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Abstract

We investigate a stochastic model describing a column of grains in the jamming
limit, in the presence of a low vibrational intensity. The key control parameter of
the model is the reduced void space €. Regularity and irregularity in grain shapes,
respectively corresponding to rational and irrational values of ¢, are shown to be
centrally important in determining the statics and dynamics of the compaction
process.
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1 Introduction

The study of slow dynamics in the jamming limit unifies the fields of granular com-
paction [1, 2] and glasses [3]. Key features of this involve frustration and hysteresis,
among other complex phenomena, with the concomitant difficulty of modelling them in
simple and physical ways. We present in the following a model of remarkable simplic-
ity, which is nevertheless able to capture to a large extent the complex consequences of
non-trivial interactions even in one dimension. Issues that are probed include the effects
of orientation, and thus shape on packing in the jamming limit. ‘Irregular’ and ‘regular’
shapes of units (for example, grains) in ways that are shortly to be defined are seen to
have rather different consequences for compaction behaviour, when they are subjected
to zero- and low-temperature dynamics. The present model has already been introduced
in [4] and some of its static and dynamical features have been described in [5]. Here, we

give a complete and detailed account of our exploration of this model so far.

2 The model

Our model for grain compaction in the glassy regime is defined as follows [4, 5]. We
consider a column of N sites, each of which is occupied by a grain. Grains have an
anisotropic shape, so that their orientation matters. For simplicity, we assume that grains
can only have two different orientations, referred to as ‘ordered’ and ‘disordered’. The
orientation of grain n is translated into a binary variable or ‘spin’ o, = £, with ¢, = +
denoting an ordered grain, and o, = — denoting a disordered grain. While ordered
grains are perfectly packed, disordered grains are imperfectly packed. Each disordered
grain leaves a wvoid space ¢ on the site it inhabits. A configuration of the system is
uniquely defined by the orientation variables {o,}. Non-trivial dynamical interactions
between the grains are such as to minimise the void space locally. These can be thought

of in terms of an ordering field [5] h,, which reads
(2.1)

— e +
hy, =em; —m],

where m} and m,, are respectively the numbers of ordered (4) and disordered (—) grains

above grain n:
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From this we see that h, is nothing but the excess void space [6] of the system. Equa-
tion (2.1) shows that a transition from an ordered to a disordered state for grain n is
therefore hindered by the number of voids that are already above it. A rich ground-
state structure is achieved for ¢ > 0, because of frustration [7], whose nature depends on
whether ¢ is rational or irrational. We mention for completeness that the case ¢ < 0 is
a generalisation of earlier work [8], with a complete absence of frustration and a single
ground state of ordered grains.



Let us now give a rather more general derivation of the simple physical picture above.
In the presence of a dimensionless vibration intensity I', we consider a stochastic dynam-
ics, defined by the orientation-flipping rates

I

A, — hy,
wn(— — —I—) =exp | — T .

A+ iy
wn(+ — —) = exp (— + ) ,

(2.3)

In these expressions, h, and A, > 0 are, respectively, the local ordering field and the
activation energy felt by grain number n.

We assume that these quantities only depend on the orientations of grains above
grain n. For simplicity, we postulate the linear formulas

hn:Am:—l—Bm;, /\n:Cm:+Dm;, (2.4)

where m* have been defined in (2.2), so that m} + m; = n, while A, B, C, and D are
phenomenological parameters.
Hereafter we will focus on the minimal model incorporating the concept of void space

introduced above [4, 5]. With an appropriate choice of units, we have
A=—1, B=¢>0, (2.5)

so that (2.1) is recovered as

ife—1 e+l
hnzem;—m::z<€2 - ; Jk>, (2.6)

Furthermore we assume that the activation energy A, does not depend on grain
orientations. We define the dynamical length £4yn by setting

r
C=D= \ (2.7)
fdyn
so that r
Ay = . (2.8)
fdyn

In order to perform numerical Monte-Carlo simulations we will need a discrete-time
formulation of the above rules. The flipping rates w, become flipping probabilities

_ P
Palt = —) = 1+ eXp(th/F)’
P (2.9)
pn(_ — —I') =

14+ exp(—2h, /T) ’

A n
P, = exp (_?) = exp (_fdyn) (2.10)
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where the factor




describes the a priori exponential slowing down of the dynamics with depth n.
In the glassy regime where there are no holes, our earlier model [8, 4] is defined by
the rates

Ah+AH
w,(+ — —) =exp (—% n) \
(2.11)
Ah
wy(— — +) =exp —Tn )
These rates are recovered by setting
AH AH

The quantities AH and Ah are given in simple geometrical terms for hard rectangular
grains of sides 1 and a < 1, i.e., AH = (1 —a)/2, Ah = (V1 +a? = 1)/2. More
generally, AH and Ah can be viewed as phenomenological parameters, defining the
two characteristic lengths of the model, the equilibrium length &, and the dynamical

length £4yn, which read [8, 4]

I I

feq - Ea den - E (213)

We emphasise that in the fully general situation where there are no restrictions on
parameter values, the rates (2.3) depend only on the orientations of grains above the
grain under consideration. Our new model is therefore a fully directed model of inter-
acting grains, where causality induces a directionality both in time and in space, as the
orientation of a given grain only influences the grains below it, and at later times.

3 Zero-temperature statics

As the dynamical rules (2.3) are fully directional, they clearly cannot obey detailed
balance. Our discussion of ‘temperature’ in such an obviously non-equilibrium situation
follows established lines [2, 1] regarding its formulation in gently vibrated granular media.
In the case of the present model, the determination of the steady state(s) of the system
is a non-trivial task.

The dynamics simplifies in the I' — 0 limit [4]. Equation (2.3) indeed yields

wy(— — +) B 2h,, oo if h, >0, (3.1
wa(+ ——)  PAT 0 if hy<0. 1)

From a purely static viewpoint, ground states of the system can therefore be defined by
the condition that the orientation of every grain is aligned along its local field, according

to the deterministic equation:

+ if A, >0,

— if h, <0, (3.2)

o, = signh, = {



provided h,, # 0 (see below). The condition (3.2) only involves the parameter ¢ [see (2.1),
(2.6)]. It is recursive, because of directionality in that the right-hand side at depth n only
involves upper grains £ = 1,...,n — 1. The uppermost orientation oy is left unspecified,
as the corresponding local field vanishes identically: h; = 0. In the following, we assume

for definiteness that the uppermost grain is ordered:
g = + (33)

It turns out that the zero-temperature rule (3.2) yields a rich ground-state structure,
because of subtle commensurability and frustration effects. Our starting point is to
observe that (3.2) implies

{hn>0:>0n:+a m:+1:m:+]v m;+1:mnv hn+1:hn_1a

hy, < 0= 0, = —, mi . =mf, mu =m, +1, hpyr = hy, + €. (3.4)

Surprisingly enough, the number and the nature of ground states depend on the number-

theoretic nature of . Rational and irrational values of ¢ will be considered separately.

3.1 Irrational ¢: unique quasiperiodic ground state

For irrational ¢, (3.4) implies recursively that all the local fields h,, are non-zero, and
that they lie in the bounded interval

-1 <h, <e. (3.5)

Let us introduce the following superspace formalism. Consider the integers (m;,, m;)

as the co-ordinates of points on a square lattice. We thus obtain a broken, staircase-
shaped line, starting as (m7,m{) = (0,0), (my,m3) = (0,1) [see (3.3)], etc. Vertical
steps correspond to ordered (+) grains, whereas horizontal steps correspond to disordered
(—) grains, Equation (3.5) defines an oblique strip with slope ¢ in the (m™, m™) plane,
which contains the entire broken line thus constructed (see Figure 1).

A unique infinite configuration of grain orientations (i.e., a unique broken line) is
thus generated. This configuration is quasiperiodic. Indeed the above construction is
nothing but the cut-and-project method of generating quasiperiodic tilings of the line,
which has been extensively studied [9] in the framework of quasicrystals. (Had we made
the initial choice oy = — instead of (3.3), we would have obtained the same quasiperiodic
configuration, up to a permutation of the two uppermost grains.) We mention for further
reference the following explicit expressions! for m* and h,,:

Frac((n — 1))

mt =n—m, =1+TInt((n—1)Q), hy, = — ) ; (3.6)
where the rotation number Q reads
&
0= 0< <) 3.7
S <a<n 37

Int(z), the integer part of a real number z, is the largest integer less than or equal to z, and
Frac(z) = z — Int(z) is the fractional part of z (0 < Frac(z) < 1).



An immediate consequence of (3.6) is that there are well-defined proportions of ordered
and disordered grains in the ground state:

1
= f—1-0-= .
1+e¢ 1+e¢

This geometrical construction is illustrated in Figure 1 for the most celebrated irra-
tional number, the inverse golden mean [10]:

1 1 1
—d—1=—, Q=2-0=_ <1>=\/5+
> ) 2

~1.618033.  (3.9)

The corresponding grain configuration is given by a Fibonacci sequence [9, 10]:

{on}=4——F-——F—F——F——F—F——F—F—— - (3.10)

O

Figure 1: Geometrical construction of the quasiperiodic ground state of the model for the
golden-mean slope (3.9). The two ways of going around the first cell, marked with a circle,
correspond to the two possible choices for the orientation of the uppermost grain.

3.2 Rational c: degenerate ground states

For a rational &: ’

e=2 o= (3.11)
q pPtq

in irreducible form (p and ¢ are mutual primes), some of the local fields h, generated

by the recursion equations (3.4) vanish. The corresponding grain orientations o, remain

unspecified. This means that grain n has a perfectly packed column above it, so that it

is free to choose its orientation. For ¢ = 1/2, for example, one can visualise that each

disordered grain ‘carries’ a void half its size, so that units of perfect packing must be



permutations of the triad + — —, where the two ‘half’ voids from each of the — grains
are filled by the 4 grain. The dynamics, which is stepwise compacting, selects only two
of these patterns, + — — and — + —. More generally, orientational indeterminacy occurs
at points of perfect packing such that n is a multiple of the period p + q.

This feature of rational slopes is clearly visible on the geometrical construction. Fig-
ure 2, corresponding to e = 2/3, shows that some of the lattice cells, marked with circles,
are entirely contained in the closed strip (3.5). Consider one such cell. The broken line
enters the cell at its lower left corner and exits the cell at its upper right corner. It can
go either counterclockwise, via the lower right corner, giving 0,41 = —, 0,42 = 4+, or
clockwise, via the upper left corner, giving 0,41 = 4, 0,42 = —. Fach marked cell thus
generates a binary choice in the construction. This occurs whenever n is a multiple of
the period p + g, equal to the denominator of the rotation number €.

O

Figure 2: Geometrical construction of the ground states of the model for the rational slope
e = 2/3. The marked cells, entirely contained in the strip, are responsible for the non-zero
configurational entropy.

The model therefore has a non-zero ground-state entropy, or zero-temperature con-
figurational entropy,
In2
Y =
ptq

per grain. Fach ground state is a binary random sequence of two well-defined patterns of

(3.12)

length p + ¢, each of them made of p ordered and ¢ disordered ones, so that (3.8) holds
for each of the ground states. The patterns only differ by their first two orientations.
The simplest cases are listed in Table 1.

The period p+ q is formally infinite for an irrational slope. Accordingly, there is only
one marked cell in Figure 1, for n = 0, corresponding to the fact that only the uppermost
grain is unspecified.



period p + g | rot. number Q | slope e | p | ¢ pattern 1 pattern 2
2 1/2 1 1)1 + — —+
3 1/3 1/2 112 +—— — 4 -
3 2/3 2 |21 SR 4+
4 1/4 1/3 113 +——— — - —
4 3/4 3 13(1] +-++4 —+++
5 1/5 /4 (1|4 +——=—-— - ——
5 2/5 2/3 |23 +——+— —4+ -4 -
5 3/5 3/2 |32 +—4+—-+ | —++—+
5 4/5 4 41| +—4++ | —++++
6 1/6 1/5 15| +————— 4y —_
6 5/6 5 5|1 |4+—F+++ | —+++++

Table 1: Patterns building up the random ground states for the first rational values of . The
second example with period 5 is illustrated in Figure 2.

4 Zero-temperature dynamics

We now turn to the investigation of the zero-temperature dynamics of the model, given
by the rule
on — sign hy,, (4.1)

according to (3.1), with the definition (2.1), (2.6). Irrational and rational values of ¢ will
again be dealt with separately.

4.1 TIrrational ¢, infinite {4,,: ballistic coarsening

For irrational e, the rule (4.1) is always well-defined, as the local fields h,, never vanish.
We start with the situation where {4y, 1s infinite. We assume that the system is initially
in a disordered state, where each grain is oriented at random: o, = £ with equal
probabilities, except for the uppermost one, which is fixed according to (3.3).

The zero-temperature dynamics is observed to drive the system to its quasiperiodic
ground state. This ordering propagates down the system from its top surface, via ballistic
coarsening. At time ¢, the grain orientations have converged to their ground-state values,
given by the above geometrical construction, in an upper layer whose depth is observed

to grow linearly with time:

L(t) ~ V1, (4.2)

whereas the rest of the system is still nearly in its disordered initial state.

This phenomenon is similar to phase ordering, as order propagates over a macroscopic
length L(t) which grows forever. It is however different from usual coarsening, as the
depth of the ordered region grows ballistically, vith a well-defined e-dependent ordering
velocity V, instead of diffusively, or even more slowly [11]. The ordering velocity obeys



the symmetry property V(e) = V(1/e). Figure 3 shows a plot of the inverse of the
ordering velocity, measured in a numerical simulation, against ¢, for 0 < ¢ < 1. This
velocity is observed to vary smoothly with e, although it is only defined for irrational ¢,
and to diverge as V ~ 1/e as ¢ — 0.
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Figure 3: Plot of the inverse ordering velocity 1/V of zero-temperature coarsening dynamics
at infinite {qyn, against the irrational slope ¢, for 0 < e < 1.

4.2 Irrational ¢, finite {4y,: crossover to logarithmic coarsening

For irrational ¢, in the situation where &4y, 1s finite, but large at the microscopic scale of
a grain, the ballistic coarsening law (4.2) is modified in order to take the slowing down
factor (2.10) into account:

dL L
T V exp (— fdyn> , (4.3)
hence v
t
L(t) = &gynIn (1 + ) ) (4.4)
den

Equation (4.4) exhibits a crossover between the ballistic law (4.2) for 1 < Vi < Egyn,
and the logarithmic coarsening law

L(1) & Eagnn (4.5)

already present in the model of non-interacting grains [8, 4], in the opposite regime

(VE > Lagn > 1).



The dynamical length {4y, thus controls the spatial dependence of dynamical be-
haviour. In earlier work [8] it was shown to determine the extent to which order propa-
gates down the column, in the glassy regime. This interpretation in terms of an ordered
boundary layer continues to be valid in the present case: For an initially disordered state,
the application of zero-temperature dynamics causes the quasiperiodic ground state to
be recovered downwards from the free surface to a depth which grows ballistically with
time. When L(t) becomes comparable with £4yn, the effects of the free surface begin to
be damped and in particular for ¢ > £4yn/V, one recovers the logarithmic coarsening
law L(t) & EaynInt, widely associated with the slow dynamical relaxation of vibrated
sand [12].

Equation (4.4) has been checked against the results of accurate numerical simulations,
for the golden-mean slope. Figure 4 shows a scaling plot of numerical data for L(t)
corresponding to £4yn = 50 and 100, together with the prediction (4.4), with no adjustable
parameter. The ordering velocity V ~ 2.58 is taken from the data of Figure 3.

4 T T T T T T

o édyn:f')()
I ¢ {,.=100 -
O L 1 L 1 L 1 L
0 5 15 20

10
/€ ipn
Figure 4: Scaling plot of L(t)/&4yn against t/&qyn for zero-temperature coarsening dynamics

with the golden-mean slope. Symbols: numerical data. Full line: prediction (4.4), with V' =
2.58.

4.3 Rational ¢, infinite {4,,: anomalous roughening

We now turn to zero-temperature dynamics for rational e. The updating rule (4.1) is

not always well-defined as it stands, as the local fields A, may now vanish. In such a

10



circumstance, it is natural to choose the corresponding orientation at random:

+ if h, >0,
o, — ¢ £ with prob. 1/2 if h, =0, (4.6)
— if h, <0.

The zero-temperature dynamics defined in this way therefore keeps a stochastic com-

ponent. We focus our attention onto the simplest rational case, i.e., ¢ = 1. Equa-

tions (2.1), (2.6) for the local fields read

n—1
h, = — Z Om- (4.7)
m=1

We consider first the case where {4y, is infinite. We observe that the zero-temperature
dynamics (4.6) does not drive the system to any of its degenerate dimerised ground states.
The system rather shows a fast relaxation to a non-trivial steady state, independent of
the initial state. We now investigate this novel kind of zero-temperature steady state in

some detail, mostly by means of numerical simulations.

Local field fluctuations

First of all, the local fields A, have unbounded fluctuations in the steady state. Figure 5
shows that these fluctuations have a Gaussian distribution of width W,,, at least deep
enough in the system (n > 1), except for a definite excess of small values of the local

field: |h,| ~ 1 < W,. Figure 6 demonstrates that the local field variance grows as
W2 = (h2) ~ An?l, (4.8)
with A =~ 0.83.

The exponent 2/3 of the anomalous roughening law (4.8) can be explained by means
of the following local Markovian approximation. Assume that the local field &, obeys an

effective Langevin equation of the form

dh,
dt

where 7,(1) is a white noise so that (n,(t)n,(t')) = D,é6(t —t'). We then have

= —anh, + na(t), (4.9)

t !
h(1) = ha(0) =" + /0 e~ (=) (1)1, (4.10)

In the steady state, h, i1s a Gaussian variable of width W, such that

D
W?2=(h})= ", 4.11
=Gy = 2 (.11
The effective parameters a, and D, can be estimated as follows. For the deterministic
part, (4.6) implies

= Z<m = sign ) ~ = (1= Q) (hn): (4.12)

11



0.0 , x : ;

0.04

T
1

O

O

w
T

T~

T
|

o
@)
[av)
T
1
]
|

<
(@)
—_
T
|

O n 1 n 1 n
-30 -0 -10 O 10 <0 30

h

Figure 5: Plot of the distribution of the local field h,, for n ~ 1000. Histogram: numerical
data (data for n = 999 and n = 1000 are mixed in order to avoid spurious parity effects). Full
curve: Gaussian law with width Wiggo = 8.94.

where the order parameter (), is defined as

The latter quantity will be shown below to fall off as n='/3 [see (4.25)], implying a, ~ 1.
The absence of divergence of the relaxation time 7, = 1/a, with n explains the observed
fast relaxation to the steady state. As the fluctuating part is due to the second line
of (4.6), the strength of the noise D, reads, in some units,

n—1 b n—1 1
D,~b Prob{h,, =0} ~ — —, 4.14
;1 Iro { } \/Q—szz:l Wm ( )

assuming that the h, have a Gaussian distribution. Equation (4.11) yields

2\/% Z VV ) (4.15)
hence the power law (4.8), with A = (96%/(32m))'/%.

The anomalous roughening law (4.8) is the most central feature of the zero-tempe-
rature steady state observed for rational e. Exponents 1/3 and 2/3 in one-dimensional
models may show up in various contexts. In the present situation [5], the mechanism at
work is analogous to the domain-growth mechanism in the low-temperature coarsening
regime of the Ising chain with Kawasaki dynamics [13]: the power law L(t) ~ '/3 for
the mean domain size (analogous to W, ~ n'/?) can be understood from the picture of
diffusing domains, whose diffusion constant scales as the inverse of their length.

12



In n

Figure 6: Log-log plot of W2 = (h2) against depth n, for zero-temperature dynamics with
e = 1. Full line: numerical data. Dashed line: fit to asymptotic behaviour, leading to (4.8)
(after [5]).

Orientation and local field correlations

If the grain orientations were statistically independent, i.e., uncorrelated, one would
have the simple result (h2) = ne, while (4.8) implies that (k2) grows much more slowly
than n. The orientational displacements of each grain are therefore fully anticorrelated.
We discuss the physical implications of this first, before focusing on details below. The
anticorrelated orientational displacements are reminiscent of the bridge collapse seen in
displacement-displacement correlations of strongly compacting grains [14]; grain orien-
tational displacements in the direction of vibration were there seen to be strongly anti-
correlated in jammed regions, as each grain tried to collapse into the void space trapped
by its neighbours. We remark that temporal anticorrelations have also been observed in
recent experiments investigating the properties of cages near the colloidal glass transi-
tion [15]. Interestingly, correlations transverse to the shaking direction were [14] found
to be rather small, thus, in self-consistency terms justifying the choice of a column model
in the present case.

To be more specific, let us denote the orientation and local field correlation func-

tions as
Cmn = <Uman>7 Cm,n = <hmhn> (416)
Equation (4.7) implies
m—1n-—1
Cm,n = Z Ck0, Cmpn = Umgin41 — Cm-l—l,n - Cm,n-l—l + Cm,n; (417)
k=1 (=1

13



and especially

Con = Untint1 — 2C’n,n-l-l + CTLJL =1. (418)
The latter property implies C), ,, — C,, .41 & 1/2, and more generally

k

1

This behaviour and the power law (4.8) can be combined into the following scaling Ansatz:

n—m
N W Why , 4.2
oo () i

where F is a positive, even function, with a cusp at the origin of the form

Flay=1-Eli e« (4.21)

As a consequence of (4.17), the orientation correlations obey a similar scaling law:

e A G — F<n_m), (4.22)
’ TWLW, \W,W,

where F(z) = d®*F/dz? is another positive, even function such that
+oo +oo
/ F(z)dz = / ¢ F(z)de = 1. (4.23)
—00 0

The first of these sum rules confirms that spin fluctuations are asymptotically totally
screened: Y omtn Cnn R —Cpp = —1. The scaling laws (4.20) and (4.22) are accurately
confirmed by numerical data for C,, ,, and ¢,, ,,, whose scaling plots are respectively shown
in Figures 7 and 8.

A final consequence concerns the mixed correlation

n—1
(nhn) = ) Cmpn, (4.24)
m=1

for which the scaling results (4.20), (4.22) yield (o,h,) & 1/2. Scaling then implies that
the order parameter defined in (4.13) behaves as @,, ~ 1/W,,, hence the estimate

Qn ~an'?, (4.25)

This power-law fall off is well confirmed by numerical data, shown in Figure 9, which
yield a &~ 0.44.

14
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Figure 7: Scaling plot of the correlation function C, ,, of the local fields in the zero-temperature
steady state with ¢ = 1, demonstrating the validity of (4.20), and showing a plot of the scaling
function F. The full lines show the cusp behaviour (4.21).

Entropy

We now turn to the evaluation of the dimensionless entropy of the steady state, defined
by the usual Boltzmann formula

S=-=3 p(C)Inp(C), (4.26)

where p(C) is the probability that the system is in the orientation configuration C in the
steady state, and the sum runs over all the 2" configurations C = {o,,} (m =1,...,n)
of a system of n grains.

On the theoretical side, the entropy S can be estimated as follows, using the main
feature of the zero-temperature steady state, i.e., the roughening law (4.8). Think of
the depth n as a fictitious discrete time, and of the local field h, as the position of a
random walker at time n. For a free lattice random walk of n steps, one has (h2) = n,
and the entropy reads Sp, = nln2, as all configurations are equally probable. Because
(h2) = W2 <« n, the entropy S of our random walk is reduced with respect to Sga. Let

AS = Sgat — S =nln2 - S (4.27)

be the entropy reduction [16]. Consider first a strict constraint |k, | < L. The probability
that a random walk of n steps obeys this constraint is known to fall off exponentially, as
P, = exp(—m*n/(2L*)). For a slowly time-dependent constraint |h,| < L,, this estimate

15
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Figure 8: Scaling plot of the orientation correlation function ¢,,, for n # m in the zero-
temperature steady state with ¢ = 1, demonstrating the validity of (4.22), and showing a plot
of (minus) the scaling function I (after [5]).

generalises to
S|
P, ~exp|—— Z — |- (4.28)
2 m=1 Lm
With the assumption that the strict constraint |h,| < W, and the weak constraint
(h2) = W, generate similar entropy reductions for similar constraint profiles, we obtain
the estimate
"o
AS=—-InP, ~ > T n'/?, (4.29)

m=1 "'m

We have evaluated the steady-state entropy S in a numerical simulation, using its
definition (4.26), by measuring the probabilities p(C) of all the configurations. As there
are 2" configurations for a system of n grains, the a priori statistical error only decays
as (27/1)!/2. Reliable data are obtained in this way for ¢ ~ 10° and n a 20. Figure 10
shows a plot of the entropy reduction AS against n. The data show that AS is small, at
least for system sizes reachable by numerical simulations. For n = 12 (data of Figure 11)
we have AS a2 0.479. A reasonable agreement with the estimate (4.29) is found. The
fit shown in the plot suggests that (4.29) is affected by a logarithmic correction, which
cannot be explained by the simple argument leading to (4.29), with a small amplitude
~ 0.06.

Figure 11 shows the normalised probabilities 2" p(C), for n = 12, plotted against the
2'% = 4096 configurations C, sorted according to lexicographical order (i.e., read down
the column). This plot exhibits a startlingly rugged structure on this microscopic scale:
some configurations are clearly visited far more often than others. We suggest that this
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Figure 9: Plot of n'/3 times the order parameter ,, against n, for the zero-temperature steady

state with € = 1, Symbols: numerical data. Full line: common limit value, yielding a ~ 0.44
in (4.25).

behaviour is generic: i.e., the dynamics of compaction in the jammed state leads to a
microscopic sampling of configuration space which is highly non-uniform. In spite of this

1/3

fine structure, the entropy reduction AS ~ n'/® is negligible with respect to the free

entropy Spat = nIn 2, in qualitative agreement with Edwards’ flatness hypothesis [1, 17].

4.4 Rational ¢, finite {4y,: crossover to Brownian roughening

In the case where qyn is finite, the system still relaxes to a non-trivial steady state, which
is qualitatively similar to that obtained for £4yn = 00, investigated above.

At the quantitative level, the main effect of the finiteness of {4y 1s to induce a
nontrivial profile of W2, In the regime where both n and &4y, are large, the following
scaling law is observed

W~ (W) f(L) : (4.30)
£ayn
where (W?). is given by the anomalous roughening law (4.8) of the &qyn = oo steady
state, which holds more generally for n < €4yn. One has therefore f(0) = 1.

A qualitative understanding of the scaling function f can be obtained by generalising

the above Markovian approximation. The expression (4.14) for the strength of the noise

is readily replaced by
n b n—1 e—m/ﬁdyrl
n & —. 4.31
V 2m mgz:l I/I/m ( )
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Figure 10: Plot of the measured entropy reduction AS in the zero-temperature steady state
with ¢ = 1, defined in (4.27), against n < 19. Symbols: numerical data. Full line: fit AS =
(62Inn + 53)10~3n'/3.

For the deterministic part, (4.6) implies

d hn n—1
<dt ) = Z (0 — sign hy,) e~/ &ayn, (4.32)

m=1

The right-hand side is not simply related to h, any more, so that a further level of

approximation is needed. The most straightforward choice reads

n—1

o= /ayn A fdi(l _ enlan), (4.33)
V22

| =

ap R —

n7n=1

Skipping the derivation, we mention that (4.31), (4.33) imply (4.30), with
2/3

T e T N At
= |y ” K 21/3 (z>1) (K =0.87732).

(4.34)

In view of the crudeness of the above assumptions, (4.34) is only meant to provide a

qualitative description of the scaling function f. Its asymptotic behaviour for = > 1:

A[//'
flz) = K '3, W2 200

n ™ 1/3°
fdyn /

(4.35)

is, however, expected to yield the correct dependence on n and {4yn. The profile of local
fields is thus predicted to be Brownian for n > &4yn. Figure 12 shows a scaling plot
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Figure 11: Plot of the normalised probabilities 2" p(C) of all the configurations for n = 12 in
the zero-temperature steady state with € = 1, against the configuration C sorted according to
lexicographical order (after [5]).

of numerical data for the ratio W2?/(W?)., against © = n/&qyn. A scaling law of the
form (4.30) is clearly observed. The fitted curve is compatible with the behaviour (4.35),
with K ~ 2.66.

5 Low-temperature dynamics

We now turn to the investigation of the low-temperature dynamics of the model. We
consider for simplicity the case of an infinite {4y,. If the slope ¢ is irrational, the dynamical
rule (4.1) is fully deterministic at zero temperature, so that a small non-zero temperature
is expected to have drastic effects. To the contrary, for a rational slope ¢, the rule (4.6)
is already stochastic at zero temperature, and indeed no interesting effect appears at a
small non-zero temperature.

We therefore focus our attention onto the case of an irrational slope ¢. We recall that
the zero-temperature dynamics drives the system to its unique quasiperiodic ground
state, where each orientation is aligned with its local field, according to (3.2). For a low
but non-zero temperature I', there will be mistakes, i.e., orientations ¢, = — sign h,, not
aligned with their local field. Equation (3.1) suggests that the a priori probability of
observing a mistake at site n scales as

T1(n) ~ exp (_@) . (5.1)
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Figure 12: Scaling plot of the ratio W?/(W}2). against = n/E4qyn in the zero-temperature
steady state with ¢ = 1, illustrating the scaling law (4.30), and showing a plot of the scaling
function f. Symbols: numerical data. Curve: fit f = 1+ a((14 bz)'/3 — 1), with a = 5.63,
b=0.105, so that K = ab'/3 = 2.66.

Hence the sites n such that the local field h, is relatively small in the ground state
(|hn] ~ T' < 1) will be nucleation sites for mistakes, and thus govern the low-temperature
dynamics, in a sense that will become more precise.

The leading nucleation sites can be located as follows. Equation (3.6) shows that
the local field A, is small when n€ is close to an integer m. The latter turns out to be

m = m:. Indeed

)
0= 0= h, = —— 2
n m + 0 (5.2)
for § small enough (@ — 1 < § < Q). The leading sites n are thus obtained by finding

the rational numbers m/n which are the closest to the rotation number Q. This is a
well-defined problem of Number Theory referred to as Diophantine approximation [10].

5.1 The golden-mean slope

Before we tackle the problem in general, we consider again for definiteness the golden-
mean slope (3.9). In this case, we are led to introduce the Fibonacci numbers Fj, [9, 10],
defined by the recursion formula

Fk:Fk_1+Fk_2 (F():O, F1 - 1) (53)
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We have alternatively
q)k _ _q) —k
Pl i) N (5.4)
VG
The leading nucleation sites are the Fibonacci sites n = Fy. We have m = m} = Fj_,,

m, = Fr_1, and

_ ()
h, = NI (5.5)
so that -
I, = II(Fy) ~ exp (—\/ngk) . (5.6)

We can therefore draw the following picture of low-temperature dynamics. Mistakes
are nucleated at Fibonacci sites, according to a Poisson process. They are then advected
with constant velocity V' = 2.58, just as in the zero-temperature case. The system is
ordered according to its quasiperiodic ground state in an upper layer (n < N(t)), while
the rest is disordered, somehow like the zero-temperature steady state for a rational slope.
The depth N(t) of the ordered layer, given by the position of the uppermost mistake,
is a collective co-ordinate describing low-temperature dynamics. It evolves according
to ballistic advection, i.e., N(t1) = N(to) + V({1 — to), until it jumps backward to a
smaller depth N (¢1) = Fj, if another mistake is nucleated there. Figure 13 shows a
typical sawtooth plot of the instantaneous depth A(¢), for a temperature I' = 0.003.
The leading nucleation sites are observed to be given by Fibonacci numbers.

400 , x : ;
300

2200

100

0 1000 2000 3000
t

Figure 13: Plot of the instantaneous depth A/ (¢) of the ordered layer, for the golden-mean slope
at I' = 0.003. Dashed lines: leading nucleation sites given by consecutive Fibonacci numbers
(bottom to top: Fy; = 89, Fio = 144, I3 = 233) (after [5]).
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The system thus reaches a steady state, characterised by a finite ordering length (\).
This length is expected to diverge at low temperature, as mistakes become more and
more rare. The law of this divergence can be predicted by the following argument. The
most active nucleation Fibonacci site is such that the nucleation time 1 /11 is comparable
to the advection time to the next nucleation site Fji1, (Fry1 — Fr)/V = Fi/(®V), hence
the estimate

My Fy
oV

Indeed, less deep sites have too small nucleation rates, while the mistakes nucleated at

~1. (5.7)

deeper sites have little chance to be the uppermost ones. Equations (5.6) and (5.7) yield

Q—EFF,C 1n§—"> ~1. (5.8)
For T' = 0.003, and for the Fibonacci sites shown in Figure 13, the left-hand side of (5.8)
respectively reads 0.56 for Fy; = 89, 1.06 for Fi, = 144, and 1.94 for Fi3 = 233. The
estimate (5.8) therefore correctly predicts the observed fact that Fj; = 144 is the most
active nucleation site at that temperature.

The heuristic argument leading to (5.8) can be justified and made more precise by
means of the results of Appendix A. The continuum approach is justified because the
Fibonacci sites are more and more sparse. In the case of present interest, keeping only
the Fibonacci sequence of leading nucleation sites, we obtain the prediction (A.6) for the
ordering length (V) shown in Figure 14.

For a low enough temperature I, the sum entering the right-hand side of (A.6) is
sharply cutoff. It can indeed be shown that the term of order k in that sum is essentially
Fy—y for k < k*, while it is exponentially negligible for & > k* 4+ 1, where k* = Int(K),
and K is the real solution of (5.8), considered as a strict equality, with Fg & ®K/\/5,
according to (5.4). We have therefore (N') & Fjxyq, i.e., more explicitly,

<N> ~ FK .AK. (59)

The first factor of this expression,

F 20 (1 ! 1 20 + ) (5.10)
- A — n e .
AT InT| = V/5|InT)|

shows that the ordering length obeys a linear divergence at low temperature, with explicit
logarithmic corrections. The second factor,

AI{ — q)l—Fra.c(I\")’ (511)

is a periodic function of its argument K = |InT'|/In ®, with unit period, which oscillates
between the bounds Anax = ® and Anin = 1. Oscillatory amplitudes are commonly
observed in models related to self-similar structures [18]; they originate in the discrete

self-similarity of the underlying sequence. The oscillations of the asymptotic amplitude
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A, given in (5.11), are damped, except at extremely low temperature. Figure 14 shows
a plot of numerical data for the product I'(N), against |InT'|. These data are well
described by the analytical prediction (A.6), and lie within the bounds of the asymptotic
estimate (5.9)-(5.11). The oscillations become visible on the analytical curve for the
lower temperatures (I' < 107*), which are not directly accessible to simulations.

15 T T T T T T

T

1.0

['<A>

T

0.5

6 8
In I

Figure 14: Plot of the product ['(N) against |InT|, for the golden-mean slope. Symbols:
numerical data. Full line: analytical prediction (A.6). Dashed lines: Extrema of the asymptotic
result (5.9), corresponding to A = Apax (upper curve) and A = A, (lower curve).

5.2 Other irrational slopes

We now consider briefly the case of an arbitrary irrational slope e. The situation is
rather similar to the phenomenon of hierarchical melting, observed in incommensurate
modulated solids [19]. The leading nucleation sites can be determined as follows, along
the line of reasoning used to describe hierarchical melting at low temperature.

The irrational rotation number €} can be written as an infinite continued-fraction

expansion [10]:

1

Q= 1 = [al,ag,ag,...]. (512)
a+ 7
da az + - - -
The principal approximants of €} are the rationals
0, = 2, (5.13)
4k
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whose numerators and denominators obey the same linear recursion

Pr = GgPr—1 + Pr—2, Gk = Gpqr_1 + qr_2, (5-14)

with pgp = g1 = 0, py = go = 1. The denominators ny = ¢ define the leading sequence

of nucleation sites. The rotation number € also has secondary approximants

o bpro + o

O, =
we bqr—1 + qr—2

2]

(5.15)

forb=1,...,a;, — 1 if ay > 1. The denominators ny, = bgr_1 + qx—2 define subleading
nucleation sites.

For the golden-mean slope, we have 2 =2 —® =[2,1,1,1,1,...], so that the leading
Fibonacci nucleation sites of section 5.1 are recovered, whereas there are no subleading
nucleation sites.

The most active nucleation site at low temperature can again be estimated by com-
paring the nucleation time and the advection time. The ordering length (N) is thus still
predicted to diverge as
A(InT)
[|inT|’

at least for irrational numbers with typical Diophantine properties. Most irrational num-

(N) = (5.16)

bers are typical in this respect. The presence of secondary approximants makes however
the oscillation pattern of the amplitude A(InT') more complex than a simple periodic
function in general, in analogy with the low-temperature specific heat peaks induced by
the phenomenon of hierarchical melting.

In more physical terms, the ordering length (N') defines the mean position of a fluctu-
ating boundary layer, separating an ordered state above it from a disordered state below.
This length is thus a kind of finite-temperature equivalent of the ‘zero-temperature’
length Eayn. Both (V) and &4y, retain the flavour of a boundary layer separating order
from disorder. Within each of these boundary layers, the relaxation is fast, and based
on single-particle relaxation, i.e., individual particles attaining their positions of opti-
mal local packing [14, 20]. The slow dynamics of cooperative relaxation only sets in for
lengths beyond these, when the lengths over which packing needs to be optimised become
non-local. This in turn leads, as in reality [6], to hysteresis, i.e., a dependence on the
initial state of the packing.

6 Discussion

We have investigated a columnar model describing the effect of grain shape on the statics
and dynamics of the compaction process in the glassy regime (long times and weak
vibration intensity). One of the main features of the present model is that interactions
are fully directional in space and in time: the orientation of a given grain only influences
deeper grains at [ater times. There is basically one control parameter in the model: the

reduced void space ¢.
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Our main results are as follows. For ¢ irrational, there is a unique quasiperiodic
ground state, while when ¢ is rational, there are a large number of degenerate ground
states. Associating (ir)regular grains with (ir)rational void spaces, this has the appeal-
ing physical interpretation that irregularities in grain shapes lead to a unique state of
close packing (such that all jagged edges are well meshed together), while regular grains
have a huge degeneracy of such states (as in the fabled greengrocer’s problem [21]).
Secondly, zero-temperature dynamics in the irrational case leads to a rather fast re-
trieval of the quasiperiodic ground state, while in the rational case the ground states are
never retrieved, but instead a non-trivial steady state, with well-defined density fluctua-
tions [12, 14] about a mean packing fraction, is found. Local minimisation criteria thus
lead to a unique, globally optimal configuration for the irrational case, but not for the
rational case, where the frustration present in our model keeps the system well above its
ground state, even at zero temperature. A physically interesting feature of the steady
state for rational ¢ is that grain orientations are fully anticorrelated. This is reminis-
cent of similar anticorrelations in grain displacements, associated with the collapse of
bridges [14] in strongly compacted granular media. Also, while the macroscopic entropy
of the steady state [16] is approximately that of a fully disordered column, consistent
with Edwards’ ‘flatness’ hypothesis [1], an investigation of the occupation probabilities
of single configurations reveals a lot of structure at this microscopic level. Lastly, the low-
temperature dynamics for irrational € is characterised in terms of preferred nucleation
sites, similar to the phenomenon of hierarchical melting observed in incommensurate
modulated solids [19]. These sites ‘nucleate’ disorder, in the sense that, for a given ir-
rational, they lead to the appearance of steady states corresponding to large rational
approximants. It is tempting to compare these rational steady states (obtained as a
result of low-temperature dynamics for both rational or irrational ¢) with fluctuations
around the so-called random close packing density [6, 22], which is the highest density
achievable in practice by extensive dynamical processes.
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A Distribution of the depth N of the upper layer

This Appendix is devoted to the depth N () of the ordered layer for low-temperature
dynamics in the irrational case. Our main goal is to derive the stationary distribution
of NV, for the effective dynamics described in section 5.1.

For convenience we use a continuous formalism, treating A/ as a real variable. Let
m(z)dz be the nucleation rate per unit time between = and z + dz, and p(z,t¢)dz be
the probability of finding the depth V' between x and z + dz at time ¢. The probability
distribution function p(z,t) obeys the rate equation

(aat + vaa ) p(z,t) = n(z)P(z,1) — p(a, )II(z) = a%(ﬂ(x)P(:c,t)), (A.1)

with the notations
P(z,t) = /xoo ply,t)dy, p(z,t) = —apa(?t), H(z) = /:W(y) dy, =(z)= dgiT>
(A.2)

Indeed, the left-hand side of (A.1) is the usual covariant derivative, whose convective term
involves the drift velocity V. The middle side represents the evolution due to nucleation
events, with the first (gain) term originating in nucleation at depth z, and the second
(loss) term originating in nucleation at depth y < z.

The stationary (time-independent) solution peai(z) of (A.1) is such that

dPstat(-r>
dx

This separable differential equation easily yields the results

Paa(r) = b (= [0y}, pane) = S exp (<3 [Ty, (A)

and especially

V pstat(z) = =V = II(z) Pstat(x). (A.3)

<N>:/0 exp( V/ dy)dx
—/ exp <——/ (z —y)m(y )dy) dz. (A.5)

These expressions hold for an arbitrary distribution of nucleation rates.
In the case of interest in section 5.1, taking into account the leading sequence of
Fibonacci sites Fj, with nucleation rates Il;, we obtain

(N = Z v (e—Bk/V _ e—Bk+1/V) ’ (A.6)
k=0 Ak
with
k k-1
A = ZH[,, B, = Z(Fk — F[)H[ (A7>
=0 =0
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