality in
rease, the random variation ofdistribution of size de
reasesThose neutral �tness lands
apes are dominated by few andlarge neutral networks :maybe, 
ould be prove with per
olation theory...
−→ important information to design sear
h algorithmsThe Zi� law is approa
hing only when epistasis and neutralityare low

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskIntra network MeasuresClassi
al measures of graph to des
ribe NN :1 the size : number of nodes of NN,2 neutral degree distribution :measure of the quantity of �neutrality�3 Auto
orrelation of neutral degree during random neutral walk(Bastolla 03 [3℄) :
omparaison with random graph,measure of the 
orrelation stru
ture of NN
Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDistribution of neutral degrees (N = 16, K = 2)
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q = 2 M = 16 p = 0.95Experimental distribution (impulse), binomial distribution (line).Sébastien Verel, Leonardo Vannes
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDistribution of neutral degrees
Barnett (98) gives the probability of neutral mutation forNKp-lands
apes :pneutr = p2(1− KN−1(1− p2)N−1) ≈ p2e−K(1−p2)For NKq and NKM lands
apes the distribution is nearly abinomial distribution

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskIntra network MeasuresClassi
al measures of graph to des
ribe NN :1 the size : number of nodes of NN,2 neutral degree distribution :measure of the quantity of �neutrality�3 Auto
orrelation of neutral degree during neutral walk (Bastolla03 [3℄) :
omparaison with random graph,measure of the 
orrelation stru
ture of NN
Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of neutral degrees
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5  10  15  20

au
to

co
rr

el
at

io
n 

rh
o(

s)

pas s

q=2
q=3
q=4

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  5  10  15  20

au
to

co
rr

el
at

io
n 

rh
o(

s)
pas s

M=16
M=32
M=48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20

au
to

co
rr

el
at

io
n 

rh
o(

s)

pas s

p=0.8
p=0.9

p=0.95
p=0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  2.5  3  3.5  4

Parametre q

K=2
K=4
K=8

K=12
K=16

 0

 0.2

 0.4

 0.6

 0.8

 1

 15  20  25  30  35  40  45

Parametre M

K=2
K=4
K=8

K=12
K=16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8  0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96  0.98  1

Parametre p

K=2
K=4
K=8

K=12
K=16

NKq land. NKM land. NKp land.Auto
orrelation 
oe�
ient of order 1Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of neutral degrees
Neutral networks are not random graphNKM lands
apes (with M �tness values) is more 
losely torandom graphepistasis parameter (K ) has more in�uen
e on the stru
ture ofneutral networks than neutrality parameter
−→ important to design sear
h algorithm

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskInter networks measures
Reseau de Neutralite

Performance

Marche neutre aleatoire

S0
S3S2

S1

1 rate of innovation(Huynen 96 [11℄) :The number of newa

essible stru
tures(�tness) per mutation2 Auto
orrelation ofevolvability [28℄ :auto
orrelation of thesequen
e
(evol(s0), evol(s1), . . .).Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskRate of innovation on neutral NK lands
apes
The number of new a

essible stru
tures (�tness) per mutationNo information on neutral NK �tness lands
apes :No link with the parametersdi�
ult to estimate for the whole �tness lands
ape

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of maximal evolvability (Verel 06 [28℄)Evolvability : ability to evolveDe�nitionAuto
orrelation of evolvability is the auto
orrelation fun
tion of theserie (evol(s0), evol(s1), evol(s2), . . .) where (s0, s1, s2, . . .) isneutral random walk on a neutral network and evol is a measure ofevolvability of a solution.Measure of evolvability :Probability to have �tter solution in the neighborhoodmaximum evolvability : the �tness of best solution in theneighborhoodSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of maximal evolvability (Verel 06 [28℄)
if 
orrelation is high, then the neutral networks are notrandomly distributed over the �tness lands
apes.The problem is easier to optimize than...if the 
orrelation is low, the neutral networks are randomlydistributed over the �tness lands
apes

−→ and this information 
ould be introdu
ed into a sear
halgorithm
Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of maximal evolvability (Verel 06 [28℄)maximal evolvability auto
orrelation fun
tion for N = 16, K = 2
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of maximal evolvability
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of maximal evolvability
Neutral networks are not randomly distributedNKM lands
apes (with M �tness values) is more "random"epistasis parameter (K ) has more important than neutralityparameter

−→ take 
are to design sear
h algorithm !
Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskSynthesisMeasuresneutral degrees distribution :�How neutral is the �tness lands
ape ?�Auto
orrelation of neutral degrees : network �stru
ture�
High

0.20.0 0.35 0.6 1.0

Middle strongLowrank-size of NN in log-log :well adapted representation (
omplex systems, per
olation)rate of innovation :low information for 
ombinatorial optimizationAuto
orrelation of maximal evolvability :information on the links between NNSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskPresentation majority or density task : two-state CADoes the initial state 
ontain more 0s than 1s ?

ρ0 < 0.5 ρ0 > 0.5
Di�
ult problem : 
oordinationamong the automataParadigm of the phenomenon ofemergen
e in 
omplex systems.Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDe�nitionFinite CA of size N (N = 149), radius r = 3 (2128 rules)
ρ0 be the fra
tion of 1s in the Initial Con�guration (IC).If ρ0 > 1/2 then the CA must relax to (1)NIf ρ0 < 1/2 then the CA must relax to (0)Nafter M = 2N time stepsStandard performan
e :fra
tion of 
orre
t 
lassi�
ations over n = 104 randomly 
hosen ICs.Binomial distribution sampled : ea
h bit is independently drawnwith probability 1/2 of being 0Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskBest Rules KnownNo CA 
an perform the task perfe
tly [Land 95℄Finding a good rule is a hard ProblemBest rules know :GKL (1978), By hand, 0.815 Das (1996), By hand, 0.823005F005F005F005F005FFF5F005FFF5F 009F038F001FBF1F002FFB5F001FFF1FDavis (1996), By hand, 0.818 ABK (1996), Gen. Prog, 0.824070007FF0F000FFF0F0007FF0F310FFF 050055050500550555FF55FF55FF55FFCoe1 (1998), 
oevol GA, 0.851 Coe2 (1998), 
oevol GA, 0.860011430D7110F395705B4FF17F13DF957 1451305C0050CE5F1711FF5F0F53CF5FNo investigations of the di�
ulty of this �tness lands
ape
=⇒ Goal : To statisti
ally quantify the degree of di�
ultySébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutrality in Majority ProblemStandard performan
e : error of evaluation due to random variationof samples of ICs.ICs are 
hosen independently,�tness value f follows a normal law N (f ,√ f (1−f )n )
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDensity Of StatesSampling Random Metropolis-HastingsFitness = 0 3979 176Total 4000 4000
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Metropolis-Hastings sampling :a 
onsiderable number ofsolutions sampled with a�tness ≈ 0.5No solution with a �tnessvalue superior to 0.55Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskStudy of Neutral NetworksStudy of two important large neutral networks :NN0.5 : �tness around 0.5Automata that solve the problem on only half of ICs,5 neutral walks.NN0.76 : �tness around 0.765Solutions near a CA found by Mit
hell (GA),19 neutral walks.Neutral walks :Same starting point on ea
h NNStri
tly in
reasing the Hamming distan
e from the startingsolution,Stops when there is no neutral step that in
reases distan
e.Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDiameterAverage length of neutral walks (max 128) :NN0.5 108.2NN0.76 33.1Result on diameter :Diameter of NN0.5 > Diameter of NN0.76.Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral Degree DistributionDistribution of neutral degree 
olle
ted along all neutral walks.NN0.5 NN0.76
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hi Fitness lands
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskAuto
orrelation of Neutral DegreeNN0.5 NN0.76
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ρ(1) = 0.85 ρ(1) = 0.49Correlation is not nullCorrelation for NN0.5 > Correlation for NN0.76Graphs of Neutral Networks are not random graphsVariation of neutral degree is smooth on NN
=⇒ important 
onsequen
e on metaheuristi
 designSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDe�nition of Olympus Lands
apeTwo symmetries that do not 
hange performan
e :0/1 symmetry and right/left symmetry.Symmetries of blok whi
h maximize the number of joint bitsGKL′ = GKL, Das′ = Das, Davis′ = S01(Davis),ABK′ = S01(ABK), Coe1′ = Coe1 Coe2′ = Srl(Coe2).Olympus Lands
ape, subspa
e of dimension 77 :000*0*0* 0****1** 0***00** **0**1** 000***** 0*0**1** ******** 0*0**1*10*0***** *****1** 111111** **0**111 ******** 0**1*1*1 11111**1 0*01*111Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskDensity Of States of Olympus subspa
eNull �tness value :Sampling Random M-HWhole sear
h spa
e 99.9% 4.4%Olympus 28.6% 0.3%
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on
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ape.Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral Degree : Sampling MethodSolutions < 0.5 : randomly 
hosen in Olympus.Solutions > 0.5 : from 2 runs of a GA during 103 generations.AG used :Based on GA de�ned by Mit
hellOperators : restri
ted to Olympus subspa
eSele
tion : tournament sele
tion taking into a

ount theneutrality.Justi�ed the usefulnes of Olympus and neutrality :Dis
over a lot of solutions between 0.80 and 0.835Over 50 runs, average performan
es 0.8320.006(
oevolutionary AG of Pagie 02 : 0.800.02).Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskNeutral Degree
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De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusion Neutral setsNeutral NetworksFitness lands
ape of the Majority TaskMain Results on Fitness lands
apeConsiderable number of CAs of performan
e 0 or 0.5High neutrality of the lands
apeNeutral networks studies are not random graphsFitness lands
ape of Majority Problem is very hard !De�ned the Olympus lands
ape :exploiting similarities between the six best rules.Less solutions with performan
e 0Easy to �nd solutions over 0.80 with a simple GA.Over performan
e 0.5 : neutrality of lands
ape is still highSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionSynthesisFitness lands
ape is a representation ofnotion of neighborhood�tness of solutionsGoal :lo
al des
ription : �tness between neighbor solutionsRuggedness, lo
al optima, �tness 
loud, neutral networks...and to dedu
e global results :Di�
ulty !to de
ide a good 
hoi
e of the representation, operator and�tness fun
tionSébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionOpen questions
How to dynami
ally 
hange the parameters and/or operators ofthe algorithm with the lo
al des
ription of �tness lands
ape ?Can �tness lands
ape des
ribe the dynami
 of a population ofsolutions ?Links between neutrality and �tness di�
ulty ?Links between neutralities and �tness di�
ulty ?.......

Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionL. Barnett.Ruggedness and neutrality - the NKp family of �tnesslands
apes.In C. Adami, R. K. Belew, H. Kitano, and C. Taylor, editors,ALIFE VI, Pro
eedings of the Sixth International Conferen
eon Arti�
ial Life, pages 18�27. ALIFE, The MIT Press, 1998.Lionel Barnett.Net
rawling - optimal evolutionary sear
h with neutralnetworks.In Pro
eedings of the 2001 Congress on EvolutionaryComputation CEC2001, pages 30�37, COEX, World TradeCenter, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-302001. IEEE Press.U. Bastolla, M. Porto, H. E. Roman, and M. Vendrus
olo.Statis
al properties of neutral evolution.Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionJournal Mole
ular Evolution, 57(S) :103�119, August 2003.Meriema Belaidouni and Jin-Kao Hao.An analysis of the 
on�guration spa
e of the maximal
onstraint satisfa
tion problem.In PPSN VI : Pro
eedings of the 6th International Conferen
eon Parallel Problem Solving from Nature, pages 49�58,London, UK, 2000. Springer-Verlag.P. Collard, M. Clergue, and M. Defoin Platel.Syntheti
 neutrality for arti�
ial evolution.In Arti�
ial Evolution : Fourth European Conferen
e AE'99,pages 254�265. Springer-Verlag, 2000.Sele
ted papers in Le
ture Notes in Computer S
ien
es 1829.J. C. Culberson.Mutation-
rossover isomorphisms and the 
onstru
tion ofdis
rimination fun
tion.Sébastien Verel, Leonardo Vannes
hi Fitness lands
apes and prob. hardness



De�nition of �tness lands
apeMultimodal and rugged �tness lands
apesNeutral �tness lands
apesCon
lusionEvolutionary Computation, 2 :279�311, 1994.Ri
ardo Gar
ia-Pelayo and Peter F. Stadler.Correlation length, isotropy, and meta-stable states.Physi
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Why predicting the difficulty of a problem 
is important? 



6Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Is GP the good technique to solve my problem?

Definition of a Problem P

Implementation of a GP framework for P

Simulation(s) (on a restr. instance P' of P?)

wait...

Interpretation of the results

wait... wait... wait...

Not obvious:

•  GP is stochastic
•  GP works well on P'... but how 
   does it work on P?

Is there a better way?

Define some measures to 
quantify the ability of GP 
to solve a problem from 
its high level specification! 
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The first step: J. R. Koza, 1992

Proposed "measure" of problem hardness: number of individuals that 
have to be sampled by GP before finding a solution with a given 
probability p (usually p = 0.99). 

Remarks

•  It can't be calculated without executing (many times!) GP

•  It can be used to confirm the results of another hardness measure
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Fitness Landscapes in GP

  Very complex neighborhood structures (genotypes = trees, strings of  
                                                                   dynamic size, graphs, ...)

Impossible to draw a Fitness Landscape also for simple problems!

We look for measures able to catch some interesting properties of 
Fitness Landscapes

•  Multidimensionality
   of neighborhoods!

•  Huge search spaces!
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Autocorrelation. Kinnear, 1994

Proposed measure of problem hardness for GP: autocorrelation 
function (Weinberg in 1990 and Manderick in 1991 had studied the 
same measure for GAs).

Basically no clear relationship between autocorrelation values 
and problem hardness was observed for GP
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Fitness Landscapes in GP are very complex, but...

"Why Ants are Hard?" Langdon, Poli, 1998

Enumeration of a small fraction of the total search space and random 
sampling characterise it as rugged with many multiple plateaus split by 
deep valleys and many local and global optima. This suggests it is 
difficult for hill climbing algorithms. 

Many other similar studies in "Foundations of Genetic 
Programming", Langdon, Poli, 2002. 

This book also contains an important first step towards the study of 
problem hardness using the results obtained for the Schema Theorem.
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Relationship between Neutrality and Evolvability 
T. Yu, J. Miller  2001

Neutrality is particularly interesting in GP since functional redundancy 
and introns naturally foster neutrality

different programs (genotypes), same functional behavior (phenotype)

Implicit neutrality

Yu and Miller introduce explicit neutrality and a way to measure it for 
Cartesian GP.
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Neutrality Measured with Hamming distance

Let G be an individual in the population at a certain time step. 

Let G1 be an individual obtained by mutating G.

If G and G1 have the same fitness (the mutation is neutral), Yu and 
Miller accept G1 as a legal offspring (and thus allow him to take part in 
the evolution) only if G and G1 have a smaller Hamming distance than 
a given constant k.

Changing this constant k (Hamming distance threshold) allows us to 
control the amount of allowable neutral mutations, i.e. the amount 
of neutrality.
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Yu and Miller Results (Synthesis)

Larger amount of neutrality allow GP to generate 
fitter individuals

(results criticized by Collins, 2005)
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Relationship between Code Growth and 
Problem Difficulty: Gustafson, Ekárt, et al., 2004

They used two different types of symbolic regression 
increased instance difficulty.

Results

Increased difficulty induces higher selection pressure and 
less genetic diversity, which both contribute toward an 
increased rate of code growth 
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Problem difficulty is 

•  bound to neutrality
•  bound to code growth
•  bound to tree-shapes (Daida et al., 2001)
•  ...

but....

we still miss mathematical measures 
of problem hardness

Discussion



16Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Hardness Measures for GP

•  Fitness-Distance Correlation  (fdc)

•  Negative Slope Coefficient  (nsc)

Collaborators:
•  Marco Tomassini (University of Lausanne, Switzerland)
•  Philippe Collard (University of Nice-Sophia Antipolis, France)
•  Manuel Clergue (University of Nice-Sophia Antipolis, France)
•  Sébastien Verel (University of Nice-Sophia Antipolis, France)
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Fitness Distance Correlation  (fdc)      [T. Jones, 1995] 

Let D = {d1, d2, …, dn} be the n distances to the global optimum,  then

Given a sample of n individuals, let's suppose to know:

•  the set  F = {f1, f2, …, fn} of the individual fitnesses

•  the genotype of the global optimum (individual with the best fitness) 

•  a measure to express the genotypic distance between individuals

fdc is the correlation between sets F and D

Main idea 

Space of programs

P1

(f1)

P2
(f2)

P3

(f3)

Pi

(fi)

Pj

(fj)

Pn

(fn)

•  Notion of distance.
•  Relationship between fitness and distance to the goal.
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First use of the fdc in GP: Nicolaev and Slavov, 1998

The used the fdc to chose a mutation operator among a set of given ones

In 2005 we tried to use the fdc for GP much more in the same way 
Jones intended to use it for GAs.
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fdc as tool for problem hardness   [T. Jones, 1995] 

For GAs, problems can be classified in three classes:

•  Misleading (fdc  0.15) in which fitness increases with distance.

•  Difficult (-0.15 < fdc < 0.15) in which there is no correlation 
   between fitness and distance.

•  Straightforward (fdc  -0.15) in which fitness increases as the global
   optimum approaches.

To (experimentally) verify if the same property is also valid for GP:

First step: to choose a distance between genotypes (trees!)



20Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Our approach

•  To chose a distance between genotypes to calculate fdc

•  To test fdc on a set of functions 

•  To define some genetic operators consistent with this 
   distance
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Structural Distance (Intuition)
[Ekàrt-Németh 2002]

overlapping

•  We assign a weight to each node 

•  We calculate the difference of the weights of nodes at 
   corresponding positions

•  The distance is the weighted sum of these differences
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Operators of Structural Mutation

Inflate Mutation

Deflate Mutation

GP based only on these operators:  
Structural Mutation Genetic Programming (SMGP).
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Property (Distance/Operators Consistency)

Let:

•  F = {A, B, C, ...}  T = {X}
•  s t.q. s  {F  T} : c(s) = arity(s) + 1
•  T1 et T2 two trees composed by symbols  {F  T} 
•  k = 1, z = 1

If  
dist (T1, T2) = D  

then 
T2 can be obtained from T1 with a sequence of D/2 

operations of structural mutation
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Summary of fdc results

Are we happy ?

Fdc correctly measures the difficulty of:

•  Unimodal and Multimodal Trap Functions  (Deb, Goldberg)

•  Max Problem   (Gathercole)

•  Royal Trees   (Punch)
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fdc drawbacks

•  Existence of counterexamples

Ridged Royal Trees
(inspired by the counterexample for GAs of [Quick et al., 1998]) 

•  Not a predictive measure

Optima must be known "a priori"
(this drawback makes fdc "almost" unusable in practical cases)

A new measure is needed to quantify the difficulty of "real" problems. 

The measure we have proposed is based on the concept of fitness clouds.
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Fitness

Fitness of Neighbors

Measure of Problem Hardness Based on Fitness Clouds
Negative Slope Coefficient (nsc)

•  All these points are joined by segments {S1, S2, …, Sn-1 } 

•  A fitness cloud is partitioned into n bins

•  For each bin, a point is calculated, such that its abscissa is the average of 
   the abscissas and its ordinate is the average of the ordinates.
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Negative Slope Coefficient Definition

nsc =   pii = 1

n-1

where,  i  [1, n-1]

pi = min {0, slope(Si)}

Hypothesis:

•  nsc = 0       the problem is easy

•  nsc < 0       the problem is difficult and the magnitude of nsc 
                           quantifies the difficulty

Idea:

If  nsc < 0  then there is at least one area of the fitness landscape 
where evolvability is bad.
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Sampling the search space and the neighborhoods

Main idea:
                 Evolvability makes sense if it is calculated on "good" individuals 
                 ("bad" ones are probably discarded by selection).

Sampling the search space:
                  Importance sampling (Metropolis-Hastings technique)

Sampling the neighborhoods:
                  selection (tournament selection of size 10).
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Summary of nsc results

•  Good hardness indicator for:

•  Trap Functions
•  Royal Trees
•  Binomial-3 Problem   [Daida et al., 2001]
•  Even Parity Problem  [Koza, 1992]
•  Artificial Ant on the Santa Fe Trail  [Koza, 1992]

•  Many ways of calculating the nsc have been used:

•  Number of neighbors for each sampled individual
•  Number of mutations to generate neighbors
•  Different types of mutations to generate neighbors
•  Different techniques to partition the fitness clouds into bins

•  nsc is predictive    it can be used on any problem
•  nsc has not been normalized yet into a given range
   (classification of different problems by their difficulty)

•  nsc lacks formal/theoretical justification
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A first step towards a theoretical justification of nsc

Presentation: 
Monday 9 July
at 10:40
Room: Roberts G06
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What about Crossover?
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Modeling/Studying GP Crossover

•  Schema Theorem  [R. Poli and coworkers]

•  Geometric Crossover  [R. Poli and A. Moraglio]

•  Homologous Crossover  [M. Defoin-Platel, P. Collard et al.]

•  Crossover (pseudo-)distance  [S. Gustafson and L. Vanneschi]
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Crossover Distance

Collaborator:
  Steven Gustafson (GE Global Research, Niskayuna, NY, 
USA)
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The (Basic) Idea

Subtree Crossover Distance (SCD)  
between two trees T1 and T2 

= 
Probability of:

• Selecting a subtree ST1 from T1, and
• Finding a subtree ST2 in the population P

Such that:
Replacing ST1 with ST2 in T1 we get T2

[S. Gustafson, L. Vanneschi, Operator based distance for Genetic 
Programming: Subtree Crossover Distance, EUROGP 2005]

We don't have to count how many crossovers it takes to transform a 
tree T1 into another tree T2, but how probable it is to obtain T2 by 
applying crossover to T1 (in just one step!).
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Terminology

•  SCD is a probability!
•  SCD between two trees T1 and T2 is a function of
    T1, T2 and the population (P) in which T1 and T2 are!

Thus

SCD is NOT a distance (metric) !!

We need a similarity / dissimilarity measure (for subtree 
crossover), not necessarily an (Euclidean) distance metric.

The term pseudo-distance would be more appropriate.
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SCD Definition

The operator diff(T1, T2) returns the set 

such that: 

with (  i  [1, n])  in T2 we obtain T1if we replace

the complexity is 
"reasonable"!
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Summary of Crossover-Distance results

SCD appropriate for:

• Measuring the FDC dynamically (during evolution)

• Fitness Sharing

Our hypothesis: SCD appropriately models subtree crossover

•  SCD diversity behave differently than ED diversity
    (slightly increasing and larger than zero for successful 
     runs, approximately zero for unsuccessful runs)

Can it be used to predict the behavior of GP runs?



38Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Last Discussion:

Can we define an NSC "with" crossover?
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A possible idea

•  Generate two samples of individuals S1 and S2

•  Take one individual i1 from S1, one individual i2 from S2

•  Perform the crossover between i1 and i2, let j1 and j2 be the 
   offspring

•  Let j = best (j1, j2)

•  Plot the triple (i1, i2, j) on a 3D plane

•  Eliminate i1 from S1 and i2 from S2

•  Repeat

•  Until S1 and S2 are empty



40Fitness Landscapes and Problem Hardness  in Evolutionary Computation



41Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Bibliography

•  J. M. Daida, R. Bertram, S. Stanhope, J. Khoo, S. Chaudhary, O. Chaudhary
   What makes a problem GP-hard? Analysis of a tunably difficult problem in genetic    
   programming.
  Genetic Programming and Evolvable Machines, 2:165–191, 2001.

•  J. M. Daida, H. Li, R. Tang, A. M. Hilss 
   What makes a problem GP-hard? Validating a hypothesis of structural causes. 
   In R. Poli et al. editors Genetic and Evolutionary Computation – GECCO-2003, 
   volume 2724 of LNCS, pages 1665–1677. Springer-Verlag, Berlin.

•  K. E. Kinnear
   Fitness landscapes and difficulty in genetic programming. 
   In Proceedings of the First IEEE Conference on Evolutionary Computing, 
   pages 142–147. IEEE Press, Piscataway, NY.

•  J. R. Koza
   Genetic Programming
   The MIT Press, Cambridge, Massachusetts, 1992



42Fitness Landscapes and Problem Hardness  in Evolutionary Computation

•  W. B. Langdon, R. Poli
   Foundations of Genetic Programming
   Springer, 2002

•  M. Tomassini, L. Vanneschi, P. Collard, M. Clergue
   A study of fitness-distance correlation as a difficulty measure in genetic programming
   Evolutionary Computation, 13(2): 213-239, 2005

•  L. Vanneschi, M. Tomassini, P. Collard, S. Verel
   Negative Slope Coefficient. A measure to characterize genetic programming fitness   
   landscapes
   In P. Collet et al. editors, Genetic Programming, 9th European Conference, 
   EuroGP 2006, pages 178-189, Lecture Notes in Computer Science. 2006

•  L. Vanneschi, S. Gustafson, G. Mauri
   Using subtree crossover distance to investigate genetic programming dynamics
   In P. Collet et al. editors, Genetic Programming, 9th European Conference, 
   EuroGP 2006, pages 238-249, Lecture Notes in Computer Science. 2006

•  N. I. Nikolaev,V. Slavov. 
   Concepts of inductive genetic programming. 
   In W. B. Langdon et al. editors, 
   Genetic Programming, Proceedings of EuroGP’1998, 
   volume 1391 of LNCS, pages 49–59. Springer-Verlag, 1998



43Fitness Landscapes and Problem Hardness  in Evolutionary Computation

• T. Yu, J. Miller 
  Neutrality and the evolvability of boolean function landscape.
  In J. Miller et al., editor, Proceedings of the Fourth European Conference
  on Genetic Programming (EuroGP-2001), volume 2038 of LNCS, pages 204–217,
  Lake Como, Italy, 2001. Springer, Berlin, Heidelberg, New York. Lecture notes in
  Computer Science vol. 2038.

•  W. B. Langdon and R. Poli, 
   Why Ants are Hard.
   In Genetic Programming 1998: Proceedings of the Third Annual Conference
   Morgan Kaufmann, J. R. Koza et al. editors, pages = 193-201, 1998

•  S. Gustafson, A. Ekárt, E. K. Burke, G. Kendall
   Problem Difficulty and Code Growth in Genetic Programming
   Genetic Programming and Evolvable Machines, 2004, Volume: 5, Issue: 3, p. 271-290


