
HAL Id: hal-00165377
https://hal.science/hal-00165377

Submitted on 25 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuum limit of the integrable sl(2/1)_3− 3̄ superspin
chain

F.H.L. Essler, H. Frahm, H. Saleur

To cite this version:
F.H.L. Essler, H. Frahm, H. Saleur. Continuum limit of the integrable sl(2/1)_3− 3̄ super-
spin chain. Nuclear Physics B, Field Theory and Statistical Systems, 2005, 712, pp.513-572.
�10.1016/j.nuclphysb.2005.01.021�. �hal-00165377�

https://hal.science/hal-00165377
https://hal.archives-ouvertes.fr


Continuum Limit of the Integrable sl(2/1) 3− 3̄ Superspin Chain

Fabian H. L. Esslera, Holger Frahmb and Hubert Saleurc,d

a The Rudolf Peierls Centre for Theoretical Physics

University of Oxford, 1Keble Road, Oxford OX1 3NP, UK
b Institut für Theoretische Physik, Universität Hannover,

30167 Hannover, Germany
c Service de Physique Théorique, CEA Saclay,
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Abstract

By a combination of analytical and numerical techniques, we analyze the continuum limit of the
integrable 3⊗ 3̄⊗3⊗ 3̄ . . . sl(2/1) superspin chain. We discover profoundly new features, including
a continuous spectrum of conformal weights, whose numerical evidence is infinite degeneracies of
the scaled gaps in the thermodynamic limit. This indicates that the corresponding conformal
field theory has a non compact target space (even though our lattice model involves only finite
dimensional representations). We argue that our results are compatible with this theory being the
level k = 1, ‘SU(2/1) WZW model’ (whose precise definition requires some care). In doing so,
we establish several new results for this model. With regard to potential applications to the spin
quantum Hall effect, we conclude that the continuum limit of the 3⊗ 3̄⊗3⊗ 3̄ . . . sl(2/1) integrable
superspin chain is not the same as (and is in fact very different from) the continuum limit of the
corresponding chain with two-superspin interactions only, which is known to be a model for the
spin quantum Hall effect. The study of possible RG flows between the two theories is left for
further study.

1 Introduction

The sigma model approach [1] to phase transitions in non interacting disordered systems provides a
convenient and appealing description of the physics at hand. The best known example is the tran-
sition between plateaux in the integer quantum Hall effect (class A), which can be described using
a U (2n)/U (n) × U (n) sigma model in the limit n → 0. More recently, the equivalent ‘spin quan-
tum Hall effect’ in d-wave superconductors has been considered (class C [2]), and described with the
SP (2n)/U (n) sigma model, in the limit n→ 0[3].

In both cases, the existence of a delocalization transition is associated with the masslessness in the
IR of the sigma model at topological angle θ = π. Identification of the corresponding conformal field
theory would lead to a presumably exact determination of critical exponents which have been studied
in great details in numerical works [4],[5] as well as in experiments.

Unfortunately, the determination of the IR fixed points in these problems has proven extremely
difficult. The canonical example of what ‘might’ happen is the case n = 1 of either replica model,
which coincides with the O(3) sigma model at θ = π. In this case, there is a wealth of evidence [6] that
the IR fixed point is the SU (2) Wess Zumino model at level k = 1. In the flow, the field is promoted
from being coset valued to group valued, a highly non perturbative feature which might have been
hard to believe, were it not for the existence of exact solutions [7].

The most reasonable way to understand what happens in the disordered system is first to trade
the replica limit for a super group [8],[9], U (1, 1/2)/U (1/1)× U (1/1) in the quantum Hall effect, and
OSP (2n/2n)/U (n|n) in the spin quantum Hall effect. Once the corresponding sigma models have been
satisfactorily defined [10], it is then tempting to conjecture, by analogy with the O(3) example above,
what the IR fixed point might be. In this way, Zirnbauer [11] arrived at a proposal for the quantum Hall
effect that is related with the WZW model (at level k = 1) on PSU (1, 1/2). Roughly, this is obtained
by observing that the base of the supersymmetric target space is H2× S2, and then guessing that this
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gets ‘promoted’ to H3× S3 in the IR. One then tries to build the minimal proposal in agreement with
this and known results on the exponents. It is important that for the PSU (1, 1/2) WZW model the
kinetic term is an exactly marginal deformation [12],[13]. The final proposal of Zirnbauer corresponds
to a particular value of this kinetic term, and is not the WZW model. Hence, the symmetry is a global
symmetry GL × GR instead of a local one. Unfortunately it is not clear whether this proposal gives
the correct IR fixed point. In particular, it is rather unpleasant to have to select a particular value
for an exactly marginal coupling constant if one hopes to describe what seems to be genuine universal
physics.

A less abstract direction of attack comes from network models. These can be shown to correspond,
in the proper anisotropic limit to quantum spin chains with super group symmetries [14]. Ideally,
the problem would then be solved if one were able to apply in this situation the formidable arsenal
developed over the years in the study of quantum spin chains. Unfortunately, there are difficulties here
as well. For the ordinary as well as the spin quantum Hall effect, the Hilbert space of the chain is of
type V ⊗ V̄ ⊗V ⊗ V̄ ⊗· · · , while the Hamiltonian is the invariant Casimir, the proper generalization of
~S.~S. In the ordinary quantum Hall effect, V and V̄ are infinite dimensional, while in the spin quantum
Hall effect, V and V̄ are the two conjugate three dimensional representations.

In either case, the Hamiltonian is not integrable. More precisely, the Hamiltonian does not seem to
derive from a family of commuting transfer matrices obtained via a standard quantum group approach.
In the spin quantum Hall case, the Hamiltonian can however be diagonalized [15] (more precisely, the
zeroes of the characteristic polynomial can be found, as the Hamiltonian itself is not fully diagonal-
izable) using known results about the XXZ chain and representation theory of the Temperley Lieb
algebra [16]. No such approach seems possible in the ordinary quantum Hall spin chain.

Since one is after the universality class of the IR fixed point, it is natural to wonder [17] whether the
Hamiltonian might be substituted by an integrable version without affecting the exponents. Examples
are known where such a trick would not work: for instance, the higher odd spin integrable SU (2) spin
chains flow to level k = 2s WZW models, while the chains with Heisenberg type couplings flow to
level k = 1. But examples are also known where the trick does work. Indeed, with unitary groups
and finite dimensional representations, group symmetry on the lattice plus criticality implies that
the continuum limit is a WZW model, the stablest of all being k = 1 [18]. Therefore, a spin chain
with SU (n) symmetry, if critical, will generically be in the same universality class as the integrable
Sutherland chain, that is the level one SU (n) WZW model. Criticality is however not guaranteed in
general. For instance, if one takes SU (n) and the alternance of n and n̄ representations, the chain
whose Hamiltonian is the Casimir has a gap, while the integrable one is gapless, and in the universality
class of the WZW model [19].

Our purpose in this paper is to explore the matter further by concentrating on the spin quantum
Hall effect where many things are known exactly. In a nutshell, the question we want to explore is
whether the integrable 3⊗ 3̄⊗3⊗ 3̄ . . . sl(2/1) spin chain is massless and if so, in the same universality

class as the non integrable3⊗ 3̄⊗ 3⊗ 3̄ . . . Heisenberg chain, which is known to describe the physics of
the spin quantum Hall effect.

A positive answer would raise hopes for an integrable approach to the ordinary quantum Hall effect.
Unfortunately, we will see that the answer is a resounding no. The reason for this is the proliferation
of possible fixed points that appear when ordinary compact symmetries are replaced by super group,
maybe non compact, symmetries, and sheds light on what should be directions of further research.

We will present evidence from various sources that the integrable alternating 3, 3̄ chain is in the uni-
versality class of the SU (2/1) WZW model at level 1[20]. This model has also been called OSP (2/2)−2

in the literature [21], and has appeared previously in the study of Dirac fermions in a random gauge
potential[22]. In contrast, it is already known from [16] that the non integrable alternating 3, 3̄ Heisen-
berg chain does not scale to a WZW model, but to a new kind of theory, where the currents have
logarithmic OPEs, and the symmetry is not of Kac Moody type [23].

It is important to stress here that the WZW model is a very different theory from the one [16]
associated with the Heisenberg Hamiltonian; in particular, it has a continuous spectrum of critical
exponents, which is not bounded from below. Trying to infer generic physical properties from the
integrable chain would be a considerable mistake in this case, and presumably in the ordinary quantum
Hall case as well.
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Figure 1: Graphical representation of the representation [0, 1/2].

The paper is organized as follows. In the next section, we gather information, obtained from the
literature as well as our own calculations, about the WZW model. In sections three and four, we
present the results of a numerical and analytical study of the Bethe ansatz equations of the integrable
spin chain, comparing our results with the expectations for the WZW model. Section five contains
elements of extension to the case of higher level. Section six goes back to the spin quantum Hall
problem. Technical details are provided in the appendices.

2 First considerations on the WZW model

2.1 Algebraic generalities

We start with a short review of the “base” sl(2/1) algebra. It contains a sub sl(2) with generators
J±

0 , J3
0 , an extra U (1) generator B0, and two pairs of fermionic generators V ±

0 and W±
0 . Its repre-

sentation theory is complicated, although this is one of the best understood cases in the super Lie
algebra literature [24],[25],[26],[27]. Typical representations are characterized by a pair of numbers tra-
ditionally called b, j (and denoted [b, j] in what follows). Here, j is a sl(2) spin quantum number and
takes values 0, 1/2, 1, . . ., whereas b can be any complex number. Typicality requires b 6= ±j. Typical
representations are irreducible. Their dimension is 8j, and they decompose into sl(2) representations
with spin j, j − 1/2, j − 1/2, j − 1 with, respectively, b numbers b, b + 1/2, b − 1/2, b (for j = 1/2,
the value j − 1 is omitted). We introduce the notation ρb

j to denote an sl(2) representation of spin
j for which the other u(1) generator takes the constant value b, so the former decomposition reads

ρb
j ⊕ ρ

b+1/2
j−1/2 ⊕ ρ

b−1/2
j−1/2 ⊕ ρb

j−1. The Casimir is diagonal in these representations, and proportional to

j2 − b2.
A particularly important representation in the WZW model will be the four dimensional [b = 0, j =

1/2] which is represented graphically in Fig. 1. It is the defining representation for osp(2/2).
There are many more representations. Simple atypical (that is, irreducible atypical) occur when

b = ±j, and have dimension 4j + 1. Examples are the three dimensional representations [1/2, 1/2] and
[−1/2, 1/2] that we will use to define the ‘Hilbert’ space for the quantum spin chain. Representations

[j, j] contain only multiplets ρj
j and ρ

j+1/2
j−1/2, so [1/2, 1/2] contains ρ

1/2
1/2 and ρ1

0. Similarly, representations

[−j, j] contain only multiplets with ρ−j
j and ρ

j−1/2
j−1/2, so [−1/2, 1/2] contains ρ

−1/2
1/2 and ρ−1

0 . While typical

representations have vanishing superdimension, simple atypical ones have superdimension equal to plus
or minus one.
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Figure 2: Graphical representation of the representation [0,−1/2, 1/2,0].

The other atypical representations are not simple: they are indecomposable 1 but partly reducible,
and form what is often called ‘blocks’. The most important example is the one appearing in the tensor
product [0, 1/2]⊗ [0, 1/2] which decomposes as the adjoint [0, 1] and another eight dimensional repre-
sentation usually denoted as [0,−1/2, 1/2, 0]. This representation is the semi direct sum of [1/2, 1/2],

[−1/2, 1/2], and of two [0, 0] representations. Its su(2) content is ρ
1/2
1/2, ρ

−1/2
1/2 , ρ1

0, ρ−1
0 , and ρ0

0 twice.

A graphical representation is given in figure 2. Note that this representation has vanishing superdi-
mension.

It is useful to represent such an indecomposable representation by its ‘quiver diagram’ [28]. Denote
by j the representation [j, j] and by −j the representation [−j, j] (these simple atypical representations
can be obtained by maximum supersymmetrization of the fundamental or its conjugate - 2j boxes in
a Young diagram representation). Then the eight dimensional indecomposable can be represented as

0
•

↙ ↘
−1/2
•

1/2
•

↘ ↙
0
•

. (2.1)

Here, the bottom part of the diagram means that the representation contains a singlet as an invariant
subspace. There is then two submodules of dimension three which are not invariant but are (and then,
isomorphic to 1/2 and −1/2) modulo the singlet, and finally, on top, a submodule of dimension one
which is invariant modulo all the others. A generic element of the algebra, written in the basis made
of the top, middle and bottom components of the quiver in this order, will have the form

ρ =




0 0 0 0

a ρ
1/2
1/2 0 0

b 0 ρ
−1/2
1/2 0

c d e 0


 (2.2)

Here, the ρ are 3× 3 matrices, a and b are 3× 1, d and e are 1× 3, and c is 1× 1.
More generally, replacing 0 by j, and 1/2,−1/2 by j− 1/2, j + 1/2, or the same with the conjugate

of all these representations, gives the quiver diagram for indecomposables of dimension 8 (for j = 0)

1We may use indecomposables as short hand for non simple indecomposables, while in the mathematics literature,
indecomposable encompasses irreducible.
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and 16j +4 (j > 0). These representations (denoted [j, j−1/2, j +1/2, j]) and their conjugates are the
only indecomposables whose quiver has a ‘loop’. They are projective representations (see the appendix
for some algebraic reminders). All the other indecomposables 2 are not projective, and associated with
one dimensional quivers. They will be discussed soon.

We now turn to the current algebra. First, a note about conventions. We chose normalizations
such that the SU (2/1) WZW at level k contains a sub SU (2) current algebra at level k in the standard
convention for the latter. Other conventions would denote this model as the OSP (2/2) level −2k model
(the two superalgebras are isomorphic).

The basic OPEs read:

J+(z)J−(0) =
k

z2
+

2

z
J3

J3(z)J±(0) = ±J±

z

J3(z)J3(0) =
k

2z2
B(z)B(0) = − k

2z2

J+(z)V −(0) =
V +

z
J+(z)W−(0) =

W+

z

J−(z)V +(0) =
V −

z
J−(z)W+(0) =

W−

z

J3(z)V ±(0) = ±V ±

2z
J3(z)W±(0) = ±W±

2z

B(z)V ±(0) =
V pm

2z
B(z)W±(0) = −W±

2z

W+(z)V +(0) =
J+

z
W−(z)V −(0) = −J−

z

V +(z)W−(0) = − k

z2
+

B − J3

z

V −(z)W+(0) = − k

z2
+
−B − J3

z
(2.3)

and the generators of the base algebra obtained by taking the zero modes of the currents. The Sugawara
construction then leads to vanishing central charge independently of the level k, as the adjoint has

vanishing superdimension. The conformal weights for affine representations [̂b, j] based on irreducible
typical representations [b, j] read

h =
j2 − b2

k + 1
(2.4)

Affine highest weight representations built on simple atypical representations have conformal weight
equal to zero. Finally, for those built on indecomposable atypical representations, L0 is not diagonal-
izable.

2.2 The case k = 1 and a free field representation

The simplest example, and the one most likely to be encountered as the continuum limit of a lattice
model, is the case k = 1. It is well known [20, 21] that this theory admits a free field representation,
based on a pair of symplectic fermions η1, η2, and a pair of bosons φ, φ′. The boson φ is compact and
has the usual metric, the boson φ′ has a metric of the opposite sign. The propagators are

〈η1(z, z̄)η2(w, w̄)〉 = − ln |z − w|2

〈φ(z)φ(w)〉 = − ln(z − w)

〈φ′(z)φ′(w)〉 = ln(z − w) (2.5)

2We restrict here to cases where the Cartan subalgebra is diagonalizable, which should be the relevant one for our
problem.
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The central charge of the model is −2 + 1 + 1 = 0, as required for the SU (2/1) WZW models.
The currents admit the following free field representation:

J+ = e
√

2iφ

J− = e−i
√

2iφ

J3 =
1√
2
i∂φ

B = − 1√
2
i∂φ′ (2.6)

The fermionic currents consist of two sl(2) doublets with b = ±1/2:

V ± = e
1√
2
i(±φ+φ′)

∂η1

W± = e
1√
2
i(±φ−φ′)

∂η2 (2.7)

The WZW model has never (to our knowledge) been completely understood, even for k = 1:
questions such as the operator content or the operator algebra only admit partial answers, at best.
Of course, it is tempting to speculate that the operator content derives somehow from the sub SU (2)
part, which for k = 1 contains only the affine representations at j = 0, j = 1/2. The j = 1/2 case
corresponds, for the fundamental representation of osp(2/2) which has b = 0, to a conformal weight
h = 1

8 , and one thus expects to have, for k = 1, at least the representations with h = 0 and h = 1
8 .

But it is easy to argue that the operator content is considerably richer, and in particular exhibits
logarithmic features. Indeed, consider the tensor product of the [0, 1/2] representation (the multiplet
for the fundamental field of the theory) with itself;

[0, 1/2]⊗ [0, 1/2] = [0, 1] + [0, 1/2,−1/2,0] (2.8)

The right hand side does not contain the true singlet [0, 0], which means, jumping from tensor product
in the base algebra to fusion product in the conformal field theory [21], that the identity field must
have logarithmic partners, and fields of dimension h = 0 be organized in several representations of
sl(2/1).

To gain further insight on this question, we can study the OPE associated with (2.8) by using the
free field representation. The doublet in the [0, 1/2] representation can be represented by [21]

v± = e
± iφ√

2 µ (2.9)

where µ is the λ = 1
2

twist field in the symplectic fermion theory, with dimension −1/8, which, added
to +1/4, gives the desired 1/8. The two singlets meanwhile can be represented as [21]

w± = e
± iφ′

√
2 ν± (2.10)

where ν± are the λ = −1/2 and λ = 3/2 twist fields in the symplectic fermion theory. Their dimension
is 3/8, which, added to −1/4, gives the desired 1/8. The fields in the adjoint representation are the cur-
rents, whose expression was given earlier. Finally, for the fields in the indecomposable representation,
they are given by

η1η2

e
± iφ√

2 e
− iφ′

√
2 η1, e−i

√
2φ′

η1∂η1 e
± iφ√

2 e
− iφ′

√
2 η2, e−i

√
2φ′

η2∂η2

1 (2.11)

where the fields are arranged exactly as in the quiver for [0,−1/2, 1/2,0] given above. All these fields
have vanishing conformal dimension. The superdimension of [0,−1/2, 1/2,0] vanishes. On the other
hand, it is known (see below) that the Witten index of the theory is equal to one. This means that in
the level k = 1 WZW model there must be at least the fields in (2.11) and a ‘true’ identity field, which
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is not embedded in a bigger indecomposable representation. The free field representations is thus not
complete as is, since two fields ‘1’ must be introduced.

In fact, it is possible to build (many) other indecomposable representations associated with fields
of vanishing conformal weight. The simplest are obtained as representations containing either the field
η1 or the field η2. For instance, the fields

η2, e
i√
2
(±φ+φ′)

, ei
√

2φ′
∂η1 (2.12)

form a representation one can represent by the diagram
0•→1/2• . Similarly, the fields

η1, e
i√
2
(±φ−φ′)

, e−i
√

2φ′
∂η2 (2.13)

can be represented by the diagram
−1/2• ←0•. The module at the end of the arrow is invariant, and

quotienting by this module amounts to erasing the dot, that is the remaining module is then invariant.
For more general such diagrams, the dots will represent atypical representations of the type [±j, j]
discussed earlier.

These structures do not come alone, but are always embeddable in larger structures (in mathemat-
ical terms, they are not ‘projective’ representations). This is easily seen in the free field representation.

For instance, introducing the field ei
√

2(φ−φ′)η2 and acting with the generators gives rise to
−1• →−1/2• ←0•.

where the [−1, 1] submodule is constituted by the fields

ei
√

2(φ−φ′)η2, e
i√
2
(φ−φ′)

η2η1, e−i
√

2φ′
η2, e

i√
2
(φ+φ′)

η2η1, e−i
√

2(φ+φ′)η2 (2.14)

In turn, these fields can be connected to bigger representations, and one finds that the conformal fields
of vanishing weight built ‘on top’ of a single fermion η1 or η2 can be arranged into the semi-infinite
quiver

. . .
−p• →

−p+ 1
2• ←−p+1• → . . .

−1• →−1/2• ←0• (2.15)

or its mirror image. The highest weight (that is, the field annihilated by the zero modes of all raising

operators) of −n/2 is the field e
ni√
2
(φ−φ′)

η2 for n even, e
ni√
2
(φ−φ′)

for n odd, and similarly for +n/2.
Of course, since we are at level k = 1, these higest weights for n > 1 are not affine highest weights,

that is, their OPE with the SU (2) currents gives poles of degree higher than one. For instance for
n = 2,

J−(z)ei
√

2(φ−φ′)η2(w) =
1

(z − w)2
: e−i

√
2φ(z)ei

√
2(φ−φ′)η2(w) : (2.16)

Therefore, applying modes with positive indices will produce fields with negative dimension. In this

example we get the field e−i
√

2φ′
η2 of dimension −1. This field belongs to the representation [b =

−3/2, j = 1/2], for which ei/
√

2(φ−3φ′)∂η2 is an affine highest weight. The pattern generalizes, and one
finds that for any n > 1, the fields at weight h = 0 in the semi-infinite quiver for node −n/2 are affine
descendents of the field

exp

[
i√
2
(φ− (2n− 1)φ′)

]
∂η2 . . .∂n−1η2 (2.17)

which is the highest weight of [−n + 1/2, 1/2], with h = −n(n− 1)/2. Concatenating [−1/2, 1/2] and
[0, 0] in a four dimensional representation we will still denote (abusively) by [−1/2, 1/2], the set of
conformal fields associated with the semi-infinite quiver seems to be made of all affine highest weight
representations with base [b = −n + 1/2, j = 1/2], n = 1, . . . ,∞. Similarly for the mirror image, we
get all the representations [b = n− 1/2, 1/2], n = 1, . . . ,∞.

Note that as we increase the value of n we get larger and larger negative dimensions, and the
semi-infinite quiver corresponds to a theory whose spectrum is not bounded from below. This feature
is rather characteristic of supergroup WZW models. It does not seem to make physical applications
impossible however, as we will discuss below.

The algebraic structure of the representations of the affine algebra associated with the semi-infinite
quivers is very interesting of course, and deserves much further study, beyond the scope of this paper.
We shall refer to them, whenever necessary, as ‘infinite blocks’ representations of the current algebra.
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Note that in a physical theory, left and right sectors have to be combined. While we have treated
the fermions so far as chiral objects, they are not, and when completing with the left moving parts of
the boson operators, the left moving part of the fermions should also be included.

Let us now backtrack a bit and wonder what of this algebraic zoo will appear in the WZW model.
First, observe that the free field representation of the currents uses only the derivatives of the fermions,
which are well defined conformal (chiral) fields. One might have hoped that maybe a theory can be de-
fined that does not use the fermion fields themselves (and thus is based only on the “small algebra”[29]).
However, consideration of the four point functions and the Knizhnik Zamolodchikov equation seem to
exclude this possibility, as the identity clearly must have logarithmic partners, and the fermions them-
selves are necessary to reproduce this feature in the free field representations [21]. One could then
have hoped that fields of dimension zero are reduced to the true singlet and the eight dimensional
indecomposable [0, 1/2,−1/2,0]. This seems also incorrect. For instance, it is known that the fusion of
the twist fields with dimension h = −1/8 and h = 3/8 in the symplectic fermions theory does produce
the fermionic fields themselves [29]. Also, we shall see later that modular transformations of characters
suggests the presence of more fields of weight zero. If so, then the non projective indecomposables
must appear, and then there is no reason to restrict them. We in fact speculate that the infinite
blocks defined previously appear in the WZW model at level one. This in turn implies apppearance of
arbitrarily large negative conformal weights.

Indecomposable representations of sl(2/1) lead to affine highest weight representations with van-
ishing conformal weights. To have a non vanishing conformal weight for an affine highest weight
representation requires dealing with a typical, irreducible representation of sl(2/1). There, the pres-
ence of a sub SU (2) at level one presumably allows only spins j = 0, 1/2 to occur. So a minimal guess
for the WZW model would be to add to the infinite blocks just discussed, the affine highest weight
representation based on [0, j = 1/2]. But we have already seen appearance of the representations
[−n+1/2, 1/2] in relation with the infinite blocks. Thus it seems to us that the spectrum of the WZW
model should at least include

̂[0, 0]⊗ ̂[0, 0]

∞⊕

n=−∞

̂[−n + 1/2, 1/2]⊗ ̂[n− 1/2, 1/2] (2.18)

2.3 Relevance to lattice models?

The appearance of arbitrarily large negative conformal weights is related with the fact that the invariant
metric on the supergroup is not definite positive, and thus the functional integral ill defined - a feature
directly at the origin of the ‘wrong sign’ in the propagator of the free field φ′. This might lead one to
think that the conformal field theory we have tried to define through the free field representation of
the SU (2/1) current algebra cannot in any case appear as the continuum limit of a lattice model, for
which (see below) one can easily establish the existence of a unique ground state. But things are more
subtle. It might be for instance that the arbitrarily large negative conformal weights 3 correspond
to non normalizable states, and thus are absent from the spectrum and the partition function. This
would be the situation for a lattice model whose continuum limit is a non compact boson [31] . It might
also be that the arbitrarily large negative conformal weights do correspond to normalizable states, but
that the correspondence between the spectrum and the partition function is more complicated than
for unitary conformal field theories say, and proceeds through some sort of analytic continuation. This
seems to be the case for the βγ system for instance [32], where instead of the naive characters, the
modular invariant partition function is made of character functions, which encode the arbitrarily large
negative conformal weights in a subtle way. We will argue that this is the situation in the SU (2/1)
model as well. In other words, the spectrum deduced from the lattice model may be related to the

spectrum of the conformal field theory only through some sort of analytical continuation. We will
discuss below a very naive version of this continuation.

Finally, and getting a bit ahead of ourselves, one might recall that Zirnbauer (see [33] for a thorough
discussion) has suggested to replace the target space from (in this case) SU (2/1) with its indefinite

3Note that these are not necessarily excluded on ”physical grounds’. It might well be that in some systems, these
arbirarily large negative conformal weights do describe physical observables, like powers of the wave function [30].
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metric by a non compact target space with a positive metric - a Riemannian symmetric superspace.
The resulting functional integral would then be well defined, and the spectrum bounded from below.
It is not clear to us how one would study this model in practice. But it is tempting to conjecture that
its spectrum would coincide with the analytical continuation of the naive spectrum deduced from the
algebraic study of the current algebra, that is the spectrum observed in the lattice model. If so, the
question of ‘what is the continuum limit of the lattice model’ may have, in a way, two answers. This
obviously requires more thinking.

To proceed, we now turn to characters and their modular transformations. This will give us a handle
on the mysterious analytical continuation at play, and allow us to make contact with the conjecture
(2.18).

3 Some results about the WZW model from characters

3.1 Integrable characters.

3.1.1 Ramond sector

At level k = 1, four admissible characters [34] have been identified. In the Ramond sector (periodic
fermions on the cylinder) one has the field j = 1/2, b = 0 with character

χR,I
h=1/8(τ, σ, ν) = q1/8z1/2F R(τ, σ, ν)

∑

a∈Z

q2a2+a(z2a − z−2a−1) (3.1)

Here we use the definition χ = Tr qL0−c/24e2iπσJ3
0 e2iπνB0 , J3

0 and B0 being the zero modes of the J3

field (the third component of the spin) and the B field. Normalizations are such that for the highest
weight state in the h = 1/8 R sector, J3

0 = j = 1/2, B0 = b = 0. We have set z = e2iπσ and ζ = e2iπν .
Finally,

F R(q, z, ζ) =

∞∏

n=1

(1 + z1/2ζ1/2qn)(1 + z−1/2ζ1/2qn−1)(1 + z1/2ζ−1/2qn)(1 + z−1/2ζ−1/2qn−1)

(1− qn)2(1− zqn)(1− z−1qn−1)
(3.2)

It is convenient to rewrite this character as [34]

χR,I
h=1/8(τ, σ, ν) =

1

η(τ )

[
χ0(τ, σ)χ1/2(τ, ν) + χ1/2(τ, σ)χ0(τ, ν)

]
(3.3)

where the χ’s in (3.3) are characters of the SU (2)1 WZW model, and are given by the following well
known expressions [35]

χ0(τ, σ) =
1

η(τ )

∑

a∈Z

qa2

za

χ1/2(τ, σ) =
1

η(τ )

∑

a∈Z

q(a+1/2)2za+1/2 (3.4)

(note that these characters are even functions of σ, as expected by symmetry of the J 3
0 spectrum). and

we have set z = e2iπσ; similarly we set ζ = e2iπν. The specialized Ramond character σ = ν = 0 for the
h = 1/8 field reads therefore

χR,I
h=1/8(τ ) =

2

η
χ0χ1/2(τ ) = 4q1/8

(
1 + 5q + 22q2 + . . .

)
(3.5)

where we recognize the overall multiplicity 4, coinciding with the dimension of the representation
[0, 1/2]. The latter decomposes as one spin 1/2 and two spin 0 SU (2) representations.

The Ramond character for the identity field is considerably more complicated [34]:

χR,IV
h=0 = F R(τ, σ, ν)

∑

a∈Z

q2a2

z−2a 1− q2az−1

(1 + qaz−1/2ζ−1/2)(1 + qaz−1/2ζ1/2)
(3.6)
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The specialized character turns out to be finite, despite the divergence of F R:

χR,IV
h=0 =

∞∏

1

(
1 + qn

1− qn

)4
[
1− 16

∞∑

a=1

aq2a2 1− qa

1 + qa
− 8

∞∑

a=1

q2a2+a

(1 + qa)2

]
= 1 + 8q + 24q2 + . . . (3.7)

We thus see that in the Ramond sector, all conformal weights are of the form h = 0 Mod integers or
h = 1

8 Mod integers. Setting σ = 1 gives us Tr(−1)F (a supertrace) and evaluates what is called the

super character; we check that χsR,I
h=1/8(τ ) = 0 while χsR,IV

h=0 (τ ) = 1.

It is possible to write the specialized character in a more compact form using the function [36]

h3(τ ) =
1

η(τ )θ3(τ )

∑

a∈Z

qa2−1/8

1 + qa−1/2
(3.8)

One finds then

χR,IV
h=0 (τ ) =

χ2
0 − χ2

1/2

χ2
0 + χ2

1/2

(τ ) + 2χ0χ1/2h3(τ ) (3.9)

3.1.2 Neveu-Schwarz sector

In the NS sector, the fermions have antiperiodic boundary conditions, and the SU (2/1) symmetry is
broken down to a sub SU (2) × U (1). The lowest energy state in this sector has negative conformal
dimension, leading to an effective central charge equal to ceff = 3. The corresponding character is

χNS,I
h=−1/8(τ, σ, ν) =

1

η(τ )

[
χ1/2(τ, σ)χ1/2(τ, ν) + χ0(τ, σ)χ0(τ, ν)

]
(3.10)

The specialized characters reads

χNS,I
h=−1/8

(τ ) = q−1/8
(
1 + 4q1/2 + . . .

)
(3.11)

so half integer gaps appear in this sector.
The other character is again more complicated

χNS,IV
h=1/4 (τ, σ, ν) = q1/4z1/2F NS(τ, σ, ν)

∑

a∈Z

q2a2+2az2a 1− zq2a+1

(1 + qa+1/2z1/2ζ−1/2)(1 + qa+1/2z1/2ζ1/2)

(3.12)
where,

F NS =

∞∏

n=1

(1 + z1/2ζ1/2qn−1/2)(1 + z−1/2ζ1/2qn−1/2)(1 + z1/2ζ−1/2qn−1/2)(1 + z−1/2ζ−1/2qn−1/2)

(1− qn)2(1− zqn)(1− z−1qn−1)

(3.13)
The specialized character is again finite, despite the divergence of F NS :

χNS,IV
h=1/4 (τ ) = h3(τ )

[
χ0(τ )2 + χ1/2(τ )2

]
(3.14)

and like χNS,I
h=−1/8, exhibits half integer gaps.

3.2 The remaining operator content

It is crucial to realize that the characters we wrote down all have complicated or unusual modular
transformations. A possible strategy to proceed is then to try to supplement these characters with
others in order to obtain a finite dimensional representation of the modular group, and maybe modular
invariants.
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3.2.1 A continuum above h = 1/8 in the R sector

• Transformation of χsNS,I
h=−1/8

Consider for instance the Neveu Schwarz characters. They correspond to fermions being antiperiodic
in both directions. Aternatively, this corresponds to an antiperiodic chain along the space direction,
while one takes a trace along the (imaginary) time direction. Imagine instead taking a supertrace along
the imaginary time direction, or setting σ = 1 in the expression of the characters, giving rise again to
a supercharacter. The specialized supercharacter for h = −1/8 reads

χsNS,I
h=−1/8(τ ) =

χ2
0 − χ2

1/2

η
(τ ) (3.15)

Recall now the modular transformation of the basic SU (2)1 WZW characters

(
χ0

χ1/2

)
(−1/τ ) =

(
1√
2

1√
2

1√
2

−1√
2

)(
χ0

χ1/2

)
(τ ) (3.16)

Meanwhile the η function obeys η(−1/τ ) =
√
−iτη(τ ). So the only way to write the modular transform

of this SU (2/1) (super) character as a sum of powers of q is to introduce an integral representation of
the η factor

1√
−iτ

=

∫ ∞

−∞
dαeiπτα2

(3.17)

and thus

χsNS,I
h=−1/8(−1/τ ) = 2χ0(τ )χ1/2(τ ) ×

∫ ∞

−∞
dα

qα2/2

η(τ )
= χR,I

h=1/8

∫
dαqα2/2 (3.18)

Now observe that under modular transformation the boundary conditions which determine the super
NS character turn into boundary conditions where the fermions are periodic in the space direction, and
one takes a trace in the imaginary time direction. Hence the right hand side of (3.18) should appear in
the generating function of the spectrum in the sl(2/1) symmetric sector of our chain if the associated
conformal field theory contains the Neveu Schwarz characters discussed previously. This means there
should be a continuous component starting at the h = 1/8 value.

To find out about this continuous component, we can keep track of the B0 and J3
0 numbers by

keeping the parameters σ, ν:

χsNS,I
h=−1/8(τ, σ, ν) ≡ Tr

[
(−1)F qL0zJ3

0 ζB0

]
=

1

η(τ )

[
χ0(τ, σ)χ0(τ, ν)− χ1/2(τ, σ)χ1/2(τ, ν)

]
(3.19)

The modular transformation of general SU (2) characters reads

(
χ0

χ1/2

)
(−1/τ, θ/τ ) = eiπθ2/2τ

(
1√
2

1√
2

1√
2

−1√
2

)(
χ0

χ1/2

)
(τ, θ) (3.20)

and thus

χsNS,I
h=−1/8(−1/τ, σ/τ, ν/τ ) =

1√
−iτη(τ )

eiπ(σ2+ν2)/2τ
[
χ0(τ, σ)χ1/2(τ, ν) + χ1/2(τ, σ)χ0(τ, ν)

]
(3.21)

Due to the indefinite metric for the SU (2/1) supergroup, the overall factor in modular transformations

should however not be eiπ(σ2+ν2)/2τ , but rather eiπ(σ2−ν2)/2τ (since the Casimir is proportional to

j2− b2). We are then left with an overall factor eiπν2/τ whose interpretation is slightly delicate. What
we propose is to write

1√
−iτ

eiπν2/τ =
1√
−1

∫ ∞

−∞
dbe−iπτb2

e2iπνb (3.22)
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The phase factor is ambiguous and depends on a choise of cut. As for the integral, is is divergent in
the physical situation where Im τ > 0. If we assume however that this integral is defined by some sort
of analytical continuation from the case Im τ < 0, we see that we can formally interpret the leftover
ν2 exponential in our modular transform (3.21) as resulting from an integral over fields with conformal
dimension and B0 charges:

h = −1

2
b2, B0 = b, −∞ < b <∞ (3.23)

Moreover, the right hand side of the modular transform is, for each value of b, of the form

1

η(τ )
e−iπτb2

e2iπνb
[
χ0(τ, σ)χ1/2(τ, ν) + χ1/2(τ, σ)χ0(τ, ν)

]
(3.24)

which is exactly the character for the affine representation with base [b, 1/2] (integrable character in
class I in the language of [34]). It thus seems that the model should contain in fact, not only the
representation [0, 1/2], but the continuum [b, 1/2] with b real. This is at odds with the first section
where we speculated that [−n + 1/2, 1/2] only apppeared. See below for a discussion of this issue.

While the conformal weights associated with those representations become arbitrarily large and
negative, the analysis of the characters and modular transforms suggests that the finite size spectrum
is given by a sort of analytical continuation, whose result, by the mechanism discussed above, is to make
the continuum appear above the 1/8, not below. Note also that while the B0 numbers in the chiral and
antichiral sector appear continuous, the lattice analysis anyway only identifies the combination L + R,
which is made of integers.

• Transformation of χsNS,IV
h=1/4

We can perform the same analysis for the specialized supercharacter for h = 1/4:

χsNS,IV
h=1/4 (τ ) = −2

χ0χ1/2

χ2
0 + χ2

1/2

+ h3

(
χ2

0 − χ2
1/2

)
(3.25)

The function h3 obeys

h3(−1/τ ) = −h3(τ ) +
1

η

∫ ∞

−∞
dα

qα2/2

2 cosh πα
(3.26)

Thus

χsNS,IV
h=1/4 (−1/τ ) =

χ2
1/2 − χ2

0

χ2
1/2 + χ2

0

(τ ) + 2χ0χ1/2(τ )

[
−h3(τ ) +

1

η(τ )

∫ ∞

−∞
dα

qα2/2

2 cosh πα

]
(3.27)

where we again obtain a continuous spectrum starting at h = 1
8
. This time however, instead of a flat

measure over all the reals, one has a measure proportional to 1/ cosh πα. Note we can write

χsNS,IV
h=1/4 (−1/τ ) = −χR,IV

h=0 (τ ) + χR,I
h=1/8

∫
dα

qα2/2

2 cosh πα
(3.28)

To find out about the spectrum of B0 and J3
0 values is considerably more complicated, and the

tired reader may want to jump to formula (3.44). The following calculations rely on the paper [37];
one starts by writing

χsNS,IV
h=1/4 (τ, σ, ν) = −eiπτ/2eiπσF sNS(τ, σ, ν)

[
K4(τ,

τ + σ

2
,−ν

2
)−K4(τ,

−τ − σ

2
,−ν

2
)

]
(3.29)

where

F sNS =

∞∏

n=1

(1 − z1/2ζ1/2qn−1/2)(1 − z−1/2ζ1/2qn−1/2)(1− z1/2ζ−1/2qn−1/2)(1− z−1/2ζ−1/2qn−1/2)

(1− qn)2(1− zqn)(1 − z−1qn−1)

(3.30)
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It is useful to rewrite this prefactor as

F sNS =
θ10(τ,

σ+ν−τ+1
2

)θ10(τ,
σ−ν−τ+1

2
)

θ11(τ, σ)q−1/8η3(q)
(3.31)

The K are Apell functions

Kl(τ, σ, ν) =
∑

m∈Z

eiπm2 lτ+2iπmlσ

1− e2iπ(σ+ν+mτ)
(3.32)

and the θ are usual theta functions

θ10(q, z) =
∏

m≥0

(1 + z−1qm)
∏

m≥1

(1 + zqm)
∏

m≥1

(1− qm)

θ11(q, z) =
∏

m≥0

(1− z−1qm)
∏

m≥1

(1 − zqm)
∏

m≥1

(1− qm) (3.33)

Modular transformations of the theta functions are as follows:

θ11(−1/τ, µ/τ ) = −i
√
−iτ eiπµ+iπ 1

τ (µ−1/2)2+ iπ
4 τθ11(τ, µ)

θ10(−1/τ, µ/τ ) =
√
−iτeiπ

(µ−1/2)2

τ θ10(τ, µ + 1/2− τ/2) (3.34)

As for the Appell functions it is much more complicated. One finds [37]

Kl(−1/τ, σ/τ, ν/τ ) = eiπl(σ2−ν2)/τKl(τ, σ, ν)

+τ

l−1∑

a=0

eiπl(σ+aτ/l)2 /τ Φ(lτ, lν − aτ )θ00(lτ, lσ + aτ ) (3.35)

where θ00(q, z) = θ10(q, zq−1/2) and

Φ(τ, µ) = − i

2
√
−iτ
− 1

2

∫
dxe−πx2 sinh(πx

√
−iτ (1 + 2µ/τ ))

sinh(πx
√
−iτ )

(3.36)

Putting everything together gives

χsNS,IV
h=1/4

(−1/τ, σ/τ, ν/τ ) =
1

τ
e−iπ(σ2−ν2)/2τe2iπσ/τ e−iπ/τ

θ10(τ,−(σ + ν)/2)θ10(τ,−(σ − ν)/2)

θ11(τ,−σ)η3(τ )

[K4(−1/τ, (σ − 1)/2τ,−ν/2τ )−K4(−1/τ, (−σ − 1)/2τ,−ν/2τ )] (3.37)

Using the general Appell transform formulas gives

K4(−1/τ, (σ − 1)/2τ,−ν/2τ ) = τeiπ(σ2−ν2)/τeiπτ e−2iπσ/τ K4(τ, (σ − 1)/2τ,−ν/2)

+τ

l−1∑

a=0

eiπ(σ−1+aτ/2)2/τΦ(4τ,−2ν − aτ )θ(4τ,−2 + (2σ + a)τ ) (3.38)

We recognize the expected global factor eiπ(σ2−ν2)/2τ . Also, observe that

θ10(q, xy)θ10(q, xy−1)

θ11(q, x)
= −θ10(q, x

−1y−1)θ10(q, x
−1y)

θ11(q, x−1)
(3.39)

while

F R(τ, σ, ν) =
θ10(τ, (σ + ν)/2)θ10(τ (σ − ν)/2)

θ11(τ, σ)e−iπτ/4η3(τ )
(3.40)
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We also observe that K4(τ, ν, µ) = K4(τ, ν ± 1, µ). Therefore, the contribution to (3.37) coming from
the K4 term in the transform (3.38) gives

First term = −eiπ(σ2−ν2)/2τχR,IV
h=0 (τ, σ, ν) (3.41)

The second term reads, after making the θ function explicit,

−F R(τ, σ, ν)ieiπ(σ2+ν2)/2τ
3∑

a=1

(−1)aΦ(4τ,−2ν − aτ )qa2/8za/2
∑

m

q2m2+ma
(
z2m − z−2m−a

)
(3.42)

We recognize the prefactor of the Φ function as the formal extension of the Ramond character formula,
initially valid only for j = 1/2, b = 0, h = 1/8 to j = a, b = 0, h = a2/8, χR,I

h=a2/8. However, setting

Xa ≡ qa2/8za/2
∑

m

q2m2+ma
(
z2m − z−2m−a

)
(3.43)

it is easy to show that Xa = Xa−4 = −X−a. Therefore, X0 = X±2 = 0, and X1 = −X−3. Taking
advantage of these symmetries leads us to a considerably simplified expression

χsNS,IV
h=1/4 (−1/τ, σ/τ, ν/τ ) = −eiπ(σ2−ν2)/2τ χR,IV

h=0 (τ, σ, ν)

+χR,I
h=1/8(τ, σ, ν)eiπ(σ2+ν2)/2τ

∫
dxe−πx2 cosh(2πνx

√
−iτ/τ )

2 cosh(πx
√
−iτ )

(3.44)

As a check we can set ν = 0 in this expression. Using the invariance of h3(τ ) + h3(−1/τ ) we see that

1

η(τ )

∫
dα

qα2/2

2 cosh πα
≡ f(τ ) (3.45)

is invariant, and thus ∫
dx

e−πx2

2 cosh πx
√
−iτ

=

∫
dα

qα2/2

2 cosh πα
(3.46)

which alows us to recover expression (3.28).
We now go back to the more general expression. Crucial is the fact, as mentioned earlier, that the

exponential has the ν2 term with positive sign instead of a negative one. We thus write in the integral

x = y
√

−i
τ and thus formally obtain

√
−i

τ
eiπν2/τ

∫
dyeiπy2/τ cosh 2πνy/τ

cosh iπy

=

√
−i

τ

∫
dy

eiπ(ν+y)2/τ

cos πy
(3.47)

Using the formal integral representation of the exponential we write this as

∫
dbdye−iπτb2 e2iπ(ν+y)b

cos πy

=

∫
dbe2iπνbe−iπτb2 1

cos πb
(3.48)

Finally, we thus rewrite (3.44) as

χsNS,IV
h=1/4 (−1/τ, σ/τ, ν/τ ) = −eiπ(σ2−ν2)/2τχR,IV

h=0 (τ, σ, ν)

+χR,I
h=1/8(τ, σ, ν)eiπ(σ2−ν2)/2τ

∫
dbe2iπνbe−iπτb2 1

cos πb
(3.49)
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This corresponds again to representations [b, 1/2] but this time with a measure that is not flat, but
proportional to 1/ cos πb. The interpretation is discussed below.

• Transformation of χNS,I
h=−1/8 and χNS,IV

h=1/4

Finally, we can also consider the ordinary NS character. We know that the boundary conditions
corresponding to it character are invariant under the modular transformation. But using the expression

χNS,I
h=−1/8(τ ) =

χ2
0 + χ2

1/2

η
(τ ) (3.50)

we see that the modular transform has a continuous component starting at the ground state of the
sector, namely h = −1/8:

χNS,I
h=−1/8(−1/τ ) =

1√
−iτ

χNS,I
h=−1/8(τ ) =

(
χ2

0 + χ2
1/2

)
(τ )

∫
dα

qα2/2

η
(3.51)

Similarly

χNS,IV
h=1/4 (−1/τ ) = −χNS,IV

h=1/4 (τ ) + χNS,I
h=−1/8(τ )

∫ ∞

−∞
dα

qα2/2

2 cosh πα
(3.52)

A final note: in the supersymmetric literature (the model has some relations to N = 4 theories
[36]), the subset with discrete quantum numbers is refered to as massless, the one with continuous
quantum numbers as massive.

3.3 Interpretation

Comparing the free field analysis of the WZW model with the analysis of the modular transformations of
basic characters suggests that the spectrum of arbitrarily large negative dimensions admits ‘regularized’
expressions for characters, and thus partition function and spectra of lattice Hamiltonians. For these,
there is a single ground state, and the negative dimensions are ‘folded’ back into a continuous spectrum
of positive dimensions.

The slightly surprising thing is that we find in this way indications of a continuous spectrum

based on [b, 1/2] while we initially expected a discrete one [−n + 1/2, 1/2]. There are stronger reasons
for a discrete spectrum of b than the ones given in the first sections. For instance the free field
representation of the generators selects a particular radius for the non compact boson, and vertex
operators corresponding to charges continuous charges b will in general be non local with respect to
these currents! Of course it might be in fact that the free field representation we have used is good
only for a subset of fields, and does not allow one to explore the full operator content. But it could
also be that the continuous spectrum we read from the modular transformations is an artifact from
the (rather uncontrolled) regularization at work. A hint in this direction comes from the integral

∫
q

α2

2

2 cosh πα

which, after continuation to the imaginary axis, has poles precisely at the values b = −n + 1
2 . It seems

difficult to conclude on this issue without more work on the conformal field theory side.

4 Analysis of the lattice model

The next step is to extract as much information about the lattice model as possible and compare it
with our proposal for the continuum limit. Although we have mostly talked about a quantum spin
chain so far, integrability allows one to consider it as part of a larger family of commuting transfer
matrices related to an integrable vertex model.
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4.1 Definition of the integrable vertex model

The vertex model is constructed from R-matrices acting on tensor products of spaces carrying the
fundamental representation 3 of the graded Lie algebra sl(2/1) and its dual 3̄. The R-matrices satisfying
Yang-Baxter equations (YBEs) have been constructed in [38, 39, 40] (see also [41]) and read

R33(v) = 1− 2

v
P , R3̄3̄(v) = 1− 2

v
P

R33̄(v) = 1 +
2

v
O , R3̄3(v) = 1 +

2

v
O . (4.1)

Here P and O are the graded permutation and monoid operators of sl(2/1), respectively (note that
the action of the monoid O on 3⊗ 3̄ differs from that on 3̄⊗ 3). As a consequence of O2 = O we have
R3̄3(−u− 1)R33̄(u− 1) = 1.

From these R-matrices we construct two families of monodromy matrices (labelled by the spectral

parameter v). The monodromy matrices act on the tensor product of a “quantum space” (3⊗ 3̄)
⊗L

(the Hilbert space of the superspin chains considered below), and a three-dimensional “matrix space”
carrying a representation 3 (3̄)

T3(v) ≡ R
(1)
33 (v)R

(1)

33̄
(v − 1− λ)R

(2)
33 (v)R

(2)

33̄
(v − 1− λ) · · ·R(L)

33 (v)R
(L)

33̄
(v − 1− λ) ,

T3̄(v) ≡ R
(1)

3̄3
(v − 1 + λ)R

(1)

3̄3̄
(v)R

(2)

3̄3
(v − 1 + λ)R

(2)

3̄3̄
(v) · · ·R(L)

3̄3
(v − 1 + λ)R

(L)

3̄3̄
(v) . (4.2)

Here the parameter λ can be chosen freely without affecting the essential properties (symmetries and
locality of the interactions) of the models considered in the following. Variation of λ allows one to tune
the coupling between the two sublattices of 3 and 3̄ spins, respectively. Later we will focus on the case
of λ = 0 which corresponds to the most symmetric coupling. As a consequence of the YBE

R33̄(u− v) T3(u) T3̄(v − 1− λ) = T3̄(v − 1− λ) T3(u) R33̄(u− v) (4.3)

the corresponding transfer matrices

τα(v) = str0 (Tα(v)) , α = 3, 3̄, (4.4)

commute with each other for arbitrary values of the spectral parameter v. Here str0 denotes the
supertrace over the matrix space.

By staggering the transfer matrices (4.4) one can construct the integrable vertex model shown in
Fig.3. Arrows pointing upwards ot to the right (downwards or to the left) indicate that the corre-
sponding link carries the fundamental 3 (the dual 3̄) representation of sl(2/1). The vertex weights

3

3

3

3

3 3

3 3

Figure 3: The vertex model.

corresponding to the various arrow configurations are shown in Fig.4. The transfer matrix of this
model includes two layers in the vertical direction and is equal to τ (v) = τ3(v)τ3̄(v).

The vertex model constructed in this way was suggested as a description of the spin quantum Hall
effect in Ref. [40]. The notations of [40] are obtained by setting v = −2x and λ = 2u− 1, where x and
u are quantities defined in [40].
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[R33(v)]kl
ij [R3̄3̄(v)]kl

ij [R3̄3(v − 1)]kl
ij [R33̄(v − 1)]kl

ij

Figure 4: The vertex weights. Arrows pointing upwards ot to the right (downwards or to the left)
indicate that the corresponding link carries the fundamental 3 (the dual 3̄) representation of sl(2/1).

The Hamiltonian of an integrable supersymmetric spin chain with local (nearest and next-nearest
neighbour) interactions only is obtained by taking the logarithmic derivative of the two-layer transfer
matrix at v = 04

H = − ∂v ln

{
τ3(v)τ3̄(v)

a(v)2L

}∣∣∣∣
v=0

, (4.5)

where a(v) = 1 − 2/v 5. The Hamiltonian (4.5) is not hermitian and its eigenvalues are in general
complex. However, for small systems we find that the ground state and low-lying excited states have
real eigenvalues. We assume that this continues to hold true in the thermodynamic limit. Under this
assumption we find that in the thermodynamic limit low lying excited states can be understood in
terms of a conformal field theory and we can extract the central charge and scaling dimensions from
the finite-size energies for the ground state and low-lying excited states.

The Hamiltonian (4.5) contains a piece proportional to the sl(2/1) invariant product [42]
∑

j
~Sj .~Sj+1

where ~Sj are sl(2/1) generators on site j, and the contraction defines the invariant form. In addition
to this Heisenberg coupling however, our Hamiltonian (4.5) contains more complicated terms involving
three neighbouring sites.

The eigenvalues and eigenvectors of the transfer matrices were constructed by Links and Foerster
in [38] by means of he graded quantum inverse scattering method [43, 44]. As usual different choices
of reference state lead to different forms for the Bethe ansatz equations [45, 46, 44, 47, 48, 49, 50, 51,
52, 53]. In the following we will analyze the Bethe ansatz equations for the choice of grading “[010]”
which read

(
uj + i

uj − i

)L

=

M∏

β=1

uj − γβ + i

uj − γβ − i
, j = 1, . . . , N

(
γα + iλ + i

γα + iλ − i

)L

=

N∏

k=1

γα − uk + i

γα − uk − i
, α = 1, . . . , M . (4.6)

Equations (4.6) coincide in fact with the BAE describing the spectrum of the so-called “Quantum
Transfer Matrix” of the 1D supersymmetric t–J model – see Appendix D.

Each solution of (4.6) parametrizes an eigenstate with quantum numbers B = (N − M )/2 and
J3 = L − (M + N )/2 (we use the notation B ≡ B0 + B̄0 and J3 = J3

0 + J̄3
0 ). The eigenvalues of the

4A similar Hamiltonian was considered in [38] from the point of view of introducing impurities into a t-J model.
5As usual the overall scale of the Hamiltonian is at our disposal.
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transfer matrices (4.4) are [38]

Λ(v) = [a(v)]L
N∏

k=1

a(1 + iuk − v) + [a(1 + λ− v)]L
M∏

β=1

a(v − iγβ )

−
N∏

k=1

a(1 + iuk − v)

M∏

β=1

a(v − iγβ) ,

(4.7)

Λ̄(v) = [a(v)]
L

M∏

β=1

a(iγβ + 1− λ− v) + [a(1− λ − v)]
L

N∏

k=1

a(v + λ− iuk)

−
M∏

β=1

a(iγβ + 1− λ − v)
N∏

k=1

a(v + λ− iuk) .

The eigenvalues of the Hamiltonian (4.5) are obtained by taking the appropriate logarithmic derivatives
of the eigenvalues of the transfer matrix

E({uk}, {γβ}) = − ∂v ln

{
Λ(v)Λ̄(v)

a(v)2L

}∣∣∣∣
v=0

= −
N∑

k=1

2

u2
k + 1

−
M∑

β=1

2

(γβ + iλ)2 + 1
. (4.8)

Similarly the eigenvalues of the momentum operator are obtained are

P ({uk}, {γβ}) =
i

2
ln

{
Λ(v)Λ̄(v)

a(v)2L

} ∣∣∣∣
v=0

= i

N∑

k=1

ln

(
uk + i

uk − i

)
+ i

M∑

β=1

ln

(
γβ + iλ + i

γβ + iλ − i

)
. (4.9)

In the definition of the momentum we have taken into account that the underlying translational sym-
metry is by two sites of the lattice.

4.2 The ground state of the lattice model

In order to gain some insight in the structure of the spectrum of the Hamiltonian (4.5) we have
diagonalized the transfer matrix and the Hamiltonian explicitly on small lattices. For L = 1 and 2 (i.e.
2 and 4 sites) this was done analytically and for L = 3, 4, 5 (corresponding to 6,8,10 sites respectively)
numerically. The results of this analysis are summarized in Appendix B.2.

Perhaps the most striking result of this analysis is that the space of true singlets (i.e. states
annihilated by all the generators of the algebra, which are not the image of any other state under the
action of one of these generators) appears to be one dimensional. This is not entirely obvious: although
the superdimension of the tensor product is always equal to one, it is a priori conceivable that there
are more singlets, and that the superdimension one results from cancellations. But the result can be
established rigorously (see Appendix A). Note however that one can always combine an invariant (i.e.
annihilated by all generators) state that is not the image of any other state with another invariant
state, and still get a state that is not the image of any other state. In that respect, although the
singlet appears only once in the decomposition of the spectrum into representations of sl(2/1), the
exact formula for this singlet depends on the Hamiltonian.

Based on our results for small systems (see Appendix B.2) we conjecture the following form for the
eigenvalues of the transfer matrices τ3(v), τ3̄(v) of this singlet state

Λ1(v) =

{
(v − 2)(v + 1− λ)

v(v − 1− λ)

}L

, Λ̄1(v) =

{
(v − 2)(v + 1 + λ)

v(v − 1 + λ)

}L

. (4.10)

Interestingly, there exists no non-degenerate solution of the BAE (4.6) giving rise to these eigenvalues.
Applying a twist in the boundary conditions for small systems and studying the evolution of BA roots
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as this twist goes to zero we were able to verify, however, that the singlet is in fact described by the
degenerate solution uk ≡ λ, γα ≡ 0, k, α = 1, . . . , L which clearly gives Λ1(v) from the general form
(4.7). This finding coincides with the observation in [54] regarding the distribution of BA-roots for
the ground state of the quantum transfer matrix for the t–J model in the thermodynamic limit. The
eigenvalue of the full transfer matrix corresponding to the singlet state is

Λ(v) = Λ1(v)Λ̄1(v) =

(
(v − 2)2(v + 1− λ)(v + 1 + λ)

v2(v − 1− λ)(v − 1 + λ)

)L

. (4.11)

For λ = 0 this state is the ground state of the Hamiltonian with energy

E0 = −4L . (4.12)

The energy of this singlet is proportional to L without any finite size corrections which implies that
the central charge of the conformal field theory arising in the scaling limit of the lattice model is zero

c = 0 . (4.13)

We now turn to a discussion of Bethe ansatz results on the low-lying excitations of the lattice
system. We present a rather short discussion here, and refer to Appendix B for the details.

4.3 Excitations

Based on an analysis of the analytical properties of the bare scattering phase shifts appearing on
the right hand sides of the Bethe ansatz equations (4.6) we are able to classify the possible root
configurations, so called strings, arising in their solution (see Appendix B.1). We identify the root
configurations giving rise to low energy excited states by considering small systems. We find that
many low-lying states are built from two types of complexes involving one spectral parameter u and
one spectral parameter γ each (the n = 1 “strange string” configurations, see (B.3) and (B.4))

type − : u(−) = x− i

2
+ ε− , γ(−) = x +

i

2
+ ε∗− ,

type + : u(+) = x +
i

2
+ ε+ , γ(+) = x− i

2
+ ε∗+ .

(4.14)

A particular class of low-lying excited states is obtained by combining N+ strange strings of type
+ with N− strange strings of type −

u
(−)
j = xj −

i

2
+ εj,− =

(
γ

(−)
j

)∗
, j = 1, . . . , N− ,

u
(+)
k = yk +

i

2
+ εk,+ =

(
γ

(+)
k

)∗
, k = 1, . . . , N+ .

(4.15)

Our numerical results indicate that the corrections ε± to the “ideal” string solutions are of order
1/L. Each of the two complexes (4.14) constitutes an acceptable, non self-conjugate, solution of the
Bethe ansatz equations (4.6). Such solutions have been encountered in other studies of non unitary
Hamiltonians, like the sl(3) integrable spin chain [55].

To make contact to the analysis of the WZW model we have to determine the spectrum of scaling
dimensions for the field theory describing the scaling limit of the lattice model. Conformal invariance
implies that the dimensions can be extracted from a finite size scaling analysis of the low-lying energies
of the latter. Before evaluating these energies in large, finite systems it is very useful to consider an
infinite volume first. In the thermodynamic limit we can neglect the deviations ε± from the ideal string
solutions as they do not contribute to the leading O(1) behaviour of the energies. Then, using (4.15)
in (4.6) and multiply the equations for the components of a strange string we arrive at the following
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set of equations involving only the real centres of the strange strings

(
xj + 3i

2

xj − 3i
2

xj + i
2

xj − i
2

)L

= −
N+∏

k=1

(
xj − xk + 2i

xj − xk − 2i

) N−∏

k=1

(
xj − yk + i

xj − yk − i

)2

, j = 1, . . . , N+,

(
yj + 3i

2

yj − 3i
2

yj + i
2

yj − i
2

)L

= −
N+∏

k=1

(
yj − xk + i

yj − xk − i

)2 N−∏

k=1

(
yj − yk + 2i

yj − yk − 2i

)
, j = 1, . . . , N−.

(4.16)

The algebraic equations (4.16) can be turned into coupled integral equations for root densities in the

limit L→∞, N± →∞, N±
L

= n± fixed (see Appendix B.3)

ρ+(x) + ρh
+(x) + a4 ∗ ρ+

∣∣
x

+ 2a2 ∗ ρ−
∣∣
x

= a1(x) + a3(x) ,

ρ−(y) + ρh
−(y) + a4 ∗ ρ−

∣∣
y

+ 2a2 ∗ ρ+

∣∣
y

= a1(y) + a3(y) .
(4.17)

Here ρ±(x) are the root densities of the two types of strings (4.15), ρh
± are the corresponding densities

of ‘holes’ in these distributions,

an(u) =
1

π

2n

4u2 + n2
, (4.18)

and ∗ denotes a convolution, i.e.

an ∗ f
∣∣
x

=

∫ ∞

−∞
dx′ an(x− x′) f(x′) . (4.19)

The energy per site of such states in the thermodynamic limit is obtained from (4.8)

lim
L→∞

1

L
EN+ ,N− = −2π

∑

σ=±

∫
dx ρσ(x) [a1(u) + a3(u)] . (4.20)

The eigenstates of lowest energy within this class are obtained by filling the states with negative energy.
Such states correspond to distributions with ρσ(x) = 0 (ρh

σ(x) = 0) for |x| > Aσ (|x| < Aσ). They are
characterized by the total density of type-± strange strings

N±
L

=

∫ A±

−A±

dxρ±(x) . (4.21)

For the low-lying multiplets identified for small systems in the Appendix B.2.4 we have N+ + N− ≈ L.
Due to the symmetry of the equations we can restrict our attention to the case N+ ≥ N−. Within
the description in terms of string densities ρ± these states correspond to the choice of A+ = ∞: it is

straightforward to see in this case that
N++N−

L = 1 independent of A−.
We can now proceed and apply standard Bethe ansatz methods to extract the finite size energy

gaps ∆E of these low-lying states with respect to the completely filled Fermi seas of type-± strange
strings (corresponding to A± = ∞). Note that to extract the scaling dimensions from this spectrum
according to the finite size scaling predictions of conformal field theory the gaps have to be measured
with respect to the true ground state discussed in Section 4.2. This offset between the lowest excitation
considered in this section and the ground state energy E0 is not accessible to the analytical methods
applied below and will be determined by numerical solution of the Bethe equations.

4.3.1 Excitations with N+ = N−

The particular subset of solutions discussed above with N+ = N− needs to discussed separately. Let
us first consider the thermodynamic limit. Within the integral equation approach the lowest energy
state of this type is described by A+ = A− ≡ A and the densities of + type and − type strings are
found to coincide. Introducing ρ+(x) = ρ−(x) ≡ ρ(x) one is left with a single integral equation instead
of (4.17). For states with N+ = N− ≈ L/2 such that

lim
L→∞

N±
L

=
1

2
(4.22)
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this integral equation reads

ρ(x) +

∫ ∞

−∞
dx′ [2 a2(x − x′) + a4(x− x′)]ρ(x′) = a1(x) + a3(x) , (4.23)

which is solved by Fourier transformation giving

ρ(x) =
1

2 cosh πx
. (4.24)

Substituting the solution of the integral equation into (4.20) we then find that the energy for states

with N±
L

= 1
2

lim
L→∞

EN+,N−

L
= −4 . (4.25)

All states (of the type we are considering) with
N+

L =
N−
L ≈ 1

2 are thus degenerate with the singlet
ground state in the thermodynamic limit.

Let us now turn to solutions of the Bethe ansatz equations in the finite volume. Solving these
equations for finite systems we observe that an important role is played by root configurations in which
each strange-string of type + becomes “degenerate” with a strange-string configuration of type −.
After suitable relabelling of the indices this implies yj = xj for j = 1, . . . , N+ in (4.15). In such a
configuration the spectral parameters of the two levels of the Bethe ansatz equations (4.6) coincide

u
(−)
j = γ

(+)
j , u

(+)
j = γ

(−)
j . (4.26)

We will analyze such solutions to the Bethe ansatz equations next.

4.4 The Takhtajan-Babujian subset

The results of our numerical solution indicate that such “degenerate”solutions are a subset of an even
larger class of solutions to the Bethe ansatz equations (4.6) in sectors with same number of roots on
both levels, i.e. N = M . These solutions are obtained by setting all spectral parameters uj on the first
level equal to the spectral parameters on the second level γj , i.e. by requiring that

uj ≡ γj , j = 1, . . .N. (4.27)

The roots then have to satisfy (
uj + i

uj − i

)L

=

n∏

k=1

uj − uk + i

uj − uk − i
. (4.28)

This system of equations is identical with the Bethe equations for the spin-1 antiferromagnetic Takhtajan-
Babujian (TB) chain with L lattice sites and antiperiodic boundary conditions [56, 57]

HTB =

L∑

j=1

(
Sj.Sj+1 − (Sj.Sj+1)

2
)

. (4.29)

Here Sj are sl(2) spin-1 operators. The degenerate strange string solutions (4.15) with N+ = N− and
(4.26) discussed above become the 2-strings u±

j = uj ± i/2 in the Takhtajan-Babujian-classification.
We note that the normalization of the Hamitonian (4.29) is such that the gaps in our system will be
twice the gaps in the TB chain. Alcaraz and Martins have carried out a finite-size scaling analysis
of the anisotropic TB chain with general twisted boundary conditions [57] and identified the operator
content of the underlying conformal field theory. We summarize some of their results in Appendix C.

Boundary conditions must be handled with extreme care. This is especially true in theories with su-
per group symmetries: since one deals with graded tensor products, periodic and antiperiodic boundary
conditions for fermions do not necessarily translate into periodic and antiperiodic boundary conditions
for the spin operators in the chain.
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4.4.1 Periodic boundary conditions

The sector we are considering here, N = M , is simple in that respect: in that case, since the total spin
J3 is integer, we are exploring only bosonic states. Therefore, periodic boundary conditions for the
fermions translate into antiperiodic boundary conditions for the spins of the Takhtajan-Babujian chain
(for a detailed discussion of boundary conditions in chains with supergroup symmetries, see [58]).

To proceed, we now recall some results about that chain [57] (see also Appendix C). The best
way to encode the part of the spectrum that comes from the Takhtajan-Babujian chain is to use the
generating function of levels - the conformal partition function [59]. Let us introduce the quantities

∆nm =
1

8
[n + (m + Φ/π)]

2

∆̄nm =
1

8
[n− (m + Φ/π)]

2
. (4.30)

We further introduce the partition functions for the Ising model with twisted boundary conditions

ZIsing(0, 0) =
∣∣∣χIsing

0

∣∣∣
2

+
∣∣∣χIsing

1/2

∣∣∣
2

=
1

2

( |θ3|
|η| +

|θ4|
|η|

)

ZIsing(0, 1) = ZIsing(1, 0) =
∣∣∣χIsing

1/16

∣∣∣
2

=
1

2

|θ2|
|η|

ZIsing(1, 1) = χIsing
0 χ̄Ising

1/2 + χ̄Ising
0 χIsing

1/2 =
1

2

( |θ3|
|η| −

|θ4|
|η|

)
(4.31)

The generating function of the levels in the Takhtajan-Babujian chain is then

ZTB
even =

1∑

r=0

1∑

s=0

ZIsing
r,s

∑

m = r + 2Z
n = s + 2Z

q∆nm−1/24q̄∆̄nm−1/24 (4.32)

and coincides with the partition function of the SU (2) WZW model at level two [59].
We notice that, in the equivalence between the Takhtajan-Babujian spectrum and a subset of our

sl(2/1) integrable spin chain spectrum, the Takhtajan-Babujian model has an even number of sites if
the sl(2/1) model has an even number L of 3 (and thus 3̄) representations. Expression (4.32) is relevant
to this case only. One can also consider the case of this number being odd. Then the generating function
of levels reads

ZTB
odd =

1∑

r=0

1∑

s=0

ZIsing
r,s

∑

m=r+2Z+1,n=s+2Z+1

q∆nm−1/24q̄∆̄nm−1/24 (4.33)

In the case Φ = π however, expressions (4.32) and (4.33) can be shown to coincide!
Let us now extract some conformal weights for the sl(2/1) chain from these expressions. To do so,

one has to

• Double the gaps, because the normalizations of the Hamiltonians are such that the energies of
the sl(2/1) chain are twice the energies of the TB chain.

• Shift the energy differences by a constant π2

2L (after the rescaling). This shift in necessary, because
the finite-size spectrum in the TB chain with antiperiodic boundary conditions is calculated with
respect to the ground state with L even and periodic boundary conditions [57]. The energy
difference between the true ground state and the TB ground state for even L and periodic

boundary conditions is equal to π2

2L
.

For r, s = 0, we get from (4.32) (that is L even) dimensions in the c = 0 theory which read

h + h̄ =
n2

2
+

(m + 1)2

2
− 1

4
h− h̄ = n(m + 1); n, m ∈ 2Z (4.34)
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Hence we have the possibility n = 0, m = 0, m = −2, giving rise to h = h̄ = 1
8
. All other scalar

operators have h = h̄ = 1
8

+ integer. The lowest non scalar operator corresponds to n = 2, m = −2
with h̄ = 17/8 = 1/8 + 2, h = 1/8.

For r = 1 and s = 0

h + h̄ =
n2

2
+

(m + 1)2

2
h− h̄ = n(m + 1); n ∈ 2Z, m ∈ 2Z + 1 (4.35)

Here all the dimensions are integers. For r = 0 and s = 1,

h + h̄ =
n2

2
+

(m + 1)2

2
h− h̄ = n(m + 1); n ∈ 2Z + 1, m ∈ 2Z (4.36)

with again only integer dimensions. Finally, the case r = s = 1 leads to

h + h̄ =
n2

2
+

(m + 1)2

2
+

3

4
h− h̄ = n(m + 1) + 1; n ∈ 2Z + 1, m ∈ 2Z + 1 (4.37)

The case n = 1, m = −1 corresponds to h = 9/8, h̄ = 1/8.
In fact, the generating function of the sl(2/1) dimensions deduced from the TB spectrum can be

written after a few manipulations as the sum of two simple contributions

ZTB subset
1/8 = 2q1/8

∞∏

n=1

(1 + qn)(1 + q2n)× (q→ q̄) (4.38)

and

ZTB subset
0 =

∞∏

n=0

(1 + qn+1)(1 + q2n+1)× (q → q̄) (4.39)

Of course these two contributions bear resemblance to the two Ramond characters discussed in the first
section. However, it is important to understand that we cannot deduce from these the degeneracies of
the sl(2/1) chain. Rather, all we can deduce form the argument is that the the dimensions appearing
in the expansion of these two objects appear also in the sl(2/1) spectrum, with a multiplicity at least
equal to the multiplicity it has in this expansion. We denote such a relationship by

ZTB subset
1/8 ≤ Z

sl(2/1) chain
1/8

ZTB subset
0 ≤ Z

sl(2/1) chain
0 (4.40)

It can be checked that this is compatible with the spectrum of the chain containing at least the modulus
square of the integrable characters, that is

ZTB subset
1/8 ≤ |χR,I

h=1/8|2

ZTB subset
0 ≤ |χR,IV

h=0 |2 (4.41)

We can make some more detailed guess about which states on right are represented by a term on the
left in (4.40), (4.41). For instance, ZTBsubset

1/8 contains two fields with dimension h = h̄ = 1/8, and we

know that these fields must have B = 0. These fields must also have vanishing SU (2) spin, since they
are obtained by taking the n number of the Takhtajan-Babujian chain equal to zero. This means that
their SU (2) spin in the sl(2/1) chain must also vanish, and thus, in the continuum limit, they must be
the symmetric and antisymmetric combinations of J3

0 = 1/2, J̄3
0 = −1/2 and J̄3

0 = −1/2, J3
0 = 1/2.

The fields with h = 1/8 and J3
0 = J̄3

0 = 0 are, in particular, absent in the subspectrum obtained from
the Takhtajan-Babujian chain. But we know they are there in the full spectrum.
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Similarly, ZTBsubset
0 contains a single field with h = h̄ = 1; once again it must have B = J3 = 0.

On the right hand side, we have 8× 8 fields with such weights, obtained by tensoring the adjoint with
itself. It is highly likely that the field on the left comes from the part of this tensor product where the
J3

0 = 0, B0 = 0 field for right movers is tensored with the J̄3
0 = 0, B̄0 = 0 field for left movers.

In Tables 1 and 2 we summarize the lowest scaling dimensions (that is, x = h + h̄, irrespective of
whether h = h̄ or not) in the TB subset and their sl(2/1) quantum numbers for L even and L odd.

(B,S)=(0,0) (B,S)=(0,1) (B,S)=(0,2) (B,S)=(0,3)

m=-1 0 1
4
,9
4

2 17
4

,25
4

m=0 5
4 , 5

4 1 13
4 , 13

4 5

m=1 2 9
4 ,17

4 4 25
4 ,33

4

Table 1: Smallest scaling dimensions and sl(2/1) quantum numbers in the TB subset for L odd.

(B,S)=(0,0) (B,S)=(0,1) (B,S)=(0,2) (B,S)=(0,3)

m=-1 0 5
4 , 5

4 2 21
4 , 21

4

m=0 1
4 ,94 1 9

4 , 17
4 5

m=1 2 13
4

, 13
4

4 29
4

, 29
4

Table 2: Smallest scaling dimensions and sl(2/1) quantum numbers in the TB subset for L even.

We note that these scaling dimensions occur with the same multiplicities as in the odd L case, but the
sl(2/1) quantum numbers are different.

4.4.2 Antiperiodic boundary conditions and the Neveu Schwarz sector

We can also consider the case of antiperiodic boundary conditions for the spin chain in the sector
N = M . This should correspond to antiperiodic boundary conditions for the fermions, ie the NS
sector. Note that the sl(2/1) symmetry is then broken. In Appendix B.6 we summarize some results
of a numerical solution of the Bethe ansatz equations with antiperiodic boundary conditions in the
sl(2/1) chain for small L.

The same argument we used above in the periodic case shows that the sl(2/1) chain with antiperiodic
boundary conditions has a particular sector that is related to the spectrum of the Takhtajan-Babujian
chain with periodic boundary conditions, i.e. Φ = 0. This time, the generating function of the sl(2/1)
chain levels can be written as the sum of two contributions

ZTB subset
1/4 = q1/4

∞∏

1

(1 + q2n)3 × (q → q̄) , (4.42)

and
ZTB subset
−1/8 = 2q−1/8 × (q→ q̄) . (4.43)

Now the correspondence between R and NS weights is as follows

hNS = hR +
1

4
− J3,R

0 ,

h̄NS = h̄R +
1

4
+ J̄3,R

0 . (4.44)

We thus see that the two fields in Zchain
1/8 with weight hR = h̄R = 1/8 should get, respectively,

hNS = h̄NS = −1/8, and hNS = h̄NS = 7/8 = −1/8 + 1. The field in the 1/8 multiplet whose

dimension becomes hNS = h̄NS = 3/8 = −1/8 + 1/2 is the one with J3,R
0 = J̄3,R

0 = 0, and it is not
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present in the Takhtajan-Babujian spectrum. Thus the form of Zchain
−1/8 is compatible with the SU (2/1)

WZW hypothesis, in the NS sector.
Similarly, the singlet in ZTB subset

0 has h = J3
0 = 0 and thus acquires, under spectral flow, a

weight hNS = h̄NS = 1/4. As for the multiplet with hR = h̄R = 1, under spectral flow, it acquires

hNS = h̄NS = 5/4. The field with hR = h̄R = 1 and J3,R
0 = −J̄3,R

0 = 1/2 which acquires under spectral
flow hNS = h̄NS = 3/4 = 1/4 + 1/2 is absent from the Takhtajan-Babujian part of the spectrum.

It is also satisfactory to see that, within the Takhtajan-Babujian part of the spectrum, we have

hNS =
1

4
(n + m)2 =

1

4
(n + m + 1)2 − 1

4
− 1

2
(n + m) ≡ hR +

1

4
− J3,R

0 ,

h̄NS =
1

4
(n −m)2 =

1

4
(n −m − 1)2 − 1

4
+

1

2
(n−m) ≡ hR +

1

4
+ J̄3,R

0 , (4.45)

and therefore

J3,R
0 =

1

2
(n + m + 1) ,

J̄3,R
0 =

1

2
(n−m − 1) . (4.46)

Observe in particular that J3,R
0 + J̄3,R

0 = n, the scalar J3 quantum number. All these relations are
compatible with our WZW conjecture for the continuum limit of the sl(2/1) chain.

4.5 Strange string excitations with N+ 6= N
−

The integral equations (4.17) for strange string excitations with N+ 6= N− can be analyzed by Fourier
transformation. This allows one to express the Fourier transforms of the hole densities ρ̃h

±(ω) in terms
of the Fourier transforms of the root densities ρ̃±(ω). Inverting the resulting matrix equation, we
obtain

ρ̃+(ω) =
1

2 cosh(ω/2)
− 1 + e2|ω|

4 sinh2 ω
ρ̃h
+(ω) +

e|ω|

2 sinh2 ω
ρ̃h
−(ω) ,

ρ̃−(ω) =
1

2 cosh(ω/2)
− 1 + e2|ω|

4 sinh2 ω
ρ̃h
−(ω) +

e|ω|

2 sinh2 ω
ρ̃h
+(ω) .

(4.47)

Here we have defined the Fourier transform by f̃ (ω) =
∫

dxeiωxf(x) and ãn(ω) = e−n|ω|/2. The
right-hand side of (4.47) is most conveniently written in matrix form using

R̃(ω) =
e|ω|

2 sinh2 ω

(
cosh(ω) −1
−1 cosh(ω)

)
. (4.48)

The matrix R̃ is the Fourier transform of the resolvent R = (1−K)−1 of the (matrix) integral operator
in our original equations (4.17) with kernel

K(x− y) = −
(

a4(x− y) 2a2(x− y)
2a2(x− y) a4(x− y)

)
. (4.49)

Starting from (4.17) (or, equivalently, (4.47)) and (4.20) we can analyze the finite size spectrum of these
excitations by standard methods. Cases similarly to the one considered here with complete symmetry
between the excitations in the + type and − type sectors have been studied in Refs. [60, 61]. There
the following general formula for the finite size spectral gaps ∆E of low lying excitations over a filled
Fermi sea with several components in a relativistic invariant model (i.e. with a single Fermi velocity)
was derived. In our case it takes the form

L

2πv
∆E =

1

4
(∆N )T R̃−1(0)∆N + DT R̃(0)D . (4.50)

Here v = π is the characteristic velocity of the system and is calculated in Appendix B.5, ∆N is a

2-component vector

(
∆N+

∆N−

)
where ∆Nσ is the change in the number of roots of type σ compared to
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the ground state. Similarly, D is the 2-component vector

(
D+

D−

)
where Dσ is the number of solutions

of type σ “backscattered” from the left to the right of the Fermi sea.
In our case there is a slight additional subtlety here coming from the fact that the ground state is

made of complex solutions (4.15): in such a situation it is known that – even in the usual cases such
as sl(2) – on top of the Gaussian spectrum, deduced from our general formula (4.50), the dimensions
of other operators may appear, as well as selection rules. At the same time it has been observed in
these cases that most of the basic qualitative conclusions drawn from an analysis based on the string
picture are valid and provide the basis for a quantitative description when amended for example by
results from a numerical computation of these gaps (see e.g. [57, 62, 63]).

Applying (4.50) blindly to our case requires a bit of care as the matrix R has divergent elements.
This rather unusual feature can be traced back to the divergence of the Fourier transform of the kernel
describing the scattering between complexes of type + and − for N+ = N−. We can regularize these
elements by giving ω a small value

R̃(ε) ≈ 1

2ε2

(
1 + ε + 2ε2/3 −1− ε− ε2/6
−1− ε− ε2/6 1 + ε + 2ε2/3

)
, R̃(0)−1 =

(
2 2
2 2

)
(4.51)

From this it follows that

L

2πv
∆E =

1

2
(∆N+ + ∆N−)2 + 0× (∆N+ −∆N−)2 +

1

8
(D+ + D−)2 +∞× (D+ −D−)2 (4.52)

A divergence of the kernels similar to the one leading to (4.52) here has been encoutered in the study of
the osp(2/2) chain (that is, based on the four dimensional typical representation [0, 1/2]) and the study
of the antiferromagnetic Potts model. In both cases, the divergence of the kernels (in Fourier space)
at ω = 0 has been interpreted [31] as a manifestation of a continuous spectrum – which is equivalent
to the infinite degeneracy of the finite size gaps between states with N+ + N− = const. in (4.52).

We emphasize that this result is obtained for O(1) deviations in N± compared to the state with
equal numbers of the + and − type strings (4.23). In other words, the result holds for finite values of
∆N , D.

In fact, the state with the largest possible asymmetry between these distributions, i.e. N+ = L,
N− = 0, can be analyzed in the thermodynamic limit giving

ρ+(x) =
1√
2

cosh π
2 x

cosh πx
, ρ−(x) ≡ 0 (4.53)

for the densities. The energy of this state is EN+ ,0 = −2L(1+ln2) and the state is clearly highly excited.
In summary, we expect on the basis of the above analysis that there is a macroscopic degeneracy of
the finite size spectrum identified in the Takhtajan-Babujian subset.

As we have previously mentioned, these results ought to be taken cum grano salis as they have been
obtained within the framework of the string hypothesis. The latter neglects the finite size deviations
ε± in (4.15), which also contribute to order O(L−1) to the gaps. Furthermore, in order to extract
conformal dimensions from the finite size spectrum we need to determine the difference between the
ground state energy E0 (see Sect. 4.2) to that of the state ∆N± = 0 = D± to order 1/L which is
beyond the scope of the analytical methods applied here. In light of these complications and in order
to verify the observation from (4.52) that each gap is infinitely degenerated (or equivalently that the
spectrum has a continuous component added to the discrete part identified via the Takhtajan-Babujian
mapping), we have carried out an extensive numerical analysis of the Bethe ansatz equations (4.6) for
large, finite L. Due to the presence of strong logarithmic corrections (i.e. corrections of order 1/(L ln L)
to (4.50) we had to study systems with L up to 5.000, i.e. 10.000 lattice sites.

We summarize the results of this finite-size scaling analysis for several low-lying [0, 1] octet states
(N+ + N− = L − 1) as well as the octet and the indecomposable [0,−1/2, 1/2,0] representations
(N+ = N− = L/2) in the Takhtajan-Babujian sector in Appendix B.4. The scaling of their energies
expected from conformal invariance is

L

2πv
[E(N+, N−)− E0] −−−−→

L→∞
h + h̄ = x , (4.54)
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where x scaling dimension. We plot the left-hand side of equation (4.54) as a function of the lattice
length for several different excited states in Fig. 5.

0 0.2 0.4 0.6
1/log(L)

0.1

1/4

0.5

1.0

2.0

L
(E

8-E
0)/

2π
2

∆N=0 (TB)
∆N=1
∆N=2
∆N=3
∆N=5
∆N=7
indec. (TB)

Figure 5: Corrections to scaling of the energies of the low-lying states studied in Section B.4. The
dashed lines indicate the rational function extrapolation L→∞.

Within rational function extrapolation of our numerical data we find that the energies of the states
considered all become degenerate to order 1/L in the thermodynamic limit. The scaling dimension
obtained from this extrapolation of (4.54) is

x =
1

4
. (4.55)

As has been discussed above, we have to extend the analysis of the finite size gaps to the case of
antiperiodic boundary conditions for a proper identification fo the continuum limit. For this we have
studied states build from the strings (4.15) in some detail which again are the relevant configurations
for the lowest excitations. The details of the numerical analysis are given in the appendix, here we
just present the main results which give some evidence that again there are are many states degenerate
with the ground state (in the Takhtajan-Babujian sector) in the thermodynamic (L → ∞) limit. All
of these states have N+ + N− = L, but different values of ∆N = N+ − N−. Their scaling dimensions
extrapolate to x = −1/4 relative to the ground state of the chain with periodic boundary conditions.
The corrections to this scaling for some states are shown in Fig. 6.

4.6 Summary

As a summary, we represent on figure 7 the lowest gaps we have observed in the R and NS sectors.
Values in parenthes is are expected from the study of integrable characters of the WZW model, but
we have not been able to investigate them numerically.

5 Higher level

It is interesting to consider the same problem with larger representations - more precisely, the fully
supersymmetrized atypical representations of type [±j, j] ( s = 2j boxes in the Young diagram repre-
sentation). In this case, the Bethe equations allow for a sector reproducing twice the gaps of the spin
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Figure 6: Finite-size scaling of low-lying energy levels for the system with antiperiodic boundary
conditions. E0 is the ground state in the sector with periodic boundary conditions (see Section 4.2).

s Takhtajan-Babujian chain. For the latter, the gaps are obtained once again by combining the gaps
from a free boson and disorder operators from a Z2s parafermionic theory. The gaps from the free
boson sector read now

∆nm =
1

8s
[n + (m + sΦ/π)]2

∆̄nm =
1

8s
[n − (m + sΦ/π)]

2
(5.1)

The sl(2/1) symmetric case (R sector) corresponds to Φ = π. The leading gaps with respect to the
c = 0 theory read then

h + h̄ =
(m + s)2

2s
− s

2(s + 1)
+

r(2s − r)

2s(s + 1)

h = h̄ (5.2)

with the constraint that m = r mod 2s. The choice m = r − 2s gives then

h = h̄ =
(s− r)2

4(s + 1)
, r = 0, . . . , s− 1 (5.3)

This obviously reproduces the conformal weights in the SU (2/1) WZW model for representations [0, j]
with j = 0, 1/2, . . ., s−1

2
at level s.

Meanwhile in the Neveu Schwarz sector, ceff = 6s
s+1 , and for the weights we get the other formula

h = h̄ =
m2

4(s + 1)
+

(m − s + r)(m + s − r)

4s(s + 1)
(5.4)

The case m = r − 2s now gives

h = h̄ =
(2s − r + 1)2

4(s + 1)
− 1

4
(5.5)
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Figure 7: The spectra from the lattice model in the R and NS sector, in agreement with the WZW
prediction. The thick lines represent a continuum of critical exponents (extending to infinity). Values
in parenthesis were expected but beyond our reach.

This can be written as

h = h̄ =
(s − r)2

4(s + 1)
+

s

4
+

s− r

2
(5.6)

matching the formula for the spectral flow in the SU (2/1) level s WZW theory. Hence central charges
and TB subset match the WZW prediction in this case as well, and it is likely that a more thorough
study would find similar agreement for the continuum parts of the spectrum too.

6 Conclusions and speculations

To conclude, from the information at our disposal using the Takhtajan-Babujian part of the spectrum,
analytical study of the Bethe ansatz, and extensive numerical calculations, we have obtained consistency
with the hypothesis that the continuum limit is the SU (2/1) level one WZW model. This consistency
includes the set of all dimensions in the R sector, and only a subset of dimensions in the NS sector. It
is highly indicative that our conjecture is correct that the effective central charge in the NS sector is
c = 3. As for the part of the NS spectrum whose weights are of the form hNS = −1

8
+ 1

2
+ integers

hNS = 1
4 + 1

2 + integers, we have argued they are situated outside of the Takhtajan-Babujian part
of the spectrum, and thus we have nothing to say about them based on this chain of arguments. It
would of course be a crucial further test to extract these exponents from the Bethe ansatz solution
(this might be difficult as there are sitting inside the continuum). We note that it would be extremely
useful to compare more thoroughly than we have done the group content of the lattice and field theory
models: this however may be a very non trivial exercise, in particular because fine structures of the
representations (such as indecomposability) may not evolve straightforwardly in the continuum limit
process [65].

One of the main difficulties we have encountered is the the lack of understanding of the WZW
theory itself. In particular, the free field representation as well as algebraic arguments point to the
existence of a spectrum of dimensions unbounded from below, and maybe continuous. While this is
somewhat expected in view of the unboundedness of the action in the field theory, it is not totally
clear how this should be related to the spectrum and partition function of a lattice model. We have
suggested that some sort of analytical continuation of the characters is at work, folding back the
spectrum of arbitrarily large negative dimensions into a continuum of positive dimensions. This is
strongly supported by calculations involving modular transformations of characters, and gives rise to
predictions in remarkable agreement with lattice calculations. A point that remains unclear is whether
this continuation is a formal operation, or has the meaning of changing the target space to a Riemannian
symmetric superspace as argued in [33]. Clearly more work is needed to clarify these questions, which
we believe are crucial to our understanding of CFT description of the transition between plateaux.
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Finally, we come back to our original question concerning the universality of 3⊗ 3̄⊗3⊗ 3̄ . . . sl(2/1)

spin chains. It is easy to check that the analysis in [16] for the “Heisenberg” model (with ~S.~S nearest
neighbour coupling only) in the R sector, gives a totally different spectrum. First, multiplicities are all
finite. Then, the following scalar operators

h = h̄ =
(3P + 1)2 − 1

24
, h = h̄ =

4M2 − 1

24
(6.1)

appear, as well as many other non scalar operators whose chiral weights generically read (modulo
integers)

h =
(3P/N + 2M )2 − 1

24
, N |M (6.2)

Except for the lowest weights, there is no indication that any of these weights appear in the spectrum
of the integrable sl(2/1) chain. Moreover, imposing antiperiodic boundary conditions for the fermions
(ie the NS sector) gives results which are totally different from the ones of the integrable spin chain;
in particular, instead of being three, the effective central charge is an irrational number c = 1 +
9

π2 ln2 3+
√

5
2 ≈ 1.84! In fact, pretty much the only features common to the two systems are the

vanishing of the central charge in the R sector, and the lowest gap h = h̄ = 1
8 - extremely ubiquitous

features of superalgebra field theories.
Since the integrable model requires fine tuning of nearest neighbour and next to nearest neighbour

couplings, we expect that it describes the least stable of the two fixed points, as evidenced by the
higher value of its effective central charge in the NS sector.

It seems desirable to investigate the complete phase diagram of the model, a task that could be
made easier by using the loop representation. We hope to get back to this question later. A property
that could prove useful in this analysis is that the ground state of the Heisenberg chain, like the ground
state of the integrable spin chain, is a true singlet, with trivial value of the energy. It does not seem
to be the same state however.
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A Some algebraic considerations

Numerical study indicates that there is a unique singlet in the product (3 ⊗ 3̄)⊗L: for instance, the
tensor product (3 ⊗ 3̄)⊗2 decomposes as

(3⊗ 3̄)2 = [0, 0] + 4[0, 1] + [0, 2] + [1/2, 3/2] + [−1/2, 3/2] + [0,−1/2, 1/2, 0] (A.1)

One has to be careful in defining what one means by singlet in this problem, as there are invariant states
(that is, states annihilated by all the generators of the algebra) within some of the indecomposable
representations too. We will call ‘true singlet’ a representation isomorphic to the trivial representation,
and which is not a quotient of a larger indecomposable representation. When decomposing (3⊗ 3̄)⊗L,
it appears as an invariant state which does not lie in the image of the raising or lowering generators of
the algebra.

It is known from representation theory of sl(2/1) [24] that in the tensor product we are interested
in, there can only appear typical representations, simple (irreducible) atypical of the type [±j, j] and
non simple (indecomposable) atypical, representations. The latter have vanishing superdimension, as
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do the typical representations. It is obvious that the superdimension of our tensor product is one but
one could imagine that this one does not come from the existence of a single [0, 0] representation. For
instance, it could arise as the result of a cancellation between several [0, 0] reps (each of superdimension
one, as it is easy to see that all [0, 0] states have to be bosonic in our system) and several simple atypical
representations with negative superdimension. It is easy to exclude this possibility if one recognizes
that the typical representations as well as the indecomposable atypical appearing in our tensor product
are projective, while simple (irreducible) atypical are not (recall here [28] that a representation is
projective if it cannot appear as a quotient of a bigger, indecomposable block). In particular, [0, 0] is
not projective. A well known result of algebra [66, 28, 67] says that

projective ⊗ anything = projective (A.2)

But consider 3⊗ 3̄ = [0, 0] + [0, 1]. The adjoint appearing here is typical and thus projective. Hence,
tensor products [0, 1]⊗L decompose onto projectives only, that is typical representations and non simple
atypical. No simple atypical ever can epppear in these tensor products. Thus, [0, 0] can appear only
once, as the result of the tensor product of [0, 0] with itself, which is our initial claim.

Note that the result could also be proven by using the fact that the tensor product of any in-
decomposable representation (either irreducible like a simple typical, or reducible like a non simple
atypical) of vanishing superdimension decomposes as a sum of representations each with vanishing
superdimension themselves [68].

Notice that a similar result is known to take place in the SU (2)q product of an even number of
fundamental (two dimensional) representations when q3 = −1, so the spin j = 1 representation has
vanishing q-dimension. In this case, there is a unique singlet representation, which coincides with the
space Ker S+/Im S+ [69, 70].

Of course, if we get back for instance to (3⊗ 3̄)⊗2, there are two invariant (that is, annihilated by
all the generators in the algebra) vectors, one in [0, 0] and one in the indecomposable. The vector in
[0, 0] is a ‘true singlet’, which means simply that it is not in the image of the generators. Obviously, a
generic combination of the two invariant vectors will still have this property. This means that the way
[0, 0] will be expressed in terms of the basis vectors in 3 and 3̄ will in fact depend on the Hamiltonian
(one could imagine selecting the ‘good true singlet’ by requiring that it be orthonormal to the image of
the generators in the subspace of vanishing U (1) charge. However this will not work, as the invariant
state in the indecomposable has zero norm square). Remarkable expressions for such states have been
obtained recently (albeit in a different language) in the context of the ‘Razumov Stroganov conjecture’
[71]. We leave this point to further study.

B Details of the analysis of the lattice model

B.1 String hypothesis

The standard way to classify the solutions of (4.6) is to consider configurations of spectral parameters
that sit on poles of the bare scattering phase shifts (the right-hand-sides in (4.6)). A simple calculation
yields the following types of “strings”

(1) “Reals”:

unpaired, purely real spectral parameters uj and γβ .

(2) “Wide strings”:

“type-1”: composits containing n− 1 γ’s and n u’s (n > 1)

u
(n,1)
α,k = u(n,1)

α + i (n + 1− 2k) , k = 1 . . .n

γ
(n,1)
α,j = u(n,1)

α + i (n− 2j) , j = 1 . . .n− 1 , u(n,1)
α ∈ IR (B.1)
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“type-2”: composits containing n γ’s and n− 1 u’s (n > 1)

γ
(n,2)
α,k = γ(n,2)

α + i (n + 1− 2k) , k = 1 . . .n

u
(n,2)
α,j = γ(n,2)

α + i (n− 2j) , j = 1 . . .n− 1 , γ(n,2)
α ∈ IR (B.2)
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�

���
�

��	
	

Figure 8: Wide strings of lengths three and two respectively. The circles/triangles denote the positions
of the u’s/γ’s involved in the string.

(3) “Strange strings”:

composits containing n γ’s and n u’s (n ≥ 1)

u
(n,−)
α,k = u(n)

α + i(n + 1− 2k− 1

2
), k = 1, . . . , n ,

γ
(n,−)
α,k = u(n)

α − i(n + 1− 2k− 1

2
) , uα ∈ IR, (B.3)

or

u
(n,+)
α,k = u(n)

α − i(n + 1− 2k − 1

2
), k = 1, . . . , n ,

γ
(n,+)
α,k = u(n)

α + i(n + 1− 2k − 1

2
) , uα ∈ IR. (B.4)

We note that solutions of this type of solution is quite different from usual string solutions in that
the set of roots on one level of the Bethe equations is not invariant under complex conjugation.
The other solutons discussed above (reals and wide strings) are invariant under this operation.
This is somewhat similar to what was found recently in [55]. It is important to note that although
“strange strings” are not invariant under complex conjugation, the corresponding energy (4.8) in
the case λ = 0 is still real.

(4) “Narrow strings”:

composits containing n γ’s and n u’s (n > 1)

u
(n,n)
α,k = u(n,n)

α +
i

2
(n + 1− 2k) , k = 1 . . .n

γ
(n,n)
α,j = u(n,n)

α +
i

2
(n + 1− 2j) , j = 1 . . .n , u(n,n)

α ∈ IR (B.5)

Narrow strings may be thought of as special cases of strange strings or wide strings in the following
sense.
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Figure 9: (a) The two types of n = 1 strange strings; (b) A “+” type strange string with n = 2.

– Combining a “+”-strange string of length n and centre u(n) with a a “-”-strange string of
length n and centre u(n) we obtain a narrow string of even length 2n. This is shown for
n = 1 in Fig.10(a).

– Combining a type-1 wide string of length n and centre u(n,1) with a type-2 wide string of
length n and centre u(n,1) we obtain a narrow string of length 2n− 1. This is shown for the
case n = 2 in Fig. 10(b).
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Figure 10: (a) Combining a pair of “+” and “-” strange strings of length 1 gives a narrow string of
length 2; (b) Combining a type-1 wide string of length 2 with a type-2 wide string of length 2 gives a
narrow string of length 3;

It is clear from our discussion that narrow strings are not “fundamental” but are merely degen-
erate cases of strange string solutions of the Bethe ansatz equations.

We have verified explicitly by numerical solution of the Bethe ansatz equation (4.6), mainly for the
case λ = 0, that solutions of the above types exist at least for small string-lengths n. On the other
hand it is entirely possible that the above classification is not complete.

However, it is important to note that if

(a) our classification is complete and

(b) in the thermodynamic limit solutions of the Bethe ansatz equations (4.6) with the same values
of J3 per site and B per site as the ground state tend towards ideal string solutions (as is often
the case in Bethe ansatz solvable models),
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then all energies are real for λ = 0. Given the string hypothesis (B.1)–(B.4) the usual way of proceeding
in a Bethe ansatz solvable model is to construct the thermodynamic Bethe ansatz (TBA) equations at
finite temperature and then use them to determine the distribution of roots in the zero temperature
ground state. This applicability of this procedure to our case is questionable as it is not clear whether
the minimization of the free energy functional is a meaningful procedure for the case of a non-hermitian
Hamiltonian. Disregarding this issue one finds that the standard “integer method” of classifying
solutions of the Bethe ansatz equations does not seem to work. In particular, we find that in some
cases the numbers of solutions of a particular type for fixed L, N and M are found to differ from
what the integer method predicts. We don’t have a good explanation for this fact at present and leave
this issue for future studies. Irrespective of this, the Bethe ansatz does not provide a complete set of
states in any case. This follows from the peculiar representation theory of superalgebras. It was shown
in [38] that for the model at hand all eigenstates obtained from the Bethe ansatz are highest weight
states of sl(2/1). For integrable models exhibiting a classical Lie-algebra symmetry a complete set
of states can be obtained from these highest-weight states by acting with all possible combinations of
lowering operators [72]. In the present case there are states that belong to reducible but indecomposable
respresentations, for which the highest weight state is not a cyclic one [24]. As a consequence, acting
on the Bethe ansatz states with lowering operators is not sufficient to obtain a complete set of states.
This complication is absent in other integrable, supersymmetric models, for which complete sets of
states have been obtained by the aforementioned procedure [49, 73, 74, 75, 76].

Given these complications we will follow a different, less ambitious approach: by studying finite
systems we will try to identify the ground state and some low-lying excited states of the Hamiltonian
(4.5) in terms of distributions of roots of the Bethe ansatz equations (4.6).

B.2 Small Finite Systems

For L = 1, 2 the transfer matrix τ3(v) can be diagonalized directly.

B.2.1 L = 1

The tensor product 3 ⊗ 3̄ is fully reducible and decomposes into a singlet [0] and the typical octet
[b, j] = [0, 1].

3⊗ 3̄ = [0, 0] + [0, 1] (B.6)

The corresponding eigenvalues of τ3(v) are readily obtained

Λ8(v) = 1− 2

v
+

2

v − 1− λ

Λ1(v) = 1− λ− 1

λ + 1

2

v
+

λ − 1

λ + 1

2

v − 1− λ
.

(B.7)

Similarly we find for the eigenvalues of τ3̄(v)

Λ̄8(v) = 1− 2

v
+

2

v − 1 + λ

Λ̄1(v) = 1− λ + 1

λ− 1

2

v
+

λ + 1

λ − 1

2

v − 1 + λ
.

(B.8)

Obviously, Λ8(v), Λ̄8(v) are the eigenvalues on the pseudo vacuum (M = 0 = N ) while Λ1(v), Λ̄1(v)
can be obtained from (4.7) in the sector with (M, N ) = (1, 1) for u1 = λ, γ1 = 0 which clearly solve
the BAE (4.6). We note that the singlet eigenvalue satisfies the functional equation

Λ1(v)Λ̄1(v − 1− λ) =

(
(v + 1− λ)(v − 3− λ)

(v − 1− λ)2

)L

. (B.9)

Furthermore, for λ = 0, we find Λ1(v)|λ=0 = (v − 2)(v + 1)/v(v − 1) = Λ̄1(v)|λ=0. The eigenvalues of
the Hamiltonian are

E1 =
4

λ2 − 1
, E8 =

2

λ2 − 1
. (B.10)
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B.2.2 L = 2

The tensor product of representations appearing in the L = 2 (4 site) system can be decomposed as

(3⊗ 3̄)2 = [0, 0] + 4[0, 1] + [0, 2] + [1/2, 3/2] + [−1/2, 3/2] + [0,−1/2, 1/2, 0] (B.11)

Here, the atypical representation [0,−1/2, 1/2, 0] is an eight dimensional reducible but indecomposable
representation which is the semi direct sum of [1/2, 1/2], [−1/2, 1/2], and two [0, 0] representations
[24]) (see section 2 of the main text). Note that this block is the same indecomposable block as the
one which appears in the product [0, 1/2]⊗ [0, 1/2].

Diagonalization of the transfer matrix yields the eigenvalues of the 4-site system. Below we present
their values together with the labels of the sectors (M, N ) in which they appear in the BA and the
corresponding irreducible representation of the algebra sl(2/1) in the decomposition (B.11):

(M, N ) [B, S] eigenvalue of τ3(u), τ̄3(u) Bethe roots

(0,0) [0, 2] Λ16(v) = 1− 4
v

+ 4
v2 + 4

v−1−λ
+ 4

(v−1−λ)2

Λ̄16(v) = 1− 4
v + 4

v2 + 4
v−1+λ + 4

(v−1+λ)2 vacuum

(0,1)
[
+1

2
, 3

2

]
Λ

(+)
12 (v) = 1− 4

v
− 4

v2 + 4
v−1−λ

+ 4
(v−1−λ)2

Λ̄
(+)
12 (v) = 1− 4

v
+ 4

v2 + 4
v−1+λ

− 4
(v−1+λ)2

u1 = 0

(1,0)
[
−1

2 , 3
2

]
Λ

(−)
12 (v) = 1− 4

v + 4
v2 + 4

v−1−λ − 4
(v−1−λ)2

Λ̄
(−)
12 (v) = 1− 4

v − 4
v2 + 4

v−1+λ + 4
(v−1+λ)2 γ1 = −iλ

(1,1) [0, 1]
2

Λ
(1,2)
8 (λ, v) u1 = −i[λ ±

√
λ2 − 1]

Λ̄
(1,2)
8 (λ, v) γ1 = u1 + iλ

(1,1) [0, 1]
2

Λ
(3,4)
8 (λ, v) u1 = −i[λ±

√
λ2+3
3 ]

Λ̄
(3,4)
8 (λ, v) γ1 = −iλ − u1

(1,2)
[
0,−1

2 , 1
2 , 0
]

Λx(v) = 1− 4
v − 4

v2 + 4
v−1−λ − 4

(v−1−λ)2 u1,2 = −i[λ±
√

1 + λ2]

Λ̄x(v) = 1− 4
v
− 4

v2 + 4
v−1+λ

− 4
(v−1+λ)2

γ1 = −iλ

(2,1)
[
0,−1

2 , 1
2 , 0
]

Λx(v) = 1− 4
v − 4

v2 + 4
v−1−λ − 4

(v−1−λ)2 u1 = 0

Λ̄x(v) = 1− 4
v
− 4

v2 + 4
v−1+λ

− 4
(v−1+λ)2

γ1,2 = ∓i
√

1 + λ2

(2,2)
[
0,−1

2 , 1
2 , 0
]

Λx(v) = 1− 4
v − 4

v2 + 4
v−1−λ − 4

(v−1−λ)2 γ1 = −iλ + 1
γ2+iλ

Λ̄x(v) = 1− 4
v − 4

v2 + 4
v−1+λ − 4

(v−1+λ)2 u1,2 =
1±

�
1−( 1

γ1
+ 1

γ2
)2

1
γ1

+ 1
γ2

(2,2) [0] Λ1(v) =
(

(v−2)(v+1−λ)
v(v−1−λ)

)2

Λ̄1(v) =
(

(v−2)(v+1+λ)
v(v−1+λ)

)2

Table 3: Spectrum of the transfer matrices for L = 2.

Here the eigenvalues corresponding to the four (typical) octets [0, 1] are

Λ
(1,2)
8 (λ, v) = 1− λ

1 + λ

4

v
±
√

λ − 1

λ + 1

4

v2
+

λ

1 + λ

4

v − 1− λ
∓
√

λ− 1

λ + 1

4

(v − 1− λ)2

Λ̄
(1,2)
8 (λ, v) = 1− λ

λ− 1

4

v
∓
√

λ + 1

λ − 1

4

v2
+

λ

λ− 1

4

v − 1 + λ
±
√

λ + 1

λ− 1

4

(v − 1 + λ)2

Λ
(3,4)
8 (λ, v) = 1− λ2 + λ + 4± 2

√
λ2 + 3

(1 + λ)2
4

v
− 2±

√
λ2 + 3

1 + λ

4

v2

+
λ2 + λ + 4± 2

√
λ2 + 3

(1 + λ)2
4

v − 1− λ
− 2±

√
λ2 + 3

1 + λ

4

(v − 1− λ)2
(B.12)

Λ̄
(3,4)
8 (λ, v) = Λ

(3,4)
8 (−λ, v) .

35



Let us consider the [0,− 1
2
, 1

2
, 0] multiplet in more detail. There are altogether three highest-weight

states, i.e. states annihilated by the sl(2/1) raising generators Their quantum numbers are B = ± 1
2
,

J3 = 1
2 and B = J3 = 0 respectively. From the table above we see that the Bethe ansatz yields three

states in this multiplet, which by [38] are highest weight states. The Bethe ansatz states with (M, N ) =
(1, 2) and (M, N ) = (2, 1) are readily identified as B = J3 = 1

2 , B = −J3 = −1
2 highest-weight states.

The solution to the Bethe ansatz equations with (M, N ) = (2, 2), leading to the eigenvalue Λx, is very
peculiar to say the least: it contains a free parameter! For any value of γ2 the roots given above satisfy
the BAE (4.6) and give the eigenvalue Λx(v) of the transfer matrix! We identify this last highest-weight
state with the invariant singlet state of [0,− 1

2 , 1
2 , 0]. The second singlet state in the multiplet is a cyclic

state, i.e. all states in the representation can be obtained from it by acting with symmetry generators.
However, it appears that it is not possible to obtain this state from the Bethe ansatz! In other words,
the Bethe ansatz is manifestly incomplete due to the peculiar representation theory of superalgebras.

For the eigenvalue Λ1(v) corresponding to the unique regular singlet in the tensor product there
exists no non-degenerate solution of the BAE (4.6). Applying a twist in the boundary conditions and
studying the evolution of BA roots as this twist goes to zero we were able to verify that the singlet is
in fact described by the singular solution uk ≡ λ, γα ≡ 0 which clearly gives Λ1(v) from the general
form (4.7). This finding coincides with the observation in [54] about the distribution of BA-roots for
the ground state of the quantum transfer matrix for the t–J model in the thermodynamic limit. For
finite L the authors of [54] find this degeneracy to be lifted which is a consequence of the fact that
their system is subject to a phase shift when compared to ours (see Appendix D). Note that this phase
shift also breaks the supersymmetry of the system. Furthermore it is not obvious that the two states
actually are mapped onto one another when the phase shift is changed adiabatically: the distribution
of roots of the function D in [54] seems to be very different.

We note further that Λ1(v) is just the square of the eigenvalue obtained for the singlet in the 2-site
system (B.7). Hence, Λ1(v) is again the solution of the functional equation (B.9). This observation
lead us to formulate the following conjecture for the ground state eigenvalue of the transfer matrix

Λ1(v) =

{
(v − 2)(v + 1− λ)

v(v − 1− λ)

}L

. (B.13)

For the L = 2 system the eigenvalues of the Hamiltonian are (4.8):

E0 =
8

λ2 − 1
, Ex = −4 , E

(1,2)
8 = −2, E

(±)
12 = −2 , E16 = 0 ,

E
(3,4)
8 =

−2λ8 − 8λ6 + 56λ4 + 40λ2 + 42±
√

3 + λ2(−8λ6 + 28λ4 + 20λ2 + 24)

(λ2 ± 1)3(2±
√

3 + λ2)2
.

For λ = 0 we find that E
(3,4)
8

∣∣∣
λ=0

= −6, i.e. the eigenvalues are equally spaced integers. We note that

the conjecture (B.13) implies that the ground state E0 = 4L/(λ2 − 1) is strictly extensive without any
finite size corrections. For a conformally invariant system this implies that the central charge of the
underlying Virasoro algebra is c = 0 — as expected for the class of models considered here.

B.2.3 L=3,4,5

By numerically diagonalizing the transfer matrix for system sizes up to L = 5 we find that in general
there is exactly one eigenstate with an eigenvalue given by

Λ(v) = Λ1(v)Λ̄1(v) =

(
(v − 2)2(v + 1− λ)(v + 1 + λ)

v2(v − 1− λ)(v − 1 + λ)

)L

. (B.14)

This is in agreement with the conjecture (B.13). For λ = 0 this state is the ground state of the
Hamiltonian with energy

E0 = −4L . (B.15)

From now on we set λ = 0. The first few low-lying multiplets for L = 3 are shown in Table 4. We
see that the first excited state is an octet with energy −11.1231. Then there are two degenerate octets
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[B, S] E BA roots P/2π

[0, 1] -11.1231 u1 = γ1 = 0.530i, u2 = γ2 = −0.530i 0

[0, 1] -9.60555 u1 = γ∗
1 = −0.254− 0.608i, u2 = γ∗

2 = 0.254− 0.608i 0
[0, 1] -9.60555 u1 = γ∗

1 = −0.254 + 0.608i, u2 = γ∗
2 = 0.254 + 0.608i 0

[0, 1
2 ,−1

2 , 0] -9.00000 γ1 = −γ∗
2 = −0.144− 0.382i, u1 = −1.427i 0

u2 = −u∗
3 = −0.163 + 0.713i

[0,−1
2
, 1

2
, 0] -9.00000 γ1 = −γ∗

2 = −0.144 + 0.382i , u1 = 1.427i 0
u2 = −u∗

3 = −0.163− 0.713i

[0, 1] -6.5 u1 = γ∗
1 = −0.238− 0.547i, u2 = γ∗

2 = 1.104 + 0.175i −1/3
[0, 1] -6.5 u1 = γ∗

1 = 0.238 + 0.547i, u2 = γ∗
2 = −1.104− 0.175i 1/3

[0, 1] -6.5 u1 = γ∗
1 = −0.238 + 0.547i, u2 = γ∗

2 = 1.104− 0.175i −1/3
[0, 1] -6.5 u1 = γ∗

1 = 0.238− 0.547i, u2 = γ∗
2 = −1.104 + 0.175i 1/3

[0, 1] -6.23607 u1 = γ1 = −0.535− 0.309i, u2 = γ2 = −0.535 + 0.309i −1/3
[0, 1] -6.23607 u1 = γ1 = 0.535− 0.309i, u2 = γ2 = 0.535 + 0.309i 1/3

Table 4: Low-lying multiplets for L = 3.

[B, S] E BA roots

[0, 1] -15.0484 u1 = γ∗
1 = 0.227 + 0.554i, u2 = γ∗

2 = −0.227 + 0.554i
u3 = γ∗

3 = −0.50948i

[0, 1] -15.0484 u1 = γ∗
1 = 0.227− 0.554i, u2 = γ∗

2 = −0.227− 0.554i
u3 = γ∗

3 = 0.509i
[0,−1

2
, 1

2
, 0] -14.1677 u1 = γ1 = −0.051 + 0.521i, u2 = γ2 = 0.871 + 0.700i

u3 = γ3 = −0.051− 0.521i, u4 = γ4 = 0.871− 0.700i

[0, 1] -13.0749 u1 = γ∗
1 = −0.426− 0.654i, u2 = γ∗

2 = 0.426− 0.654i
u3 = γ∗

3 = −0.596i

[0, 1] -13.0749 u1 = γ∗
1 = −0.426 + 0.654i, u2 = γ∗

2 = 0.426 + 0.654i
u3 = γ∗

3 = 0.596i

Table 5: Low-lying multiplets for L = 4.

with energy E = −9.60555. Finally there are two degenerate [0,− 1
2 , 1

2 , 0] multiplets. We only list one
Bethe ansatz solution for each of these representations. Like in the two-site case L = 2, the invariant
singlets of [0,− 1

2
, 1

2
, 0] multiplets correspond to one-parameter families of solutions to the Bethe ansatz

equations.
In Table 5 we list the low-lying sl(2/1) multiplets for L = 4. The first excited states are two octets

with energy E = −15.0484. Next there is a single [0,− 1
2 , 1

2 , 0] multiplet with energy E = −14.1677.
Clearly the degeneracies for L = 4 are different from L = 3. This suggests that there might be a
difference in structure of the low-lying excitation spectra for odd and even L.

Table 6 summarizes the lowlying states for L = 5. The first excited multiplet is an octet, then
there are two degenerate octets, followed by two degenerate [0,− 1

2 , 1
2 , 0] multiplets. The structure of

degeneracies coincides with the L = 3 case.

B.2.4 Root configurations for a class of low-lying states

Our results for small systems indicate that the lowest-lying excitations of the model are in the octet
sector, i.e. belong to [B, S] = [0, 1], or form indecomposable [0,− 1

2
, 1

2
, 0] multiplets. Within the Bethe

ansatz for a system of length L the octets are parametrized by L − 1 roots uj and γα while the
indecomposables are found for example in the sector B = 0 = J3 with L roots on both levels. Within
our classification of solutions by means of the string hypothesis from Section B.1 the corresponding
roots form certain sequences of strange strings of length n = 1 (or their degenerate realization as “2−2”
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[B, S] E BA roots

[0, 1] -19.4230 u1 = γ1 = +0.200 + 0.523i, u2 = γ2 = +0.200− 0.523i
u3 = γ3 = −0.200 + 0.523i, u4 = γ4 = −0.200− 0.523i

[0, 1] -18.66651 u1 = γ∗
1 = +0.390− 0.593i, u3 = γ∗

3 = −0.559i
u2 = γ∗

2 = −0.390− 0.593i, u4 = γ∗
4 = +0.503i

[0, 1] -18.66651 u1 = γ∗
1 = −0.390 + 0.593i, u3 = γ∗

3 = +0.559i
u2 = γ∗

2 = +0.390 + 0.593i, u4 = γ∗
4 = −0.503i

[0,−1
2
, 1

2
, 0] -18.28188 (A)

u1 = γ∗
1 = −1.105 + 0.671i, u4 = γ∗

4 = −0.835− 0.743i
u2 = γ∗

2 = −0.113− 0.543i, u5 = γ∗
5 = 0.02364 + 0.50539i

u3 = γ∗
3 = 0.263− 0.551i

[0,−1
2
, 1

2
, 0] -18.28188 (A) with uj −→ −uj , γα −→ −γα

Table 6: Low-lying multiplets for L = 5.

narrow strings of length (B.5)). We denote the number of these “+” and “−” type strange strings by
N+ and N− respectively. We constrain ourselves to the case N+ ≥ N−; states with N− > N+ are
obtained by exchanging u’s and γ’s and are by construction degenerate. We denote the energy levels
of the states by EN+ ,N− .

4.4.1 Even L:

• A low-energy state with B = 0 = J3 belonging to a [0,− 1
2 , 1

2 , 0] multiplet is obtained by choosing

N+ = N− = L
2

and considering a realization of this configuration as a collection of “2−2” narrow
strings. This implies that after a suitable relabelling of roots we have uj = γj , for j = 1, . . . , L.
Using this degeneracy the Bethe ansatz equations (4.6) can be rewritten as

{
uj + i

uj − i

}L

=

N∏

k=1

uj − uk + i

uj − uk − i
, j = 1, . . . , N , (B.16)

with N = L. These equations are identical to the Bethe ansatz equations of the SU(2) symmetric
Takhtajan-Babujian spin-1 chain [56] for a lattice of L sites and antiperiodic boundary conditions.
The operator content of an anisotropic version of this model (with twisted rather than antiperiodic
boundary conditions) was determined by Alcaraz and Martins [57]. We show in Appendix C how
our results relate to theirs.

• The lowest lying excitation has N+ = L
2 and N− = L

2 − 1 and is the highest weight state of [0, 1]
multiplet. The distribution of strings is symmetric around the imaginary axis, i.e.

{uj|j = 1, . . .L − 1} ≡ {−u∗
j |j = 1, . . .L − 1}, (B.17)

and similarly for {γj |j = 1, . . .L− 1}. The root distribution for this state for L = 10 is shown in
Fig.11(a).

• Other [0, 1] octet states are obtained by taking N+ = L
2 + n and N− = L

2 − 1 − n, n = 1, 2, . . .,
i.e. by replacing n “−” type strange strings by “+” type strange strings. The corresponding
root distributions are shown in Fig.11(b)-(f). We note that the lowest energy state for given N±
corresponds to a root distribution that is symmetric around the imaginary axis. Higher energy
states correspond to asymmetric distributions. An example for L = 10 is shown in Fig. 11(e).

4.4.2 Odd L:

• The lowest lying state has N+ = N− = L−1
2 and is the highest weight state of a [0, 1] multiplet.

The sets {uj|j = 1, . . .L − 1} and {γj |j = 1, . . .L − 1} are closed under complex conjugation.
Hence, after a suitable relabelling of roots we have γj = uj, for j = 1, . . .L − 1. Similarly as for
the B = 0 = J3 state for even L this state can be considered as a collection of “2 − 2” narrow
strings and the Bethe ansatz equations can be cast in the form (B.16) with N = L − 1.
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Figure 11: Strange string solutions of the Bethe ansatz equations (4.6) in the octet sector for a system
of size L = 10 with different ∆N = N+ − N−: circles (triangles) denote uj (γα). (a) ∆N = 1, (b)
∆N = 3, (c) ∆N = 5 , (d) and (e) ∆N = 7, (f) N+ = 9, N− = 0.

• A sequence of low energy [0, 1] octet highest weight states is obtained by taking N+ = L−1
2 + n,

N− = L−1
2 − n, n = 1, 2, . . ..

In the following section we carry out a finite-size scaling analysis for the states we have just described.

B.3 Low-lying excitations in the thermodynamic limit

In this Appendix we derive the coupled integral equations (4.17) from the algebraic equations (4.16).
We start by taking the logarithm of (4.16)

θ(xj) + θ(
xj

3
) =

2πIj

L
+

1

L

N+∑

k=1

θ(
xj − xk

4
) +

2

L

N−∑

k=1

θ(
xj − yk

2
) , j = 1, . . . , N+,

(B.18)

θ(yj ) + θ(
yj

3
) =

2πJj

L
+

2

L

N+∑

k=1

θ(
yj − xk

2
) +

1

L

N−∑

k=1

θ(
yj − yk

4
) , j = 1, . . . , N−,
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where θ(x) = 2 arctan(2x) and Ij (Jj) are integer or half integer numbers characterizing the state
uniquely. Following Yang and Yang we introduce counting functions z±(v) by

z+(x) = θ(x) + θ(
x

3
)− 1

L

N+∑

k=1

θ(
x − xk

4
) − 2

L

N−∑

k=1

θ(
x− yk

2
) ,

(B.19)

z−(x) = θ(y) + θ(
y

3
) − 1

L

N−∑

k=1

θ(
y − yk

4
)− 2

L

N+∑

k=1

θ(
y − xk

2
) ,

By definition, the counting function evaluated at a root of equations (B.18) yields 2π times the cor-
responding integer numbers divided by L, e.g. z+(xj) = 2πIj/L. Taking the derivative of (B.19) and
then L→∞ we obtain the integral equations (4.17) for the densities of roots ρ± and holes ρh

± by using
that

2π[ρh
±(x) + ρ±(x)] =

dz±(x)

dx
. (B.20)

To proceed further, we restrict ourselves to states with symmetric distributions of the integers, e.g.

Ij =
1

2
(−N+ − 1) + j, j = 1, . . . , N+ (B.21)

and similarly for the Jk. For these distributions we have

ρh
±(x) = 0, for |x| < A± , (B.22)

where A± are fixed by the conditions z±(A±) = N±/L. The integral equations for the root densities
may then be simplified to

ρ+(x) +

∫ A+

−A+

dx′a4(x− x′)ρ+(x′) + 2

∫ A−

−A−

dy′a2(x − y′)ρ−(y′) = a1(x) + a3(x) ,

ρ−(y) +

∫ A−

−A−

dy′a4(y − y′)ρ−(y′) + 2

∫ A+

−A+

dy′a2(y − x′)ρ+(x′) = a1(y) + a3(y) , (B.23)

where

an(u) =
1

π

2n

4u2 + n2
.

The energy per site of such states in the thermodynamic limit is obtained from (4.8)

lim
L→∞

1

L
EN+,N− = −2π lim

L→∞





1

L

N+∑

k=1

a1(xk) + a3(xk) +
1

L

N−∑

k=1

a1(yk) + a3(yk)



 ,

= −2π
∑

σ=±

∫ Aσ

−Aσ

dx ρσ(x) [a1(u) + a3(u)] . (B.24)

B.4 Low-lying excitations for large, finite lattice sizes

B.4.1 [0,− 1
2
, 1

2
, 0] states in the “sector” {γj} ≡ {uj} for even L

The considerations in the previous section are straightforwardly applied to the low-energy states with
[B, J3] = [0, 0] in the indecomposable [0,− 1

2 , 1
2 , 0] multiplets for even L. For these we have to consider

solutions satisfying
γj = uj , j = 1, . . . , L , (B.25)

which consist of degenerate type-± strange strings. In the thermodynamic limit the corresponding root
distributions functions are given by (4.24) and hence we may use the counting function

z(x) = 2 arctan (eπx) − π

2
. (B.26)
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L EL
2 , L

2
L(EL

2 , L
2
− E0)

8 -31.1255373481719104 6.9957012146247166
10 -39.3093986078541491 6.9060139214585092
128 -511.95141708922984 6.2186125785810873
256 -1023.9761543904651 6.1044760409276932
512 -2047.9882636363875 6.0090181695995852
1024 -4095.9942108167784 5.9281236189417541
2048 -8191.9971392992984 5.8587150368839502
4096 -16383.998584343625 5.7985285085172748

∞ 4.95(2) (extrapolated)

Table 7: Finite size results for the energy of the low-lying zero-momentum indecomposable consisting
of two-strings with {uj} = {γj}.

to obtain initial values (4.15) for a numerical solution of the Bethe ansatz equations (4.6): using

xj = yj =
1

π
ln tanπ

(
Ij

L
+

1

4

)
(B.27)

with

Ij = −1

4
(L + 2) + j, j = 1, . . . ,

L

2
(B.28)

as starting values a small number of iterations is sufficient to obtain a numerical solution of the Bethe
ansatz equations for lattices with more than 10.000 sites or L ≈ 5000. We present our results on the
finite size energies of an indecomposable in Table 7. The scaling behaviour as a function of 1/ log(L)
is shown in Figure 5.

B.4.2 Octet states in the “sector” {γj} ≡ {uj} for odd L

The same approach can be used to obtain the finite size energies of the lowest octet states of the odd
L systems: these states are characterized by (L − 1)/2 degenerate strange strings of each type + and
−. For the numerical solution of the Bethe ansatz equations we use again (B.27) but with

Ij = −1

4
(L + 1) + j, j = 1, . . . ,

L− 1

2
. (B.29)

Table 8 summarizes results for the finite-size energies of the lowest-lying state in the octet sector. The
momentum of this state is zero. For the extrapolation to L =∞ we assume the corrections of L∆E to
vanish as a function of 1/ log(L). The scaling of the energies together with the result of the rational
function extrapolation is shown in Figure 5.

B.4.3 More octet states built from strange strings

Octet states from non-degenerate strange string solutions exist for both even and odd system lengths
and are described by Bethe ansatz equations with 2(L− 1) rapidities uj and γα arranged in N+ (N−)
strange strings of type + (−) with N+ +N− = L−1. We have solved the Bethe ansatz equations (4.6)
for such states numerically for (∆N = N+ −N−):

• L even: ∆N = 1, 3, 5, 7

• L odd: ∆N = 2 (∆N = 0 corresponds to the state studied in Section B.4.2)

Starting values for the numerical solution of the Bethe ansatz equations for are obtained from counting
functions similar to (B.26) with proper symmetric choice of the quantum numbers Ij , Jk. The numerical
finite size spectrum of these states is given in Table 9. The energy differences to the ground state as a
function of 1/ logL are plotted in Fig.5.
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L EL−1
2 ,L−1

2
L(EL−1

2 , L−1
2
− E0)

5 -19.4230243905225 2.88487804738772
7 -27.5669616952430 3.03126813329929
161 -643.976352749708 3.80720729705104
321 -1283.98786068577 3.89671986852727
641 -2563.99379470064 3.97759688996348
1281 -5123.99684487686 4.04171273971125
2561 -10243.9983994774 4.09893837823756
5121 -20483.9991898007 4.14903019789338

∞ 4.916(4) (extrapolated)

Table 8: Finite size results for the energy of the low-lying zero-momentum octet consisting of two-
strings with {uj} = {γj}. Rational function extrapolation has been used to obtain the L→∞ value.

L EL
2 , L

2 −1 L(EL
2 ,L

2 −1 − E0)

120 -479.96564417058130 4.1226995302440628
240 -959.98261219919220 4.1730721938711213
480 -1919.9912162303681 4.2162094233208336
960 -3839.9955678047386 4.2549074509588536
1920 -7679.9977658894386 4.2894922778941691
3840 -15359.998874847095 4.3205871549434960

∞ 4.91(2) (extrapolated)

L EL+1
2 , L−3

2
L(EL+1

2 , L−3
2
−E0)

121 -483.95681608386576 5.2252538522429859
241 -9.6397875255777501 5.1206335762225308
481 -1923.9895168083938 5.0424151625950344
961 -3843.9948148688195 4.9829110644573120
1921 -7683.9974299991591 4.9369716154324124
3841 -15363.998724015133 4.9010578736833850

∞ 4.937(3) (extrapolated)

L EL
2 +1, L

2 −2 L(EL
2 +1,L

2 −2 − E0)

128 -511.94458966164291 7.0925233097077580
256 -1023.9737491964416 6.7202057109388988
512 -2047.9874366076488 6.4324568838346750
1024 -4095.9939402783793 6.2051549395546317
2048 -8191.9970594424680 6.0222618254764871
4096 -16383.998566214848 5.8727839789301150

∞ 4.94(3) (extrapolated)

Table 9: Finite size energies for the low-lying octets consisting of “strange strings” for L even and odd,
respectively.
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Based on our results we conjecture that for any fixed ∆N

lim
L→∞

L
(
E 1

2 (L−1+∆N), 1
2 (L−1−∆N) −E0

)
≈ 4.93 , (B.30)

i.e. we expect a macroscopic degeneracy of states in the finite size spectrum to order 1/L of the super
spin chain!

B.5 The Fermi velocity

In order to determine scaling dimensions we need to know the value of an important parameter, the
Fermi velocity vF . Indeed, the Hamiltonian of our system is determined up to a scale only, and from
conformal field theory we only know, for instance, that the ground state energy E0 of the Hamiltonian
on a lattice of L sites scales for L→∞ like

E0

L
= e∞ −

πcvF

6L2
+ o(L−2), (B.31)

where e∞ is the ground state energy density and c is the central charge of the CFT. The determination
of vF is straightforward is many systems solvable by Bethe ansatz, but not so here. We suggest that
(we used this value in the main text to deal directly with a “properly normalized” Hamiltonian)

v = π. (B.32)

Let us briefly list the evidence supporting (B.32).

1. We can determine the dispersion of excited states over the lowest octet discussed above, that are
described by the integer method (not all states are, as pointed out above). It follows from (4.8)
and (4.9) that the bare energy and bare momentum of a 2-2 narrow string are given by

ε0(u) = −4π[a1(u) + a3(u)], (B.33)

p0(u) = 2[θ(u) + θ(u/3)], (B.34)

where u denotes the real centre of the string. Given the integral equation (4.23) for the root
density of the octet state, we may define a dressed energy ε(u) and a dressed momentum p(u) as
usual by

ε(u) = ε0(u)−
∫ ∞

−∞
du′ [2 a2(u− u′) + a4(u− u′)] ε(u′), (B.35)

p(u) = p0(u)−
∫ ∞

−∞
du′ [2 a2(u− u′) + a4(u− u′)]p(u′). (B.36)

These equations are easily solved by Fourier transform

ε(u) = − 2π

cosh(πu)
, p(u) = 2 arctan(sinh(πu)). (B.37)

We may eliminate the spectral parameter and obtain an expression of the dressed energy in terms
of the dressed momentum directly

ε(p) = −2π cos(p/2). (B.38)

The contribution of a 2-2 string with centre u to the ground state energy and momentum is then
given by ε(u) and p(u) respectively. Making a “hole” excitation by removing a 2-2 string with
centre u from the ground state would change the energy and momentum by

Eh = −ε(u) , Ph = −p(u) , (B.39)

and hence
Eh(Ph) = 2π cos(Ph/2). (B.40)
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Linearizing this dispersion around the “Fermi points” Ph = ±kF = ±π gives the Fermi velocity

v =
dEh(Ph)

dPh

∣∣∣∣
Ph=−π

= π. (B.41)

2. Following [77] we can determine v from functional equations for the largest eigenvalue Λ(u) of
the transfer matrix by comparing them to crossing equations for relativistic S-matrices. From
(4.11) with λ = 0 we obtain

Λ(u) = Λ(1− u) , (B.42)

which again implies that v = π.

3. All of our finite-size spectra for small L = 5, 7, 9, 11 systems are consistent with v = π as are the
extrapolated values for very large systems.

Now the scaling dimensions and conformal spins of the excitations considered above can be determined
from the finite size spectra of the Hamitonian and the momentum operator

x = h + h̄ = =
L

2π2
(Eα + 4L) ,

s = h − h̄ =
L

2π
P . (B.43)

B.6 “Antiperiodic” Boundary Conditions

As discussed in the main text, “antiperiodic” boundary conditions play a crucial role in the identifica-
tion of the continuum limit (even though they might not play any role in the physical network model,
for instance). We have studied in some detail the sector M = N . The Hamiltonian is defined by taking
the trace in (4.4) instead of the supertrace; observe that the boundary conditions break the sl(2/1)
symmetry, but respect the bosonic spin-su(2). The Bethe ansatz equations become

[
uj + i

uj − i

]L

= −
N∏

β=1

uj − γβ + i

uj − γβ − i
, j = 1, . . . , N

[
γα + i

γα − i

]L

= −
N∏

k=1

γα − uk + i

γα − uk − i
, α = 1, . . . , N . (B.44)

The sector {uj} ≡ {γα} now reduces to the Takhtajan-Babujian chain with periodic boundary condi-
tions. By diagonalizing the transfer matrix for small systems, we find that the ground state lies in the
TB sector. For example for L = 3, 4, 5, 6 we have (γj ≡ uj)

L=3 L=4 L=5 L=6

E = −13.5335 E = −17.4031 E = −20.8890 E = −24.8774
u1 = 0.3510− 0.6258i u1 = 0.2958− 0.5513i u1 = 0.7564 + 0.8124i u1 = 0.4385 + 0.5483i
u2 = −u∗

1 u2 = u∗
1 u2 = −u∗

1 u2 = u∗
1

u3 = 0.5219i u3 = −0.2958− 0.5513i u3 = 0.1694 + 0.5980i u3 = −0.4385 + 0.5483i
u4 = u∗

3 u4 = −u∗
3 u4 = u∗

3

u5 = −0.5013i u5 = −0.5207i
u6 = u∗

5

The lowest-lying excited states above the TB ground state are formed by solutions of the Bethe ansatz
equations (B.44) involving strange strings. In Fig.6 we show the finite-size scaling of the TB ground
state as well as two of these excited states. The numerical results indicate that both states become
degenerate with the TB ground state in the L→∞ limit. The scaling dimensions extrapolate to − 1

4
relative to the ground state with periodic boundary conditions. We conjecture that there again is an
infinite degeneracy in the thermodynamic limit.
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C Relation to the spin-1 Takhtajan-Babujian model

Alcaraz and Martins [57] carried out a finite-size scaling analysis of the anisotropic spin-1 Takhtajan-
Babujian (TB) chain based on the following equations

{
sinh(γ[uj + i])

sinh(γ[uj − i])

}L

= − exp(iΦ)

L−n∏

k=1

sinh(γ[uj − uk + i])

sinh(γ[uj − uk − i])
, j = 1, . . . , L− n. (C.1)

E =
(sin 2γ)2

2

L−n∑

j=1

1

cos 2γ − cosh 2γuj
,

P =

L−n∑

j=1

2 arctan[tanh(γuj) cot(γ)] . (C.2)

The twist angle was taken to vary in the interval 0 ≤ Φ < π. Equations (C.1),(C.2) reduce to the
equations of interest here if we take the limits Φ → π, γ → 0 and rescale E by a factor of 4 and P by
a factor of 2. The finite size spectrum in the TB chain in the limit Φ→ π, γ → 0 is of the form [57]

Eα
M,M ′ = E0(Φ = 0, L) +

π2

L
(xα + M + M ′) + o(L−1) , M, M ′ = 0, 1, 2, ...

Pα
M,M ′ =

2π

L
(sα + M −M ′) + o(L−1) . (C.3)

Here E0(Φ = 0, L) is the energy of the ground state for zero twist-angle Φ = 0 and even L. It is equal
to

E0(Φ = 0, L) = −L − π2

8L
+ o(L−1). (C.4)

After the rescaling we then obtain the finite-size energies and momenta in the sl(2/1) chain

Eα
M,M ′ = −4L +

2π2

L

(
2xα −

1

4
+ 2M + 2M ′

)
+ o(L−1) , M, M ′ = 0, 1, 2, ...

P α
M,M ′ =

2π

L
(2sα + 2M − 2M ′) + o(L−1) . (C.5)

Here we have used that the Fermi velocity in the sl(2/1) chain is v = π (B.32). This shows that the
scaling dimensions in the TB model and the sl(2/1) chain are related by

• A doubling of the scaling dimensions in the sl(2/1) chain as compared to the TB model, combined
with a shift by − 1

4 .

• A doubling of the conformal spins. sectors).

D Relation to the quantum transfer matrix of the supersym-

metric t–J model

The vertex model considered in this paper also appears in the quantum transfer matrix (QTM) approach
to the thermodynamics of the integrable supersymmetric t–J chain: shifting the rapidities used in
Ref. [54] (JKS) as

vk →
1

2
γk + iu, wj →

1

2
uj + iu +

i

2
, (D.1)
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we obtain from (JKS.18) the BAE in our notation (4.6) with twisted boundary conditions

(
uj + i

uj − i

)N/2

= eiφ
∏

β

uj − γβ + i

uj − γβ − i
,

(
γα + iλ + i

γα + iλ − i

)N/2

= e−iφ
∏

k

γα − uk + i

γα − uk − i
, (D.2)

when we set the free parameter λ in our model to λ = 4u+1. The twist entering (D.2) is related to the
chemical potential µ of the t–J model as exp(iφ) = − exp(−βµ) (β is the inverse temperature). Note
that the QTM deals with the thermodynamic limit of the quantum chain, the system size N = 2L
appearing in (D.2) is the so-called “Trotter number” appearing in the expression of the partition
function by means of the QTM. The temperature dependence in the QTM approach enters via u =
−4β/N .

The eigenvalues of the QTM (JKS.15/6) can be identified with the eigenvalue (4.7) of the transfer
matrix carrying the representation 3̄ in the matrix space

ΛJKS(v) = −
(
v2 + u2

)L
Λ̄(2i(v + iu)) (D.3)

provided that we choose the twist properly, i.e. exp(βµ) = −1.
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