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Abstract

Observational evidence seems to indicate that the expansion of the universe
is currently accelerating. Such an acceleration strongly suggests that the content
of the universe is dominated by a non—clustered form of matter, the so—called
dark energy. The cosmological constant, introduced by Einstein to reconcile
General Relativity with a closed and static Universe, is the most likely candidate
for dark energy although other options such as a weakly interacting field, also
known as quintessence, have been proposed. The fact that the dark energy
density is some one hundred and twenty orders of magnitude lower than the
energy scales present in the early universe constitutes the cosmological constant
problem. We review various aspects of the cosmological constant problem and
some interesting scenarios using supersymmetry or extra—dimensions attempting
to solve one of the most puzzling issues in physics.
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1 The Cosmological Constant

It is now common knowledge that the Universe is expanding. More puzzling is
the recent evidence that this expansion is accelerating. Not only distant galaxies
are receding away from us, they do so in an accelerating fashion. The quest for
an explanation of the acceleration of the Universe is still in its infancy. Many
scenarios have been proposed. No complete understanding has been reached
yet. The purpose of this introductory review is to present parts of the observa-
tional evidence and some of the theoretical models which have been proposed.
More details and a comprehensive list of references can be found in the reviews
[1,2,3,4,5]. The figures have been taken from the research articles [6,7,8,9].

The dynamics of the Universe are described by the general theory of rel-
ativity. In general relativity, matter and geometry are intrinsically entangled.
Space—time is curved by matter as well-known from black—hole physics where
the gravitational effects are so strong that even light cannot escape to infinity.
The Einstein equations relate on the one hand geometry, in the form of the Ricci
tensor R, the metric tensor g,, and the curvature R, and matter represented
by the energy-momemtum tensor 7},

1
R, — §gm,R = —87GNT, (1)

where G is Newton’s constant of gravitation. The Ricci tensor measures the
curvature of space-time while the energy—momentum tensor embodies the ef-
fects of pressure and energy. These equations relate tensors, here four by four
matrices, leading to highly non-linear equations. All gravitational phenomena
are governed by Einstein equations. In particular we will be interested in cosmo-
logical features occurring on time—scales of the order of the age of the Universe
and on distance scales as large as the size of the Universe. Even on such extraor-
dinary scales, general relativity is thought to apply and govern all cosmological
phenomena. When trying to analyse the cosmology of galaxies and galaxy clus-
ters, it is convenient to model the behaviour of matter with only two quantities:
energy density and pressure. This is enough to characterise dust-like matter
as well as radiation, two of the key components of our Universe. For ordinary
matter and radiation, the energy momentum tensor is diagonal and determined
by the energy density p measured in units of energy per unit volume and p the
pressure. All energy scales will be measured in units where # = ¢ = 1. This
implies that length scales can be converted into inverse energy scales, therefore
energy densities will be expressed in electron—Volt to the fourth power.

In 1917, Einstein applied his equations to cosmology. Lacking the observa-
tional evidence on the recession of galaxies (discovered by E. Hubble in 1929),
Einstein assumed that the Universe was closed and static. A closed universe
is such that space is spherical, i.e. spatially finite with no boundary. A static
Universe is such that its shape is time-independent. Unfortunately these two
hypotheses are incompatible with Einstein’s equations. In order to accommo-
date a closed and static Universe, Einstein modified his equations by introducing



a new term: the cosmological constant A
1
R, — §g,“,R = —87GNTw + Aguw (2)

The positive cosmological constant A introduces a repulsive effect which com-
pensates the gravitational pull. A closed and static Universe is a solution of

the modified Einstein equations with a radius \/% . The cosmological constant

A has dimension two in energy unit. It can be interpreted as another source
of matter with a diagonal energy momentum-tensor (as for dust-like matter
and radiation). The pressure due to a cosmological constant is the opposite
of the energy density corresponding to a so—called equation of state w = —1.
The equation of state in statistical mechanics is the relation between pressure
and energy density. In cosmology it is common practise to call the equation
of state the proportionality coefficient relating pressure and density. The re-
pulsive nature of the cosmological constant is due to a negative pressure. We
will encounter other types of matter with the same kind of repulsiveness when
discussing scalar fields.

After the discovery of the galaxy recession, the necessity of the cosmological
constant became doubtful. Indeed Friedmann and then independently Lemaitre
showed that the Hubble flow of galaxies could be explained within general rel-
ativity without the need for a cosmological constant. Until recently the cosmo-
logical constant was deemed unphysical as can be read in the highly influential
textbook on the classical theory of fields by Landau and Lifschitz.

Since the early eighties, the inflationary paradigm has reinstated the cos-
mological constant at the forefront of current research. Indeed the standard
cosmological model relying on the homogeneity, i.e. the Copernican principle
that no particular place in the Universe plays a special role, and the isotropy
of the Universe , i.e. on large scales there is no preferred direction, suffers from
many problems, among others the horizon problem. As the velocity of light
is finite, how come that regions of space which were not in causal contact in
the past look so similar now? In particular how come that the temperature of
the cosmic microwave background, the remnant radiation from the very early
Universe is so isotropic? This can be explained using inflation, a period of
exponentially fast expansion in the early Universe. When inflating, regions in
causal contact are blown up so fast as to become acausal.

So what is the connection between inflation and the cosmological constant?
Inflation can be understood as driven by a constant energy density acting as a
cosmological constant. This can be easily grasped by looking at one of the most
important equations of cosmology: the Friedmann equation

p ANk
H? =81GNT + = — — 3

N3 T3 T a2 ®)
Here a is the cosmic scale factor measuring the size of the Universe and H = %
is the Hubble rate corresponding to the ratio between the speed of receding

galaxies and their distance. In a closed and static Universe the Hubble rate



vanishes H = 0, a compensation due to the curvature term k = 1 and the
cosmological constant A. In a flat Universe £ = 0 with no cosmological constant
A = 0, the Hubble rate is non—vanishing due to the presence of matter p. In a
flat Universe dominated by a constant cosmological constant A the Hubble rate
is constant. This is the de Sitter model leading to an exponential increase of
the scale factor a. Primordial inflation in the early Universe is thought to occur
due to a large energy density mimicking the presence of a cosmological constant.
This is enough to create an enormous blowing up of distance scales. The end
of inflation is due to the sudden transfer of the inflationary energy density
to ordinary particles. The origin of this energy density is often modelled by a
scalar field. This idea also reappears in models of quintessence as we will discuss
shortly.

After inflation the Universe is radiation dominated and then matter domi-
nated. In the matter dominated era, structures such as galaxies are formed due
to the collapse of matter density fluctuations seeded by quantum fluctuations
in the early universe. Well-known physics such as particle and nuclear physics
constrain the evolution of the Universe since nucleosynthesis (when elements
such as helium were created). In particular, it is observationally clear that a
cosmological constant, if present, must be negligible from nucleosynthesis till
the very recent past measured in redshift denoted by z and defined by a = 1‘jfz
where aq is the scale factor of the Universe now, i.e. from a red—shift of a few
thousand to one. The red-shit z is observationally accessible from the displace-
ment of the light spectra coming from distant objects compared to the light
spectra measured on earth. In terms of age, a red—shift of unity corresponds to
events occurring roughly at a third of the age of the Universe. In the recent past
from a red—shift of order unity, it seems that the cosmological constant plays a
significant role in the dynamics of the Universe.

2 Observations and the Cosmological Constant

In cosmology, empirical results have a different status from ordinary laboratory
experiments. Indeed we have access to a single Universe and one cannot tamper
with the fate of the Universe by changing parameters as one would do in a lab-
oratory experiment. Moreover, observations of distant phenomena are plagued
with uncertainty, known as systematics, due to our incomplete understanding
of features such as the intergalactic medium. Another important source of un-
certainty springs from the difficulty of measuring distances. All these issues
are highly relevant when interpreting one of the major sources of information
on the cosmological constant: the Hubble diagram as deduced from the explo-
sion of type Ia supernovae. These supernovae are believed to result from the
explosion of white dwarfs accreting neighbouring stars whose mass go above a
threshold known as the Chandrasekar limit. Recently type Ia supernovae have
been used as standard candles, i.e. they are assumed to be all of the same type
from low red—shift to z ~ 1. This hypothesis is borne out by their supposed
common origin. The intrinsic luminosity of type Ia supernovae is considered



to be constant with M ~ —19.5, as bright as the whole galaxy they inhabit.
Distances are measured by astronomers using the magnitude difference m — M
where m is the apparent magnitude and M the absolute magnitude of an object.
This difference is nothing but the logarithm of the luminosity distance obtained
by using the inverse square decrease of the measured flux of light received on
earth compared to the intrinsic luminosity of a distant object. The apparent
magnitude of type Ia supernovae can be inferred as a function of the red—shift
z. The luminosity distance depends on the geometry of the Universe. At small
red—shift, the luminosity distance is proportional to the red—shift of an object.
For more distant objects, this linear relation is distorted when the Universe
accelerates. Hence, the measurement of the luminosity distance gives a direct
clue about the acceleration of the Universe. The quadratic correction the linear
relationship between the red—shift and the luminosity distance depends on the
acceleration parameter gg now. A non-vanishing and negative gg indicates that
not only the Universe is expanding but the expansion itself is accelerating. It
seems that, as seen in figure 1, this is the case. Possible sources of uncertainty
could be an intrinsic difference between supernovae at different red—shifts and
extinction of the light received on earth due to the intergalactic dust.

The acceleration parameter is crucially related to the matter content of the
universe qo = QT’” — QA where €, is the matter fraction and Q4 is the cos-
mological constant fraction. The energy fraction €2; is the ratio of the energy
density of a species i to the critical density of the Universe p.. The critical
energy density of the Universe is the energy density which would lead to the
present Hubble rate, i.e. would explain the recession of galaxies, in a flat Uni-
verse with no cosmological constant or dark energy. It has been measured to be
pe ~ 10748GeV?. Measurements of gy give access to one relation between the
cosmological constant and matter fractions. Another constraint is provided by
the cosmic microwave background.

The temperature anisotropies in the cosmic microwave background allows
one to constrain the cosmological fractions. These anisotropies are one of the
benchmarks of modern cosmology. Their origin gives us a hint about the nature
of the early universe. The cosmic microwave background was discovered in
1965 by Penzias and Wilson. It corresponds to a bath of radiation at the very
low temperature of 2.7 K. It appears to be completely isotropic, i.e. photons
arising from all directions in the sky have the same temperature. It is only
in 1992 that the satellite COBE measured fluctuations in temperature of the
order of 107°. Such small fluctuations are not uniformly distributed on the sky,
they can be decomposed into the spherical harmonics — like the eigenstates of
the hydrogen atom. The origin of these fluctuations is thought to be due to
quantum fluctuations in the early universe. These quantum fluctuations result
in radiation energy density fluctuations. When matter and radiation decouple
around z = 1300, at the last scattering surface, the photons are then nearly
free. These photons, red-shifted by the expansion of the Universe, are the ones
composing the cosmic microwave radiation. Small fluctuations in the radiation
energy density at the last scattering surface appear to us as small temperature
fluctuations. These fluctuations are are random variables which are easier to



characterise using their power spectrum C; depending only on the multipole
number [. The statistical average is taken over the possible realisations of the
random processes creating the primordial fluctuations. Of course we have only
one realization (our Universe) so observationally one has to resort to the ergodic
hypothesis according to which the statistical average and the spatial average over
the sky are equal.

The latest results on the C} spectrum have been obtained by the WMAP
experiment. In particular a structure of acoustic peaks is clearly observed.
These peaks correspond to the wave patterns of the temperature fluctuations
across the sky. Small [ is equivalent to large structures whereas large [ probes
small structures. One prominent feature of the C; spectrum is the existence of
a large first peak whose location is related to the total matter content of the
universe g = Qp, + Q4 by lpear ~ 220 961/2.

The measurement of the first peak location confirms that our Universe is
nearly flat ¢ ~ 1 leading to a curvature k = 0. Combining this result with the
supernova measurements one obtains that the matter content of the Universe is
such that

Qm =~ 0.3, Qp = 0.7 (4)

It is conspicuous that this result is also corroborated by a third type of observa-
tion determining the matter density €2, alone. There are many different ways
of estimating the matter density of the Universe, some of them like gravitational
lensing use the property that light rays are bent by masses in general relativity.
They all converge to a value of 0.1 < Q,,, < 0.4. This is enough to ensure that
matter is not enough to guarantee the flatness of space—time. Another kind
of matter, very different from the type of baryonic matter forming galaxies, is
needed. It has been coined dark energy in contrast with cold dark matter which
is responsible for the gravitational collapse leading to the formation of galaxies.
Either in the form of a cosmological constant or some other type of candidates
such as quintessence, dark energy represents 70% of the energy balance of the
Universe.

One would like to characterise the dark energy component of the Universe.
A very useful feature is the equation of state w defined as the ratio between
pressure and energy p = wp. The Universe comprises different types of matter
of very different equations of state. Radiation has w = % while Cold Dark Matter
(CDM) and ordinary dust like matter are pressure—less w = 0. A cosmological
constant is such that w = —1. Observation indicates that the equation of
state of dark energy should be less than —0.8, see figure 3. Exotic types of
matter with a negative equation of state are favoured. In particular, as seen in
figure 4, the cosmological constant is one of these possibilities. It even seems
that equations of state w < —1 are not experimentally excluded. This would
violate the energy conditions of general relativity. In particular, energy densities
would not be automatically positive. This can be realized using a ghost (or
phantom) scalar field with a negative kinetic energy. This type of field would be
rolling towards the maxima of its potential where the equation of state would be
w = —1. However, the excitations of the phantom field would have a negative
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Figure 1: The Hubble diagram giving the effective magnitude of type Ia su-
pernovae up to a red—shift of 1. The blown up region indicates three possible
scenarios for 2,, and Q4. The fit with the continuous line corresponds to a

spatially flat Universe with Qx = 0.75 (taken from [6]).
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Figure 2: The WMAP result for the C;’s as defined in the text. Notice the
location of the first peak which indicates that the Universe is spatially flat

(taken from [7]).



mass jeopardizing the stability of space-time. Empty space—time could decay
into ordinary particles and phantoms. Hence such models lead to very serious
problems which make them highly contrived. In the following we will examine
alternatives to a pure cosmological constant with an equation state 0 > w > —1

3 Particle Physics and the Cosmological Con-
stant

The cosmological constant problem springs from the blatant mismatch between
the typical energy scales of particle physics, and therefore of all the physical
phenomena taking place in the early Universe, and the energy scale Qpp.. It
is pe ~ 10748GeV*, i.e. an energy scale of order 10~3¢V. Recall that the mass
of the electron is m, ~ 0.5 MeV while the mass of the proton and the neutron
is close to m, ~ 1 GeV. Already the critical energy density of the Universe
is twelve orders of magnitude lower than the typical scale of nuclear physics
Qape << m;ﬁ ~ 1GeV*. To have a better understanding of the chasm that
separates the observed cosmological constant and particle physics scales, a few
notions of high energy physics must be recalled.

Particle physics has fulfilled an impressive unification programme. By look-
ing at shorter and shorter distance scales, the laws of physics simplify drasti-
cally reaching a climax with the electro—weak unification as predicted by the
Weinberg-Salam model and tested to high precision at accelerators such as LEP
at CERN in Geneva. Going up in energy, the electron—volt is the atomic physics
scale, while the proton mass m, ~ 1 GeV is the nuclear physics scale. Above the
mass of the W and Z bosons of order 90 GeV, the weak force responsible for ra-
dioactivity and electromagnetism become a single electro—weak force. The scale
of 100 GeV is the current energy barrier beyond which particle physics models
have not been tested experimentally. The new LHC (Large Hadron Collider)
accelerator at CERN which is due to operate before the end of the decade will
go beyond that threshold and probe the Higgs physics. The Higgs particle is
essential to the theoretical architecture of the electro—weak theory. Its detection
would be a major achievement of the unification programme. Above the TeV
scale (1000 GeV), particle physicists are prone to speculation. A host of models
have been proposed ranging from supersymmetry to extra dimensions. We will
come back to these models later. Eventually the final energy frontier is set by
the gravitational Planck energy

[ hc
mp) = m (5)

which is mp) &~ 2.4 10'® GeV. This is the scale above which gravity is not negli-
gible anymore at the subatomic level. Strong gravitational effects are expected
which may distort our vision of space—time. This might be the beginning of
the string theory realm where particles would be best described by small open
and closed strings. The cosmological constant scale 10*2GeV is thirty orders
of magnitude lower that the Planck scale.
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results (taken from [6]).
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cal constant. Values of w < —1 would violate the energy conditions and would
certainly require some new physical insight (taken from [8])



Particle physics has a strong impact on the cosmological constant. First
of all one must realize that the cosmological constant is nothing but the vac-
uum energy. Vacuum energy is a well-known concept in quantum mechanics.
Consider the harmonic oscillator with its eigen—energies E, = (n + 1)hw. The
expectation value of the energy operator in the vacuum is %“ It is not zero as
one may have expected classically. In particle physics, particles are described
by quantum fields corresponding to an infinite collection of harmonic oscilla-
tors. The vacuum energy associated to a particle is therefore an infinite sum
Sr=y (&2) = co. This infinite contribution is at the heart of renormalisation
theory. In flat space-time where one neglects the influence of gravity, as it is the
case in accelerator experiments, it makes sense to subtract an infinite contribu-
tion to the vacuum energy leaving a finite renormalised energy density. This
is not physical in curved space—time where the energy density of the vacuum
influences the geometry of space—time. In field theory the contribution to the
vacuum energy is regularised, the infinite contribution is not physical and turns
out to be pyacuum X M* where the possible particle masses cannot exceed a
certain energy scale M. Such an energy scale is called a cut—off. It represents
the maximal energy scale for which a given particle physics model is adequate.
For the electro—weak theory M ~ 100 GeV while models beyond the electro—
weak theory may be valid up to mp;. Hence quantum fluctuations lead to a
non-vanishing vacuum energy contributing to the cosmological constant.

Quantum effects up to the Planck scale give a contribution of order mp, to
the cosmological constant. Assuming that the Universe has a bare cosmologi-
cal constant Ao, the observed dark energy is then Ao + mp, ~ 107*GeV. This
requires to adjust Ag to 120 orders of magnitude. No physical justification to
such a fine—tuning is known. Even if one could accommodate such an enormous
cancellation, contributions to the vacuum energy from the electro-weak phase
transition would give a contribution of order Mji, to the vacuum energy. Of
course nobody knows how to cancel such disparate contributions to the dark
energy. In conclusion, the vacuum energy of particle physics gives large contri-
butions to the dark energy. All these contributions have to cancel each other
somehow. In the following we will present partial attempts to tackle these issues.

4 Supersymmetry and the Cosmological Con-
stant

One can separate the cosmological constant problem into two issues. The first
one consists in understanding how the cosmological constant could be zero. The
second one is concerned with generating a small vacuum energy away from the
vanishing cosmological constant. In this section we will examine the possible
vanishing of the cosmological constant. The following section, on quintessence,
will be devoted to generating a small vacuum energy.

Exactly vanishing entities in physics are generally associated with symme-
tries. For instance, the gauge invariance A, — A, + d,A of QED (Quantum
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Electro-Dynamics) leads to the vanishing of the mass of the photon. This
springs from the impossibility of writing a quadratic and Lorentz invariant term
A, A¥ in the Lagrangian of QED. Such a term would violate gauge invariance.
Could it be that the cosmological constant vanishes for symmetry reason? This
would be the case in a supersymmetric world.

Particles are classified according to their statistics, integer spin particles are
Bosons obeying the Bose-Einstein statistics while half-integer spin particles are
Fermions obeying the Fermi-Dirac statistics. Photons are Bosons while elec-
trons are Fermions. Usual symmetries of nature such as Lorentz symmetry do
not mix Bosons and Fermions, they preserve the statistics of each particle. In
1971 while trying to introduce Fermions in string theory, P. Ramond invented
an unusual symmetry exchanging Bosons and Fermions: supersymmetry. Su-
persymmetry is a framework within which most models of particle physics can
be embedded. There is for instance a supersymmetric electro-weak theory ex-
tending the electro—weak theory. How does one construct such theories? First
of all supersymmetry associates to each particle another particle called a super-
partner. Electrons are spin % particles whose superpartners are the selectrons,
spin 0 particles. Photons with spin 1 are associated to photini of spin % Earlier
attempts trying to identify the photino with the electron failed (they have a
different charge). The supersymmetric electro-weak theory has twice as many
particles as the electro—weak theory.

Another conspicuous feature of supersymmetry is its link to the Poincaré
group. The Poincaré group comprises the Lorentz group, i.e. rotations and
Lorentz boosts, and the translation group. When transforming a particle into
its superpartner and then back into the original particle, the particle is trans-
lated in space—time. This fundamental property of supersymmetry is at the
origin of its special link with the vacuum energy of the Universe. Indeed de-
noting the generators of supersymmetry by Q, they satisfy QQ + QQ = 2F
in the rest frame of a massive particle of energy E. This is the mathematical
formulation of the fact that squaring a supersymmetry transformation amounts
to a translation. Taking the expectation value of the left hand side in a given
normalised state of the theory |¢ > gives |Q|¢ > |2 +|Q|¢ > |*> = 2F from which
we deduce that E > 0 the energy is always positive in a supersymmetric theory.
Moreover the supersymmetric vacuum |0 > such that Q|0 >= Q|0 >= 0 has
vanishing energy Eyqcuum = 0 Hence the vacuum energy of a supersymmetric
theory is protected and vanishes. Such an astonishing result would provide a
solution to the cosmological constant problem but for a hitch: the Universe is
not supersymmetric. Indeed the superpartners have never been observed. If
they exist at all, the most likely explanation for their non-observation would be
a large mass splitting within supersymmetric multiplets. This requires to break
supersymmetry.

The role of supersymmetry in alleviating the cosmological constant prob-
lem requires to incorporate gravity in the supersymmetry framework. This is
realized within supergravity where ordinary particles are complemented with
the gravitational multiplet. It comprises the graviton and its superpartner the
gravitino. The graviton is the particle mediating gravity, in the same vein as
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photons mediate electromagnetism. It is a spin 2 particle, its superpartner the
gravitino is a spin % particle. Gravity being of infinite range, the graviton and
the gravitino are massless particles. This is true as long as supersymmetry
is not broken. In the most common supersymmetry breaking scheme, the so—
called gravity mediated breaking, the gravitino becomes massive in manner akin
to the way the W boson becomes massive in the electro-weak theory, it is the
super-Higgs mechanism. As a result, the superpartners become heavier than
the particles of the electro—weak theory. The mass splitting is of the order of
the gravitino mass and is expected, if supersymmetry is ever to be detected, to
be of order 100 GeV. A larger mass splitting would rule out supersymetry as a
viable candidate of physics beyond the electro—weak theory.

In supergravity the vacuum energy is not guaranteed to vanish. Moreover as
soon as supersymmetry is broken, the vacuum energy picks up a value of order
Pvacuum = M3 /2m%1 ~ 10% GeV* where ms /2 is the gravitino mass. Notice
that this is a lot less than m4P1 but still much too high to provide a plausible
explanation for the tiny value of the observed cosmological constant. So despite
all its promises supersymmmetry alone is not enough to provide a mechanism
explaining either the vanishing of the cosmological constant or its extremely
small value.

5 Quintessence

Judging on the difficulty of obtaining a proper explanation for the almost zero
value of the cosmological constant, one may attempt to treat the cosmological
constant in a two-pronged approach. First postulate that some unknown mech-
anism is at play and leads to a vanishing cosmological constant. Then adjust
the small amount of dark energy using four dimensional field theory. Of course
this approach anticipates an eventual breakthrough which would explain the
first step. The small vacuum energy can be modelled using scalar fields with
simple potentials. This bears the name of quintessence.

Let us list some of the requirements that one may impose on quintessence
models. First of all they must reproduce the vacuum energy now. In doing so,
one would prefer not to fine-tune energy scales to values way below particle
physics scales. Similarly if the energy of the scalar field were to dominate
earlier, i.e. during nucleosynthesis, the model would lead to such a change in
the Hubble rate that the delicate balance necessary to produce all the elements
would be dramatically modified. In practice the scalar field energy cannot start
dominating much before z = 1. Such a coincidence problem, i.e. why the
vacuum energy dominates nearly now and not in the past or even in the future
is one of the unsolved puzzles of quintessence models. One would also like to
obtain models such that the dynamics of the scalar field now does not depend too
much on the initial conditions set in the early universe. Indeed having to set the
values of field during the early Universe would be seen as an unexplainable fine—
tuning. An explanation could be provided by the anthropic principle claiming
that initial conditions must be set so that our Universe is the way it is in order
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to accommodate the existence of life on earth.

The dynamics of a scalar field mimics a perfect fluid with a pressure iden-
tified with the difference between the kinetic energy and the potential energy
V(¢). The energy density is the sum of the kinetic energy and the potential
energy. Quintessence relies on the possible existence of runaway potentials, i.e.
decreasing potentials vanishing at infinity. Just like on a ski slope, the field ¢
rolls down the potential. For properly chosen potentials the value of the field
and its kinetic energy can be arranged in such a way that the energy density is
70% of the critical energy density of the universe now. There seems to be an
infinite choice of rolling potentials leading to this property. In fact, one may
restrict this infinity by requiring the existence of an attractor, i.e. a long time
solution of the scalar field equations of motions attracting all possible solutions.
Of course the advantage of attractors is to get rid of the dependence on initial
conditions. The scalar fields eventually follows the attractor, independently of
the initial conditions. Attractors do exist as long as the potential decreases
steeply enough. We will discuss two explicit families of potentials: exponen-
tial potentials and inverse power law potentials. Choosing the potential to be
Vig) = Voe_AmLPl, the field rolls down mimicking a fluid of constant equation of
state wy = %2 — 1. Hence it leads to an equation of state close to -1 for small .
Moreover, in the presence of dust—like matter, one can show that the scalar field
eventually dominates provided its equation of state is negative. In that case it
is also a late time attractor. Hence for small A\ the exponential model provides
an interesting quintessence model. Now it does not alleviate the coincidence
problem. Omne must tune the value of the field now so that it is marginally
dominant, in other words our Universe would not have reached the late time
attractor and would be trawling in a transient state.

To remedy this problem one may invoke models where the attractor exists in
the past. Consider the potential V(¢) = % where « is positive . As long as
the scalar field is subdominant one can find an attractor where the scalar field
energy density decreases slower than the matter density, implying that the scalar
field density overcomes the matter density eventually. This happens as soon as
¢ reaches a value of order mp). After that the scalar field rolls slowly ¢ ~ mp;.
This allows to reformulate the coincidence problem: the scalar field dominates
in the recent past provided V(mp)) is of the order of the critical density now.
This necessitates to adjust the value of M. For instance if a = 6, this leads to
M ~ 10° GeV, a scale which is compatible with high energy physics. Of course,
the value of the energy scale M has to be fine-tuned. This is a pity as no clear
explanation for both the value of the parameter a and the energy scale M can
be provided.

These models suffer from a serious problem, the value of the field is so large
that it is difficult to justify a theory involving a single scalar field. One may
invoke supergravity whose description up to the Planck scale is more justified.
In that case, the supergraviz)ty equivalent of the inverse power law potential

o2
is modified V(¢) = M;: “e™1. This potential leads to no modification in the
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Figure 5: The energy densities of matter (middle curve), radiation (top curve)
and quintessence (bottom curves for the inverse power model and its supergrav-
ity version) as a function of the red—shift. It illustrates the coincidence problem:
why do the energy densities turn out to be so close now and in the recent past?
(taken from [9])
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Figure 6: The evolution of the equation of state for the inverse power law
potential and the supergravity corrected power law potential. The equation of
state is closer to -1 now for the supergravity modified potential. Notice the
frequent variations of the equation of state (taken from [9]).
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early Universe. As soon as the scalar density dominates, the potential becomes
larger than the inverse power law case, hence an equation of state closer to
-1 is obtained. This type of potential can be used phenomenologically as a
benchmark for testing the observability of quintessence models.

Another remarkable feature of quintessence is the extreme lightness of the
quintessence field with a mass of the order of the Hubble rate now Hy ~
10~*3GeV For all practical purpose, the quintessence field can be considered
to be massless leading to strong deviations from general relativity. The only
possible wayout is to impose that the quintessence field is almost decoupled
from known particles. This puts severe constraints and jeopadises the natu-
rality of possible models. Similarly there is no symmetry preventing a direct
coupling between the quintessence field and the kinetic terms of the photon
field in QED. This leads to large variations of the fine structure constant, in
contradiction with known bounds.

Other types of potentials have been presented in the last few years. As
long as a comprehensive theory describing the dynamics and the origin of the
quintessence scalar field is not obtained, all quintessence models only give a
partial understanding of the value of the vacuum energy now.

6 Extra—Dimensions and the Cosmological Con-
stant

So after all it seems that a satisfactory explanation for the cosmological con-
stant problem may be out of reach. This is backed up by a no-go theorem
proven by S. Weinberg and stating that the vanishing of the vacuum energy
cannot be solved with field theories involving a finite number of scalar fields.
Of course such theorems can always be circumvented by applying methods not
covered by their premises. A possible explanation may come from the putative
existence of extra—dimensions. The first model with one extra—dimension was
proposed in the 1920s by Kaluza and Klein in an attempt to unify gravity and
electromagnetism. Since then the number of extra—dimensions has been grad-
ually increasing. In particular, string theory predicts that the highest number
of dimensions is 11. This is obtained from the existence of an unique super-
gravity in 11 dimensions accommodating no particle of spin higher than 2. By
compactifying one of these dimensions on a small circle, one obtains the 10 di-
mensional string theories. In string theory, there exists extended objects called
p—branes of dimension p+ 1. They represent higher dimensional object general-
izing point particles p = 0 and strings p = 1. In particular, one popular model
consists in imagining that the known particles, the strong, weak and electromag-
netic forces reside on a 3-brane. Only gravity is allowed to propagate outside
the brane, in the bulk. The simplest configuration is 11 dimensional with two
boundary branes, p = 9, separated by a finite interval. One of the boundaries
carries the electro—weak and strong interactions. By compactifying 6 of the 7
extra—dimensions on a manifold called a Calabi—Yau manifold, one gets a five—
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dimensional model where the extra—dimension is an interval. Compactification
is a process whereby some space dimensions are curled up and of small size.
To a good approximation, space-time appears to have fewer dimensions, e.g.
one can go from 11 to 5 dimensions by curling up 6 dimensions. A Calabi—Yau
manifold is a 6-dimensional space with vanishing Ricci tensor.

This situation has been drastically simplified by Randall and Sundrum where
the bulk interval carries a negative cosmological constant and the two boundary
branes have opposite tensions related to the square root of the bulk cosmological
constant. The tension of a brane is similar to the tension of a soap bubble
preventing its collapse under gravity.

The equations of general relativity in five dimensions have solutions where
the brane configuration presents flat boundaries, i.e. the metric on the bound-
aries is invariant under the Poincaré group. This invariance guarantees the
vanishing of cosmological constant in four dimensions as seen by an observer on
the boundary branes. So this would provide an extra—dimensional explanation
to the vanishing of the cosmological constant. Is it devoid of any fine-tuning?
Of course the answer is no. If one modifies the delicate balance between the
boundary tension and the bulk cosmological constant, one finds that an observer
on the brane would identify two situations. If the brane tensions are increased,
adding some energy to the system, the effective cosmological constant is posi-
tive. The acceleration of the Universe appears to be due to the increase of the
energy on the branes. If one decreases the tensions, the effective cosmological
constant would be negative. Of course one could fine—tune the small increase
of the brane tensions. This would just be a rephrasing of the four dimensional
cosmological constant problem. In the same fashion, one may incorporate more
degrees of freedom in the bulk. A likely candidate is a bulk scalar field. In
that case, one obtains exponential potentials of the quintessence type with a
low value of the coupling constant A. Unfortunately these models do not allay
the cosmological fine—tuning problem as the value of the scalar field now has
to be adjusted. Nevertheless, higher dimensional models provide an interesting
framework wherein one may either reformulate or even propose new mechanisms
whose four dimensional justification would have been debatable.

This is the case of self-tuning of the cosmological constant which is a very
stimulating possibility. The idea can be formulated in very simple terms. The
cosmological constant or the vacuum energy is a source of curvature for the
four dimensional dynamics. Could it be that the same vacuum energy on our
Universe seen as a 3-brane in a multi-dimensional Universe would curve the
extra-dimensions while preserving the flatness of our Universe? As a result, any
modification to the vacuum energy, for instance from phase transitions, would
not affect the four dimensional dynamics at all. It would simply modify the
geometry of unobservable dimensions.

An explicit model can be easily constructed. Consider a free scalar field
living in the bulk and coupled exponentially to a four—dimensional brane. The
induced geometry on the brane is flat, i.e. the Hubble rate vanishes while the
bulk metric is curved with an amount depending onthe brane tension. The
metric in the bulk develops a singularity at finite distance where the curvature
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of five dimensional space—time blows up. The existence of this singularity is a
nuisance which may jeopardize the model altogether. In particular, shielding
the singularity requires to include a brane at the singularity whose tension has
to be fine-tuned to match the tension of the observable brane. The absence
of fine-tuning on the observable brane has been replaced by a worse sin: one
must fine-tune tensions on branes situated at different points along the fifth
dimension.

After all, it may happen that gravity itself needs to be altered. One may
modify gravity in five dimensions in order to smooth out the singularity. This is
achieved by adding a so—called Gauss-Bonnet term in the Lagrangian of gravity.
Such a correction to gravity is suggested by string theory. It arises as soon as
quantum corrections to gravity are taken into account. It also turns out that
Lovelock theorem guarantees that it is the only possible modification of gravity
which preserves the fact that the Einstein equations are second order differential
equations. Now the metric in the bulk is non-singular. The price to pay is the
need to fine-tune parameters once again. Hence it seems that requiring that no
singularity occurs in the bulk is connected to fine—tuning of some parameters,
while the absence of fine—tuning is linked to the presence of a singularity in the
bulk.

Could it be that supersymmetry in five dimensions solve the cosmological
constant problem? It is indeed the case that five dimensional supergravity leads
to a vanishing effective cosmological constant on the brane. The only snag is
that the necessary step of supersymmetry breaking reintroduces a fine-tuning
of the non-zero vacuum energy.

More generally, can one envisage to obtain de Sitter space with a small
cosmological constant from the compactification of a higher dimensional super-
gravity theory? It turns that the Gibbons—Maldacena—Nunez theorem implies
that this cannot happen if one compactifies on a static manifold with no bound-
ary. As soon as one allows compactifications on time—dependent spaces, one
may obtain de Sitter space. This is only the tip of a very active branch of high
energy physics where one tries to generate de Sitter space. This is a subject still
in its infancy which may provide some insight into the cosmological constant
problem.

7 Conclusion

We have presented a few aspects of the cosmological constant puzzle. The
fact that no physical mechanism providing even a qualitative understanding
has been discovered, despite the efforts of numerous physicists, may call for a
complete reappraisal. It could be that drastic measures such as modifications
of gravity may be necessary. At present, all these models are at best contrived.
A more surprising outcome, which may be hinted by observations, is that the
acceleration of the Universe could be due to a cosmological constant. In this
introductory review we have presented some promising mechanisms, within high
energy physics, using either supersymmetry or extra—dimensions.
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