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2Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Dishes of the day 

•  Part I  -  Fitness Landscapes (Sébastien Verel)

•  Definition of Fitness Landscape  
•  Types of Fitness Landscapes

•  Multimodal
•  Rugged
•  Neutral

•  Measures to quantify multimodality and  
    ruggedness
•  Measures to study neutrality

•  Part II  -  Problem Difficulty in GP (Leonardo Vanneschi)

• Binding between Fitness Landscapes and 
   Problem Difficulty

• Measures of difficulty applied to GP



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionFitness landsape from biologial siene (Wright1930 [30℄) :Modelisation of speies evolutionUsed to model dynamialsystems :statistial physi,moleular evolution,eology, etSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionIn ombinatorial optimization
Fitness landsape (S,V, f ) :

S : set of potential solutions,
V : S → 2S : neighborhoodfuntion,f : S → IR : �tness funtion.

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionDe�nition of neighborhood
V : S → 2S : neighborhood funtion
∀x ∈ S,

V(x) = {y ∈ S | y = op(x)}
V(x) = {y ∈ S | d(y , x) ≤ 1}

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionGoal of the �tness landsapes studythe "geometry" of �tness landsape orresponds to thedynami of a loal searh algorithmthe geometry is linked to the problem hardness :probability or time to have a �tness level for a given loalheuristiStudy of the geometry of the landsape allows to study thedi�ulty.Two main geometries :multimodal / ruggednessneutralSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionMultimodal Fitness landsapesLoal optima :no neighbor solution with higher �tness valueAdaptive walk : (s0, s1, . . .) where si+1 ∈ V(si ) and f (si ) < f (si+1)Attration basin of sopt :set of solutions of adaptive walks to sopt
Search space

Fitness

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionMultimodal Fitness landsapes
Search space

Fitness

Optimisation di�ulty :number and size of attrativebassins (Garnier et al [8℄)The idea :if the size of attrative bassinof global optima is smallthe problem is di�ult tooptimizeSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionRugged/smooth �tness landsapes
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Autoorrelation of
(f (s1), f (s2), . . .) along a randomwalk (s1, s2, . . .) (Weinberger1990 [29℄) :
ρ(n) =

E [(f (si )− f̄ )(f (si+n)− f̄ )]var(f (si ))autoorrelation length τ = 1
ρ(1)small τ : rugged landsapelong τ : smooth landsapeSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionResults on rugged �tness landsapes (Stadler 96 [23℄)
Problem parameter ρ(1)symmetri TSP n number of towns 1− 4nanti-symmetri TSP n number of towns 1− 4n−1Graph Coloring Problem n number of nodes 1− 2α

(α−1)n
α number of olorsNK landsapes N number of proteins 1− K+1NK number of epistasis linksRuggedness dereases with the size of thoses problems :small variation has less e�et on the �tness valuesSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionMultimodality, ruggedness, epistasis ?
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multimodality/ruggedness :onjeture (Stadler 92 [24℄, Garia 97[7℄) :on average, 1 loal optimum persphere of rayon τepistasis/ruggedness :NK �tness landsapes (Kau�man [14℄)
τ = −1ln(1−K+1N )

et d = Nlog2(K+1)2(K+1)But some ounterexamples...
∑Ni=1 exp(i)xi et ∏Ni=1 xi... open question ?Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionFitness Distane orrelation (FDC) (Jones 95 [13℄)Correlation between distane to global optimum and �tness
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 25  30  35  40  45

Fi
tn

es
s

DistanceExperimental sale :
ρ < −0.15, easy optimization
ρ > 0.15, hard optimization
−0.15 < ρ < 0.15, undeided zoneSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionFitness landsape and rossover ?Crossover of omplementary strings (Culberson 94 [6℄) :omparison with mutation-landsapeGeneralisation of graph theory :Hypergraph of Githo� [9℄P-struture of Stadler [25℄rossover with a random solutionSpae of pair of solutions (Jones, Defoin [19℄ : study of linearGP rossover)Maybe the shemata theorem or the study of distanes betweenpairs give better results ?...Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionSynthesisMetaphor from the biologyStudy of multimodal �tness landsapes :
→ optimization algorithms (SA, Tabu Searh, Island Model...)Goal of study of �tness landsapes :Links with problem hardness : to make better hoies(mapping, �tness funtion, operators), design of algorithms,et.Proof of onvergene (with speed of onvergene)Autoadaptation of parameters of researhLimits :1 operator = 1 landsape ?Crossover ? and link with population ?Edges : usefull information ?Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral Fitness LandsapesNeutral theory (Kimura ≈ 1960 [15℄)Theory of mutation and random driftA onsiderable number of mutations have no e�ets on �tnessvalues
genotypes space

Fitness plateausneutral degreeneutral networks[Shuster 1994 [22℄,RNA folding℄Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral �tness landsapesCombinatorial optimizationRedundant problem (symetries, ...) (Goldberg 87 [10℄)Problem �not well� de�ned or dynami environment (Torres 04[12℄)
genotypes space

Fitness Appliative problems :Robot ontrolerCiruit designgeneti programmingProtein Foldinglearning problemsSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskWhat optimizers do with neutrality ?
Three possibilities :Derease the neutralityUse a spei� metaheuristiInrease the neutrality with redundant genetype/phenotypemapping

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDereasing the neutrality (minLA : E. Rodriguez, PPSN05[20℄)Redundant enoding is a drawbak, lak of informationgraph G = (V ,E ) : labeled eah nodesLA(G , ϕ) =
∑

(u,v)∈E |ϕ(u) − ϕ(v)| ∈ IN�LA represents a potential drawbak beause di�erent linear arrangments anresult in the same total edge length. This inomplete information an preventsthe searh proess from �nding better solution.�
φ(G , ϕ) = LA(G , ϕ) + Inorm(G , ϕ)with Inorm(G , ϕ) ∈ [0, 1]Inorm is higher when the di�erents ould be optimizedInorm makes di�erent between equivalent labellingSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskUse a spei� metaheuristiNeutrality of the problem an not be hangedNetrawler (L. Barnett [2℄)step ← 0Choose initial solution s ∈ Srepeathoose s ′ ∈ V(s) randomlyif f (s) ≤ f (s ′) thens ← s ′end ifstep ← step +1until stepMax ≤ stepGood results on ǫ-orrelated landsapes :low probability to �nd a better solutionhigh probability to �nd a solution with same �tnessSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskUse a spei� metaheuristiNeutrality of the problem an not be hangedExtrema seletion (Stewart 2001 [26℄) :�It is su�ient to reognise that the neutrality of a �tness funtion maybe a signi�ant issue when evolving solutions. With this in mind, theremainder a novel modi�ation to the standard GA whih is spei�allydesigned to take in advantage of Neutral Network�When the solutions are in the same plateaus (at 90% frombest solution)
−→ seletion aording to the distane from the entroide ofthe populationSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskInrease the neutrality of the landsape with a redundantodingEsape from loal optimarossing a Barrier (Nimwegen et Cruth�eld 99 [18℄) :�tness barrier : dereases the �tness by roosing a valleyEntropy barrier : lak of information on a plateausen Cartesian GP (Vassilev et al 00 [27℄) :�(...) the role of landsape neutrality for adaptive evolution is to provide apath for rossing landsape regions with poor �tness.�Duality (Collard, Clergue 00 [5℄) : add one bit and use aspei� operatorf (x0) = f (x), f (x1) = f (x̄) et op(x1) = x̄0Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskWhat do we do ?
In our knowledge, there is no de�nitive answerabout neutrality / problem hardnessCertainly, it is depend on the nature of neutrality of the �tnesslandsape

⇒ A better desription of the geometry of neutral �tnesslandsapes is needed
Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral sets
Search space

Fitness

Set of solution with �tness value  0
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral sets
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskMake a roundabout with Sir F. Galton
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskMake a roundabout with Sir F. Galton
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskMake a roundabout with Sir F. Galton
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskFitness CloudCombinatorial optimization
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskFitness loudMeasure of evolvability
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskFitness loudPredition of evolution (CEC 2003)
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral �tness landsapes
Neutral sets : set of solution with same �tness → no strutureFitness loud : neighborhood relation between neutral setsIntrodution of neighborhood struture on neutral sets →Neutral Networks

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral networks (Shuster 1994 [22℄)
genotypes space

Fitness

Fitness

Reseau de Neutralite

Portes

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDe�nitionsA test of neutrality is a prediateisNeutral : S × S → {true, false}For example, isNeutral(s1, s2) is true if :f (s1) = f (s2).
|f (s1)− f (s2)| ≤ 1/M with M is the searh population size.
|f (s1)− f (s2)| is under the evaluation error.The neutral neighborhood of s is the set of neighbors whihhave the same �tness f (s)

Vneut(s) = {s ′ ∈ V(s) | isNeutral(s, s ′)}The neutral degree of a solution is the number of its neutralneighbors nDeg(s) = ♯(Vneut (s)− {s}).Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDe�nitionsA neutral walk : Wneut = (s0, s1, . . . , sm)for all i ∈ [0,m − 1], si+1 ∈ V(si )for all (i , j) ∈ [0,m]2 , isNeutral(si , sj) is true.A Neutral Network : graph G = (V ,E )V ⊂ S : for all s and s ′ from V , there is a neutral walk Wneutbelonging to V from s to s ′ ,Two verties are onneted by an edge of E if they are neutralneighbors. A �tness landsape is neutralif there are many solutions with high neutral degree.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskMeasures on neutral �tness landsapesTo introdue measure of neutrality,we will use three possible families of neutral �tness :based on NK �tness landsapes :
S : bit strings of length N,f (x) = 1N ∑Ni=1 fi(xi , xj1 , . . . , xjK )orresponding to three possible ways to introdue redundanein additive �tness funtionstwo parameters :one for non-linearity (epsistasis K), one for neutralitythe measures ould be analyse with the parameters andsupposed di�ultySébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral NK �tness landsapesNK (Kau�man 1993)f (s) = 1N ( 0.02 + 0.31 + 0.91 + . . . + 0.20 )NKq (Newmann et al 1998) [17℄ : q values for the termsf (s) = 1N(q−1) ( 1 + 3 + 3 + . . . + 0 )NKM (Lobo 2004 [16℄) : M di�erent valuesf (s) = 1N.ME [M. ( 0.02 + 0.31 + 0.91 + . . . + 0.20 )]NKp (Barnett 1998 [1℄) : prob. p to have 0f (s) = 1N ( 0.02 + 0.31 + 0 + . . . + 0.20 )Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskIntra network MeasuresClassial measures of graph to desribe NN :1 the size : number of nodes of NN,2 neutral degree distribution :measure of the quantity of �neutrality�3 Autoorrelation of neutral degree during neutral walk (Bastolla03 [3℄) :omparaison with random graph,measure of the orrelation struture of NN
Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskIntra network MeasuresSizeClassial measures of graph to desribe NN :1 The size : number of nodes of NN,rank-size of NN in log-log :
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskSize of neutral networks
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskSize of neutral networks
When epistasis and neutrality inrease, the random variation ofdistribution of size dereasesThose neutral �tness landsapes are dominated by few andlarge neutral networks :maybe, ould be prove with perolation theory...
−→ important information to design searh algorithmsThe Zi� law is approahing only when epistasis and neutralityare low

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskIntra network MeasuresClassial measures of graph to desribe NN :1 the size : number of nodes of NN,2 neutral degree distribution :measure of the quantity of �neutrality�3 Autoorrelation of neutral degree during random neutral walk(Bastolla 03 [3℄) :omparaison with random graph,measure of the orrelation struture of NN
Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDistribution of neutral degrees (N = 16, K = 2)
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q = 4 M = 48 p = 0.8
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q = 2 M = 16 p = 0.95Experimental distribution (impulse), binomial distribution (line).Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDistribution of neutral degrees
Barnett (98) gives the probability of neutral mutation forNKp-landsapes :pneutr = p2(1− KN−1(1− p2)N−1) ≈ p2e−K(1−p2)For NKq and NKM landsapes the distribution is nearly abinomial distribution

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskIntra network MeasuresClassial measures of graph to desribe NN :1 the size : number of nodes of NN,2 neutral degree distribution :measure of the quantity of �neutrality�3 Autoorrelation of neutral degree during neutral walk (Bastolla03 [3℄) :omparaison with random graph,measure of the orrelation struture of NN
Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of neutral degrees
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NKq land. NKM land. NKp land.Autoorrelation oe�ient of order 1Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of neutral degrees
Neutral networks are not random graphNKM landsapes (with M �tness values) is more losely torandom graphepistasis parameter (K ) has more in�uene on the struture ofneutral networks than neutrality parameter
−→ important to design searh algorithm

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskInter networks measures
Reseau de Neutralite

Performance

Marche neutre aleatoire

S0
S3S2

S1

1 rate of innovation(Huynen 96 [11℄) :The number of newaessible strutures(�tness) per mutation2 Autoorrelation ofevolvability [28℄ :autoorrelation of thesequene
(evol(s0), evol(s1), . . .).Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskRate of innovation on neutral NK landsapes
The number of new aessible strutures (�tness) per mutationNo information on neutral NK �tness landsapes :No link with the parametersdi�ult to estimate for the whole �tness landsape

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of maximal evolvability (Verel 06 [28℄)Evolvability : ability to evolveDe�nitionAutoorrelation of evolvability is the autoorrelation funtion of theserie (evol(s0), evol(s1), evol(s2), . . .) where (s0, s1, s2, . . .) isneutral random walk on a neutral network and evol is a measure ofevolvability of a solution.Measure of evolvability :Probability to have �tter solution in the neighborhoodmaximum evolvability : the �tness of best solution in theneighborhoodSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of maximal evolvability (Verel 06 [28℄)
if orrelation is high, then the neutral networks are notrandomly distributed over the �tness landsapes.The problem is easier to optimize than...if the orrelation is low, the neutral networks are randomlydistributed over the �tness landsapes

−→ and this information ould be introdued into a searhalgorithm
Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of maximal evolvability (Verel 06 [28℄)maximal evolvability autoorrelation funtion for N = 16, K = 2
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of maximal evolvability
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of maximal evolvability
Neutral networks are not randomly distributedNKM landsapes (with M �tness values) is more "random"epistasis parameter (K ) has more important than neutralityparameter

−→ take are to design searh algorithm !
Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskSynthesisMeasuresneutral degrees distribution :�How neutral is the �tness landsape ?�Autoorrelation of neutral degrees : network �struture�
High

0.20.0 0.35 0.6 1.0

Middle strongLowrank-size of NN in log-log :well adapted representation (omplex systems, perolation)rate of innovation :low information for ombinatorial optimizationAutoorrelation of maximal evolvability :information on the links between NNSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskPresentation majority or density task : two-state CADoes the initial state ontain more 0s than 1s ?

ρ0 < 0.5 ρ0 > 0.5
Di�ult problem : oordinationamong the automataParadigm of the phenomenon ofemergene in omplex systems.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDe�nitionFinite CA of size N (N = 149), radius r = 3 (2128 rules)
ρ0 be the fration of 1s in the Initial Con�guration (IC).If ρ0 > 1/2 then the CA must relax to (1)NIf ρ0 < 1/2 then the CA must relax to (0)Nafter M = 2N time stepsStandard performane :fration of orret lassi�ations over n = 104 randomly hosen ICs.Binomial distribution sampled : eah bit is independently drawnwith probability 1/2 of being 0Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskBest Rules KnownNo CA an perform the task perfetly [Land 95℄Finding a good rule is a hard ProblemBest rules know :GKL (1978), By hand, 0.815 Das (1996), By hand, 0.823005F005F005F005F005FFF5F005FFF5F 009F038F001FBF1F002FFB5F001FFF1FDavis (1996), By hand, 0.818 ABK (1996), Gen. Prog, 0.824070007FF0F000FFF0F0007FF0F310FFF 050055050500550555FF55FF55FF55FFCoe1 (1998), oevol GA, 0.851 Coe2 (1998), oevol GA, 0.860011430D7110F395705B4FF17F13DF957 1451305C0050CE5F1711FF5F0F53CF5FNo investigations of the di�ulty of this �tness landsape
=⇒ Goal : To statistially quantify the degree of di�ultySébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutrality in Majority ProblemStandard performane : error of evaluation due to random variationof samples of ICs.ICs are hosen independently,�tness value f follows a normal law N (f ,√ f (1−f )n )
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDensity Of StatesSampling Random Metropolis-HastingsFitness = 0 3979 176Total 4000 4000
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Metropolis-Hastings sampling :a onsiderable number ofsolutions sampled with a�tness ≈ 0.5No solution with a �tnessvalue superior to 0.55Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskStudy of Neutral NetworksStudy of two important large neutral networks :NN0.5 : �tness around 0.5Automata that solve the problem on only half of ICs,5 neutral walks.NN0.76 : �tness around 0.765Solutions near a CA found by Mithell (GA),19 neutral walks.Neutral walks :Same starting point on eah NNStritly inreasing the Hamming distane from the startingsolution,Stops when there is no neutral step that inreases distane.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDiameterAverage length of neutral walks (max 128) :NN0.5 108.2NN0.76 33.1Result on diameter :Diameter of NN0.5 > Diameter of NN0.76.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral Degree DistributionDistribution of neutral degree olleted along all neutral walks.NN0.5 NN0.76
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Neutral degreeAvgstddev = 91.616.6 Avgstddev = 32.79.2NN0.76 : lose to normal,NN0.5 : skewed and approximately bimodalSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskAutoorrelation of Neutral DegreeNN0.5 NN0.76
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ρ(1) = 0.85 ρ(1) = 0.49Correlation is not nullCorrelation for NN0.5 > Correlation for NN0.76Graphs of Neutral Networks are not random graphsVariation of neutral degree is smooth on NN
=⇒ important onsequene on metaheuristi designSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDe�nition of Olympus LandsapeTwo symmetries that do not hange performane :0/1 symmetry and right/left symmetry.Symmetries of blok whih maximize the number of joint bitsGKL′ = GKL, Das′ = Das, Davis′ = S01(Davis),ABK′ = S01(ABK), Coe1′ = Coe1 Coe2′ = Srl(Coe2).Olympus Landsape, subspae of dimension 77 :000*0*0* 0****1** 0***00** **0**1** 000***** 0*0**1** ******** 0*0**1*10*0***** *****1** 111111** **0**111 ******** 0**1*1*1 11111**1 0*01*111Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskDensity Of States of Olympus subspaeNull �tness value :Sampling Random M-HWhole searh spae 99.9% 4.4%Olympus 28.6% 0.3%
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Metropolis-Hastings sampling :No solution with a �tnessvalue superior to 0.68Advantageous toonentrate the searh in theOlympus landsape.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral Degree : Sampling MethodSolutions < 0.5 : randomly hosen in Olympus.Solutions > 0.5 : from 2 runs of a GA during 103 generations.AG used :Based on GA de�ned by MithellOperators : restrited to Olympus subspaeSeletion : tournament seletion taking into aount theneutrality.Justi�ed the usefulnes of Olympus and neutrality :Disover a lot of solutions between 0.80 and 0.835Over 50 runs, average performanes 0.8320.006(oevolutionary AG of Pagie 02 : 0.800.02).Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskNeutral Degree
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De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusion Neutral setsNeutral NetworksFitness landsape of the Majority TaskMain Results on Fitness landsapeConsiderable number of CAs of performane 0 or 0.5High neutrality of the landsapeNeutral networks studies are not random graphsFitness landsape of Majority Problem is very hard !De�ned the Olympus landsape :exploiting similarities between the six best rules.Less solutions with performane 0Easy to �nd solutions over 0.80 with a simple GA.Over performane 0.5 : neutrality of landsape is still highSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionSynthesisFitness landsape is a representation ofnotion of neighborhood�tness of solutionsGoal :loal desription : �tness between neighbor solutionsRuggedness, loal optima, �tness loud, neutral networks...and to dedue global results :Di�ulty !to deide a good hoie of the representation, operator and�tness funtionSébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionOpen questions
How to dynamially hange the parameters and/or operators ofthe algorithm with the loal desription of �tness landsape ?Can �tness landsape desribe the dynami of a population ofsolutions ?Links between neutrality and �tness di�ulty ?Links between neutralities and �tness di�ulty ?.......

Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionL. Barnett.Ruggedness and neutrality - the NKp family of �tnesslandsapes.In C. Adami, R. K. Belew, H. Kitano, and C. Taylor, editors,ALIFE VI, Proeedings of the Sixth International Confereneon Arti�ial Life, pages 18�27. ALIFE, The MIT Press, 1998.Lionel Barnett.Netrawling - optimal evolutionary searh with neutralnetworks.In Proeedings of the 2001 Congress on EvolutionaryComputation CEC2001, pages 30�37, COEX, World TradeCenter, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-302001. IEEE Press.U. Bastolla, M. Porto, H. E. Roman, and M. Vendrusolo.Statisal properties of neutral evolution.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionJournal Moleular Evolution, 57(S) :103�119, August 2003.Meriema Belaidouni and Jin-Kao Hao.An analysis of the on�guration spae of the maximalonstraint satisfation problem.In PPSN VI : Proeedings of the 6th International Confereneon Parallel Problem Solving from Nature, pages 49�58,London, UK, 2000. Springer-Verlag.P. Collard, M. Clergue, and M. Defoin Platel.Syntheti neutrality for arti�ial evolution.In Arti�ial Evolution : Fourth European Conferene AE'99,pages 254�265. Springer-Verlag, 2000.Seleted papers in Leture Notes in Computer Sienes 1829.J. C. Culberson.Mutation-rossover isomorphisms and the onstrution ofdisrimination funtion.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionEvolutionary Computation, 2 :279�311, 1994.Riardo Garia-Pelayo and Peter F. Stadler.Correlation length, isotropy, and meta-stable states.Physia D, 107 :240�254, 1997.Santa Fe Institute Preprint 96-05-034.Josselin Garnier and Leila Kallel.E�ieny of loal searh with multiple loal optima.SIAM Journal on Disrete Mathematis, 15(1) :122�141, 2002.P. Githo� and G. Wagner.Reombination indued hypergraphs : A new approah tomutation-reombination isomorphism, 1996.David E. Goldberg and Philip Segrest.Finite markov hain analysis of geneti algorithms.In ICGA, pages 1�8, 1987.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionM. Huynen.Exploring phenotype spae through neutral evolution.Journal Moleular Evolution, 43 :165�169, 1996.E. Izquierdo-Torres.The role of nearly neutral mutations in the evolution ofdynamial neural networks.In J. Pollak and al, editors, Ninth International Conferene ofthe Simulation and Synthesis of Living Systems (Alife 9), pages322�327. MIT Press, 2004.T. Jones.Evolutionary Algorithms, Fitness Landsapes and Searh.PhD thesis, University of New Mexio, Albuquerque, 1995.S. A. Kau�man.The Origins of Order.Oxford University Press, New York, 1993.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionM. Kimura.The Neutral Theory of Moleular Evolution.Cambridge University Press, Cambridge, UK, 1983.J. Lobo, J. H. Miller, and W. Fontana.Neutrality in tehnology landsape, 2004.M. Newman and R. Engelhardt.E�et of neutral seletion on the evolution of moleularspeies.In Pro. R. So. London B., volume 256, pages 1333�1338,1998.Erik Van Nimwegen, James P. Cruth�eld, and MartijnHuynen.Metastable evolutionary dynamis : Crossing �tness barriers oresaping via neutral paths ?Tehnial Report 99-07-041, SanteFe institute, 1999.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionM. Defoin Platel.Homologie en Programmation Génétique - Appliation à larésolution d'un problème inverse.PhD thesis, Université de Nie Sophia Antipolis, Frane, 2004.Eduardo Rodriguez-Tello, Jin-Kao Hao, and JoseTorres-Jimenez.A new evaluation funtion for the minla problem.In Proeedings of the MIC 2005, pages 796�801, ViennaAustria, 2005.Helge Rosé, Werner Ebeling, and Torsten Asselmeyer.The density of states - a measure of the di�ulty ofoptimisation problems.In Parallel Problem Solving from Nature, pages 208�217, 1996.P. Shuster, W. Fontana, P. F. Stadler, and I. L. Hofaker.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness



De�nition of �tness landsapeMultimodal and rugged �tness landsapesNeutral �tness landsapesConlusionFrom sequenes to shapes and bak : a ase study in RNAseondary strutures.In Pro. R. So. London B., volume 255, pages 279�284, 1994.Peter F. Stadler.Landsapes and their orrelation funtions.J. Math. Chem., 20 :1�45, 1996.Peter F. Stadler and W. Shnabl.The landsape of the traveling salesmen problem.Phys. Letters, A(161) :337�344, 1992.Peter F. Stadler and Gunter P. Wagner.Algebrai theory of reombination spaes.Evolutionary Computation, 5(3) :241�275, 1997.Terry Stewart.Extrema seletion : Aelerated evolution on neutral networks.Sébastien Verel, Leonardo Vanneshi Fitness landsapes and prob. hardness
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Why predicting the difficulty of a problem 
is important? 
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Is GP the good technique to solve my problem?

Definition of a Problem P

Implementation of a GP framework for P

Simulation(s) (on a restr. instance P' of P?)

wait...

Interpretation of the results

wait... wait... wait...

Not obvious:

•  GP is stochastic
•  GP works well on P'... but how 
   does it work on P?

Is there a better way?

Define some measures to 
quantify the ability of GP 
to solve a problem from 
its high level specification! 
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The first step: J. R. Koza, 1992

Proposed "measure" of problem hardness: number of individuals that 
have to be sampled by GP before finding a solution with a given 
probability p (usually p = 0.99). 

Remarks

•  It can't be calculated without executing (many times!) GP

•  It can be used to confirm the results of another hardness measure
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Fitness Landscapes in GP

  Very complex neighborhood structures (genotypes = trees, strings of  
                                                                   dynamic size, graphs, ...)

Impossible to draw a Fitness Landscape also for simple problems!

We look for measures able to catch some interesting properties of 
Fitness Landscapes

•  Multidimensionality
   of neighborhoods!

•  Huge search spaces!
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Autocorrelation. Kinnear, 1994

Proposed measure of problem hardness for GP: autocorrelation 
function (Weinberg in 1990 and Manderick in 1991 had studied the 
same measure for GAs).

Basically no clear relationship between autocorrelation values 
and problem hardness was observed for GP



10Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Fitness Landscapes in GP are very complex, but...

"Why Ants are Hard?" Langdon, Poli, 1998

Enumeration of a small fraction of the total search space and random 
sampling characterise it as rugged with many multiple plateaus split by 
deep valleys and many local and global optima. This suggests it is 
difficult for hill climbing algorithms. 

Many other similar studies in "Foundations of Genetic 
Programming", Langdon, Poli, 2002. 

This book also contains an important first step towards the study of 
problem hardness using the results obtained for the Schema Theorem.
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Relationship between Neutrality and Evolvability 
T. Yu, J. Miller  2001

Neutrality is particularly interesting in GP since functional redundancy 
and introns naturally foster neutrality

different programs (genotypes), same functional behavior (phenotype)

Implicit neutrality

Yu and Miller introduce explicit neutrality and a way to measure it for 
Cartesian GP.
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Neutrality Measured with Hamming distance

Let G be an individual in the population at a certain time step. 

Let G1 be an individual obtained by mutating G.

If G and G1 have the same fitness (the mutation is neutral), Yu and 
Miller accept G1 as a legal offspring (and thus allow him to take part in 
the evolution) only if G and G1 have a smaller Hamming distance than 
a given constant k.

Changing this constant k (Hamming distance threshold) allows us to 
control the amount of allowable neutral mutations, i.e. the amount 
of neutrality.
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Yu and Miller Results (Synthesis)

Larger amount of neutrality allow GP to generate 
fitter individuals

(results criticized by Collins, 2005)
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Relationship between Code Growth and 
Problem Difficulty: Gustafson, Ekárt, et al., 2004

They used two different types of symbolic regression 
increased instance difficulty.

Results

Increased difficulty induces higher selection pressure and 
less genetic diversity, which both contribute toward an 
increased rate of code growth 
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Problem difficulty is 

•  bound to neutrality
•  bound to code growth
•  bound to tree-shapes (Daida et al., 2001)
•  ...

but....

we still miss mathematical measures 
of problem hardness

Discussion
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Hardness Measures for GP

•  Fitness-Distance Correlation  (fdc)

•  Negative Slope Coefficient  (nsc)

Collaborators:
•  Marco Tomassini (University of Lausanne, Switzerland)
•  Philippe Collard (University of Nice-Sophia Antipolis, France)
•  Manuel Clergue (University of Nice-Sophia Antipolis, France)
•  Sébastien Verel (University of Nice-Sophia Antipolis, France)



17Fitness Landscapes and Problem Hardness  in Evolutionary Computation

Fitness Distance Correlation  (fdc)      [T. Jones, 1995] 

Let D = {d1, d2, …, dn} be the n distances to the global optimum,  then

Given a sample of n individuals, let's suppose to know:

•  the set  F = {f1, f2, …, fn} of the individual fitnesses

•  the genotype of the global optimum (individual with the best fitness) 

•  a measure to express the genotypic distance between individuals

fdc is the correlation between sets F and D

Main idea 

Space of programs

P1

(f1)

P2
(f2)

P3

(f3)

Pi

(fi)

Pj

(fj)

Pn

(fn)

•  Notion of distance.
•  Relationship between fitness and distance to the goal.
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First use of the fdc in GP: Nicolaev and Slavov, 1998

The used the fdc to chose a mutation operator among a set of given ones

In 2005 we tried to use the fdc for GP much more in the same way 
Jones intended to use it for GAs.
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fdc as tool for problem hardness   [T. Jones, 1995] 

For GAs, problems can be classified in three classes:

•  Misleading (fdc  0.15) in which fitness increases with distance.

•  Difficult (-0.15 < fdc < 0.15) in which there is no correlation 
   between fitness and distance.

•  Straightforward (fdc  -0.15) in which fitness increases as the global
   optimum approaches.

To (experimentally) verify if the same property is also valid for GP:

First step: to choose a distance between genotypes (trees!)
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Our approach

•  To chose a distance between genotypes to calculate fdc

•  To test fdc on a set of functions 

•  To define some genetic operators consistent with this 
   distance
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Structural Distance (Intuition)
[Ekàrt-Németh 2002]

overlapping

•  We assign a weight to each node 

•  We calculate the difference of the weights of nodes at 
   corresponding positions

•  The distance is the weighted sum of these differences
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Operators of Structural Mutation

Inflate Mutation

Deflate Mutation

GP based only on these operators:  
Structural Mutation Genetic Programming (SMGP).
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Property (Distance/Operators Consistency)

Let:

•  F = {A, B, C, ...}  T = {X}
•  s t.q. s  {F  T} : c(s) = arity(s) + 1
•  T1 et T2 two trees composed by symbols  {F  T} 
•  k = 1, z = 1

If  
dist (T1, T2) = D  

then 
T2 can be obtained from T1 with a sequence of D/2 

operations of structural mutation
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Summary of fdc results

Are we happy ?

Fdc correctly measures the difficulty of:

•  Unimodal and Multimodal Trap Functions  (Deb, Goldberg)

•  Max Problem   (Gathercole)

•  Royal Trees   (Punch)
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fdc drawbacks

•  Existence of counterexamples

Ridged Royal Trees
(inspired by the counterexample for GAs of [Quick et al., 1998]) 

•  Not a predictive measure

Optima must be known "a priori"
(this drawback makes fdc "almost" unusable in practical cases)

A new measure is needed to quantify the difficulty of "real" problems. 

The measure we have proposed is based on the concept of fitness clouds.
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Fitness

Fitness of Neighbors

Measure of Problem Hardness Based on Fitness Clouds
Negative Slope Coefficient (nsc)

•  All these points are joined by segments {S1, S2, …, Sn-1 } 

•  A fitness cloud is partitioned into n bins

•  For each bin, a point is calculated, such that its abscissa is the average of 
   the abscissas and its ordinate is the average of the ordinates.
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Negative Slope Coefficient Definition

nsc =   pii = 1

n-1

where,  i  [1, n-1]

pi = min {0, slope(Si)}

Hypothesis:

•  nsc = 0       the problem is easy

•  nsc < 0       the problem is difficult and the magnitude of nsc 
                           quantifies the difficulty

Idea:

If  nsc < 0  then there is at least one area of the fitness landscape 
where evolvability is bad.
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Sampling the search space and the neighborhoods

Main idea:
                 Evolvability makes sense if it is calculated on "good" individuals 
                 ("bad" ones are probably discarded by selection).

Sampling the search space:
                  Importance sampling (Metropolis-Hastings technique)

Sampling the neighborhoods:
                  selection (tournament selection of size 10).
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Summary of nsc results

•  Good hardness indicator for:

•  Trap Functions
•  Royal Trees
•  Binomial-3 Problem   [Daida et al., 2001]
•  Even Parity Problem  [Koza, 1992]
•  Artificial Ant on the Santa Fe Trail  [Koza, 1992]

•  Many ways of calculating the nsc have been used:

•  Number of neighbors for each sampled individual
•  Number of mutations to generate neighbors
•  Different types of mutations to generate neighbors
•  Different techniques to partition the fitness clouds into bins

•  nsc is predictive    it can be used on any problem
•  nsc has not been normalized yet into a given range
   (classification of different problems by their difficulty)

•  nsc lacks formal/theoretical justification
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A first step towards a theoretical justification of nsc

Presentation: 
Monday 9 July
at 10:40
Room: Roberts G06
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What about Crossover?
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Modeling/Studying GP Crossover

•  Schema Theorem  [R. Poli and coworkers]

•  Geometric Crossover  [R. Poli and A. Moraglio]

•  Homologous Crossover  [M. Defoin-Platel, P. Collard et al.]

•  Crossover (pseudo-)distance  [S. Gustafson and L. Vanneschi]
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Crossover Distance

Collaborator:
  Steven Gustafson (GE Global Research, Niskayuna, NY, 
USA)
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The (Basic) Idea

Subtree Crossover Distance (SCD)  
between two trees T1 and T2 

= 
Probability of:

• Selecting a subtree ST1 from T1, and
• Finding a subtree ST2 in the population P

Such that:
Replacing ST1 with ST2 in T1 we get T2

[S. Gustafson, L. Vanneschi, Operator based distance for Genetic 
Programming: Subtree Crossover Distance, EUROGP 2005]

We don't have to count how many crossovers it takes to transform a 
tree T1 into another tree T2, but how probable it is to obtain T2 by 
applying crossover to T1 (in just one step!).
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Terminology

•  SCD is a probability!
•  SCD between two trees T1 and T2 is a function of
    T1, T2 and the population (P) in which T1 and T2 are!

Thus

SCD is NOT a distance (metric) !!

We need a similarity / dissimilarity measure (for subtree 
crossover), not necessarily an (Euclidean) distance metric.

The term pseudo-distance would be more appropriate.
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SCD Definition

The operator diff(T1, T2) returns the set 

such that: 

with (  i  [1, n])  in T2 we obtain T1if we replace

the complexity is 
"reasonable"!
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Summary of Crossover-Distance results

SCD appropriate for:

• Measuring the FDC dynamically (during evolution)

• Fitness Sharing

Our hypothesis: SCD appropriately models subtree crossover

•  SCD diversity behave differently than ED diversity
    (slightly increasing and larger than zero for successful 
     runs, approximately zero for unsuccessful runs)

Can it be used to predict the behavior of GP runs?
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Last Discussion:

Can we define an NSC "with" crossover?
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A possible idea

•  Generate two samples of individuals S1 and S2

•  Take one individual i1 from S1, one individual i2 from S2

•  Perform the crossover between i1 and i2, let j1 and j2 be the 
   offspring

•  Let j = best (j1, j2)

•  Plot the triple (i1, i2, j) on a 3D plane

•  Eliminate i1 from S1 and i2 from S2

•  Repeat

•  Until S1 and S2 are empty
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