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We review the behavior of a recently introduced model of agreement dynamics, called the Naming
Game. This model describes the self-organized emergence of linguistic conventions and the estab-
lishment of simple communication systems in a population of agents with pairwise local interactions.
The mechanisms of convergence towards agreement strongly depend on the network of possible in-
teractions between the agents. In particular, the mean-field case in which all agents communicate
with all the others is not efficient, since a large temporary memory is requested for the agents.
On the other hand, regular lattice topologies lead to a fast local convergence but to a slow global
dynamics similar to coarsening phenomena. The embedding of the agents in a small-world network
represents an interesting trade-off: a local consensus is easily reached, while the long-range links
allow to bypass coarsening-like convergence. We also consider alternative adaptive strategies which
can lead to faster global convergence.

Numerous statistical physics models have been
developed or adapted for the description and
study of social behaviour and social phenomena,
such as opinion dynamics and consensus forma-
tion. The Voter model is a well-known exam-
ple: each agent can has one of two possible opin-
ions; at each time step, an agent picks at ran-
dom one of his neighbours and adopts his opinion.
The possible convergence to a state in which all
agents share the same opinion has been particu-
larly studied for agents on the nodes of regular
lattices (or in the case of all agents interacting
with all others). This is also the case for most ”so-
ciophysics” models. Recently however, the study
of complex networks has put in evidence the fact
that social networks are typically very heteroge-
neous, and in all cases very different from regular
lattices. The consequences of the topology of the
interaction network on the dynamical behaviour
of all these models has thus become of great rel-
evance.

We consider a model for the decentralized for-
mation of a communication system among inter-
acting agents. The model has important differ-
ences with other usual opinion models, such as
the existence of memory. We have studied the
model’s dynamics for agents interacting on var-
ious types of networks, and shown in particular
that the formation of a common communication
system is more easily obtained if the agents form
a small-world network: in fact, and maybe coun-
terintuitively, the possibility for the agents to all
interact with each other allows as well to reach
a consensus on the communication system, but
in a less efficient way. We have also studied the
convergence phenomenon for various networks,
putting in evidence the main mechanisms and the

effect of various parameters.

I. INTRODUCTION

The recent past has witnessed an important develop-
ment of the activities of statistical physicists in the area
of social sciences (for a recent collection of papers see [1]).
Indeed, the standard methods of statistical physics are
very appropriate to study collective behaviors, neglect-
ing details and retaining only few general ingredients ob-
served in real social interactions. For this reason, physi-
cists have put forward a large number of theoretical mod-
els of social dynamics, borrowing a suite of statistical
methods from the theory of interacting particles systems
[2–5]. In particular, many models have been proposed
for the study of opinion formation, such as the Voter
model [2, 6–10], the Sznajd-Weron model [11], the Axel-
rod model for the dissemination of culture [12], and their
variants (e.g. the models proposed by Deffuant et al. [13]
and by Krause and Hegselmann [14]).

The behavior of these models has been much studied
on regular topologies or in situations where each agent
can interact with all the others. Recently however, net-
work science [15–17] has led to a better knowledge of the
topological properties of real social groups [18], and in
particular to show that the topology of the network on
which agents interact is not regular. Models of social
dynamics have thus been reconsidered, in order to inte-
grate the new framework of complex networks, and to
study the influence of various complex topologies on the
corresponding dynamical behavior.

In this article, we review the behavior of a recently
proposed model for the emergence of a communication
system, called Naming Game, investigating its dynamics
both on regular topologies and complex networks [19–22].

Social interactions are indeed based on the existence
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of a communication system among the agents, who are
able to understand each other by means of common
linguistic patterns or, more generally, by means of a
common vocabulary of symbols. Such a communication
system is the result of a self-organized process in which
individuals select specific symbols (words) and associate
them to concepts and ideas (objects). The emergence of
a shared lexicon inside social groups and communities of
people is very likely to be driven by simple criteria, like
popularity, imitation, negotiation, and agreement. When
a new concept is introduced, people refer to it using
several different names or words. These words start
spreading among the population, competing one against
the other, until the choice of one of them is taken (with
a sudden transition or with a long process) and everyone
uses the same word (or symbol, etc) [23–25]. This kind of
dynamics has recently become of broad interest after the
diffusion of a new generation of web-tools which enable
human users to self-organize a system of tags in such
a way to ensure a shared classification of information
about different arguments (see, for instance, del.icio.us
or www.flickr.com and Refs. [26, 27]). Another applica-
tion concerns global coordination problems in artificial
intelligence, where a group of artificial embodied agents
moving in an unknown environment have to exchange
informations about the objects they gradually discover.
The emergence of consensus about the objects names
allows to establish a communication system. A practical
example of this type of dynamics is provided by the
well-known Talking Heads experiment [28, 29], in which
embodied software agents managed to develop their
vocabulary observing objects through digital cameras,
assigning them randomly chosen names and negotiating
these names with other agents.

The paper is organized as follows. In Sec. II we intro-
duce and discuss the Naming Game. In Sec. III we de-
scribe the main phenomenology of the model in the mean-
field case, i.e. when the population is completely un-
structured and each agent can in principle interact with
anybody else. In the following sections different interac-
tion patterns are investigated: regular lattices (Sec. IV),
small-world networks (Sec. V), and different kinds of
complex networks (Sec. VI). In Sec. VII, the microscopic
rules of the model are modified in order to improve the
efficiency of the model. Finally, conclusions are drawn in
Sec. VIII.

II. MODEL DEFINITION

A minimal model of Naming Game has been put for-
ward by Baronchelli et al. in Ref. [30] to reproduce the
main features of Semiotic Dynamics and the fundamental
results of adaptive coordination observed in the Talking
Heads experiment. The minimal Naming Game model
consists of a population of N agents observing a single
object, for which they invent names that they try to com-

FIG. 1: Agents interaction rules. Each agent is described by
its inventory, i.e. the repertoire of known words. The speaker
picks up at random a name in its inventory and transmits it
to the hearer. If the hearer does not know the selected word
the interaction is a failure (top), and it adds the new name to
its inventory. Otherwise (bottom), the interaction is a success
and both agents delete all their words but the winning one.
Note that if the speaker has an empty inventory (as it happens
at the beginning of the game), it invents a new name and the
interaction is a failure.

municate to one another through pairwise interactions, in
order to reach a global agreement. The agents are iden-
tical and dispose of an internal inventory, in which they
can store an a priori unlimited number of names (or opin-
ions). All agents start with empty inventories. At each
time step, a pair of neighboring agents is chosen ran-
domly, one playing as “speaker”, the other as “hearer”,
and negotiate according to the following rules (see also
Fig. 1):

• the speaker selects randomly one of its words and
conveys it to the hearer;

• if the hearer’s inventory contains such a word, the
two agents update their inventories in order to keep
only the word involved in the interaction (success);

• if the hearer does not possess the uttered word,
the latter is added to those already stored in the
hearer’s inventory (failure), i.e. it learns the word.

Before entering in the detailed description of the dy-
namics, it is worth noting some visible differences of the
Naming Game with other commonly studied models of
social dynamics and, in particular, of opinion formation
[2, 11–13]. First of all, each agent can potentially be in an
infinite number of possible discrete states (words, names,
opinions), and the maximum number of states depends
on the dynamical evolution itself (see [31] for a detailed
analysis of this point). The two-steps decision process is
moreover rather realistic: an agent can accumulate in its
memory different possible names for the object, waiting
before reaching a decision. These points are strongly in
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contrast with traditional models (Voter, Potts, etc) in
which the number of states is a fixed external parame-
ter taking finite (and usually small) values [40], and in
which each agent has a unique well-defined opinion at
each time step. Each dynamical step can be seen as a
negotiation between speaker and hearer, with a certain
degree of stochasticity, that is absent in deterministic
models such as the Voter model. The stochastic compo-
nent is however of a different nature compared to that of
standard Glauber dynamics used in majority rule models
[32], since here it comes from an internal selection crite-
rion, and involves only the speaker, without affecting the
(deterministic) decision process of the hearer.

An important remark also concerns the random extrac-
tion of the word in the speaker’s inventory. Most previ-
ously proposed models of semiotic dynamics attempted
to give a more detailed representation of the negotiation
interaction assigning weights to the words in the inven-
tories. In such models, the word with largest weight is
automatically chosen by the speaker and communicated
to the hearer. Success and failures are translated into
updates of the weights: the weight of a word involved in
a successful interaction is increased to the detriment of
those of the others (with no deletion of words); a fail-
ure leads to the decrease of the weight of the word not
understood by the hearer. An example of a model in-
cluding weights dynamics can be found in Ref. [33] (and
references therein). For the sake of simplicity the min-
imal Naming Game avoids the use of weights. Indeed,
these are apparently more realistic, but their presence
is not essential for the emergence of a global collective
behavior of the system [34].

Finally, we stress that, in the minimal Naming Game,
all agents refer to the same single object, while in the
original experiments the embodied agents could observe
a set of different objects. This is actually possible only if
we assume that homonymy is excluded, i.e. two distinct
objects cannot have the same name. Consequently, in
this model, all objects are independent and the general
problem reduces to a set of independently evolving sys-
tems, each one described by the minimal model. In more
realistic situations, however, homonymy should probably
be taken into account.

III. MEAN-FIELD

Many studies of social dynamics have focused on popu-
lations of agents in which all pairwise interactions are al-
lowed, i.e. the agents are placed on the vertices of a fully-
connected graph. In statistical mechanics, this topologi-
cal structure is commonly referred as “mean-field” topol-
ogy. The main quantities of interest which describe the
system’s evolution are [30]

• the total number Nw(t) of words in the system at
the time t (i.e. the total size of the memory);

• the number of different words Nd(t) in the system
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FIG. 2: Evolution of the total number of words Nw (top), of
the number of different words Nd (center), and of the average
success rate S(t) (bottom), for a mean-field system (black cir-
cles) and low-dimensional lattices (1D, red squares and 2D,
blue triangles) with N = 1024 agents, averaged over 103 re-
alizations. The inset in the top graph shows the very slow
convergence in low-dimensional lattices.

at the time t;

• the average success rate S(t), i.e. the probabil-
ity, computed averaging over many simulation runs,
that the chosen agent gets involved in a successful
interaction at a given time t.

The consensus state is obtained when Nd = 1 and Nw =
N (so that S = 1).

The temporal evolution of the three main quantities
is depicted in Fig. 2 (circles). At the beginning, many
disjoint pairs of agents interact, with empty initial in-
ventories: they invent a large number of different words
(N/2, on average), that start spreading throughout the
system, through failure events. Indeed, the number of
words decreases only by means of successful interactions.
In the early stages of the dynamics, the overlap between
the inventories is very low, and successful interactions are
limited to those pairs which have been chosen at least
twice. Since the number of possible partners of an agent
is of orderN , it rarely interacts twice with the same part-
ner, the probability of such an event growing as t/N 2.
The initial trend of S(t) (black circles) is indeed linear
with a slope of order 1/N2. In this phase of uncorrelated
proliferation of words, the number of different words Nd

invented by the agents grows, rapidly reaching a maxi-
mum that scales as O(N). Then Nd saturates, displaying
a plateau, during which no new word is invented anymore
(since every inventory contains at least one word). The
total number Nw of words stored in the system has a
similar behavior, but it keeps growing after Nd has satu-
rated, since the words continue to propagate throughout
the system even if no new one is introduced. The peak
of Nw has been shown to scale as O(N 1.5) [30], meaning
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that each agent stores O(N 0.5) words. This peak occurs
after the system has evolved for a time tmax ∼ O(N1.5).
In the subsequent dynamics, strong correlations between
words and agents develop, driving the system to a final
rather fast convergence to the absorbing state in a time
tconv ∼ O(N1.5) (note that throughout this review, we do
not show data corresponding to the scaling of tconv with
N , except in section VII, but refer the interested reader
to our previously published papers [19, 21, 22, 30]). The
S-shaped curve of the success rate in Fig. 2 summarizes
the dynamics: initially, agents hardly understand each
others (S(t) is very low); then the inventories start to
present significant overlaps, so that S(t) increases until
it reaches 1, and the communication system is completely
set in.

IV. COARSENING PHENOMENON ON
LATTICES

A first study of the effects of topological embedding
on the Naming Game dynamics is reported in Ref. [19].
When the interacting agents sit on the nodes of low-
dimensional lattices, the long-time behavior is still char-
acterized by the convergence to a homogeneous consensus
state, but the evolution of the system changes consid-
erably. In particular, the time required by the system
to reach the global consensus displays a different scaling
with the size N , and the effective size of the inventories is
considerably diminished. Actually, the existence of dif-
ferent dynamical patterns are clearly visible in Fig. 2.
Since each agent can interact only with a limited num-
ber of neighbors (2d in a d-dimensional lattice), at the
local scale the dynamics is very fast: agents can rapidly
interact two or more times with their neighbors, favoring
the establishment of a local consensus with a high suc-
cess rate, i.e. of small sets of neighboring agents sharing
a common unique word. These “clusters” of neighbor-
ing agents with a common unique word are separated by
individuals having a larger inventory with two or more
words, playing the role of “interfaces”. These interfaces
then start a diffusion process, and the clusters of unique
words grow in time with a law that is typical of coarsen-
ing phenomena [19]: the competition among the clusters
is driven by the fluctuations of the interfaces. The eas-
ily reached local consensus thus leads to a slow dynamics,
and the global consensus takes much longer to be reached
than in mean-field: for example, O(N 3) in dimension 1
vs. O(N1.5) in mean-field. However, another important
aspect of the problem concerns the memory used by the
agents. In mean-field indeed, each agent needs a mem-
ory capacity scaling as O(N 1/2), i.e. diverging with the
system size. In contrast, the consequence of the embed-
ding in a finite-dimensional lattice (with a finite number
of neighbors), and of the subsequent coarsening like phe-
nomena, with rapid local consensus, is that each agent
uses only a finite capacity: the maximum total number
of words in the system (maximal memory capacity) scales

linearly with the system size N (as for the number of dif-
ferent words). In summary, low-dimensional lattice sys-
tems require more time to reach the consensus compared
to mean-field, but a lower use of memory.

V. THE TRADE-OFF OF SMALL-WORLD
NETWORKS

The precise knowledge of the dynamical behavior of the
Naming Game model on low-dimensional lattices, and in
particular on the one-dimensional ring, makes possible to
understand, by means of simple arguments and numerical
simulations, the effect of the small-world property, that
is a relevant feature of real complex networks.

In the following, indeed, we investigate the effect of in-
troducing long-range connections which link agents that
are far from each other on the regular lattice. In other
words, we study the Naming Game on the small-world
model proposed by Watts and Strogatz [35]. Starting
from a quasi-one-dimensional banded network in which
each node has 2m neighbors, the edges are rewired with
probability p, i.e. p represents the density of long-range
connections introduced in the network. For p = 0 the
network retains a one-dimensional topology, while the
random network structure is approached as p goes to 1.
At small but finite p (1/N � p � 1), a small-world
structure with short distances between nodes, together
with a large clustering, is obtained. When p = 0, the
system is one-dimensional and the dynamics proceeds by
slow coarsening. At small p, the typical distance be-
tween shortcuts is O(1/p), so that the early dynamics
is not affected and proceeds as in one-dimensional sys-
tems. In particular, at very short times many new words
are invented since the success rate is small. The maxi-
mum number of different words scales as O(N), as in the
other cases, while the average used memory per agent
remains finite, since the number of neighbors of each site
is bounded (the degree distribution decreases exponen-
tially [36]).

The typical cluster dynamics on a small-world net-
work is graphically represented in Fig. 3. As long as
the typical cluster size is smaller than 1/p, the clusters
are essentially one-dimensional, and the system evolves
by means of the usual coarsening dynamics. However,
as the average cluster size reaches the typical distance
between two shortcuts ∼ 1/p, a crossover phenomena to-
ward an accelerated dynamics takes place. Since the clus-
ter size grows as

√
t/N , this corresponds to a crossover

time tcross = O(N/p2). For times much larger than this
crossover, one expects that the dynamics is dominated by
the existence of shortcuts, entering a mean-field like be-
havior. The convergence time is thus expected to scale as
N3/2 and not as N3. The condition in order for this pic-
ture to be possible is exactly the small-world condition;
indeed, the crossover time N/p2 has to be much larger
than 1, and much smaller than the consensus time for the
one-dimensional case N3, that together imply p� 1/N .
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FIG. 3: A naive representation of clusters growth in the small-
world model of Watts and Strogatz. A cluster (in red) starts
to expand locally by coarsening dynamics like in dimension
one. When the size of the cluster is of the order of the aver-
age distance between shortcuts, long-range interactions take
place. The effect of these long-range interactions is that of
boosting up the dynamics.
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FIG. 4: Average number of words per agent in the system,
Nw/N as a function of the rescaled time t/N , for small-world
networks with 〈k〉 = 8 and N = 103 nodes, for various values
of p. The curve for p = 0 is shown for reference, as well as
p = 5.10−3, p = 10−2, p = 2.10−2, p = 4.10−2, p = 8.10−2,
from bottom to top on the left part of the curves.

Figure 4 displays the evolution of the average number
of words per agent as a function of time, for a small-
world network with average degree 〈k〉 = 8, and various
values of the rewiring probability p. While Nw(t) in all
cases decays to N , after an initial peak whose height is
proportional to N , the way in which this convergence
is obtained depends on the parameters. At fixed N , for
p = 0 a power-law behaviorNw/N−1 ∝ 1/

√
t is observed

due to the one-dimensional coarsening process. As soon
as p � 1/N however, we observe deviations from this
power-law behavior, which get stronger as p is increased:
the decrease of Nw is first slowed down after the peak,

but leads in the end to a very fast convergence.
As previously mentioned, a crossover phenomenon is

expected when the one-dimensional clusters reach sizes of
order 1/p, i.e. at a time of order N/p2. Since the agents
with more than one word in memory are localized at the
interfaces between clusters, their number is O(Np). The
average excess memory per site (with respect to global
consensus) is thus of order p, so that one expects Nw/N−
1 = pG(tp2/N). Detailed numerical investigations have
confirmed this picture [21], and allowed to show that the
convergence towards consensus is reached on a timescale
of order NβSW , with βSW ≈ 1.4±0.1 (not shown, see [21,
22] for data). This behavior is close enough to the mean-
field case N3/2 to consider that they belong to the same
universality class, as expected from the above arguments
and other studies of dynamical phenomena on Watts-
Strogatz networks [36], and in strong contrast with the
N3 behavior of purely one-dimensional systems. Note
that the time to converge scales as p−1.4±.1 (not shown),
that is consistent with the fact that for p of order 1/N one
should recover an essentially one-dimensional behavior
with convergence times of order N 3.

In summary, the small-world topology allows to com-
bine advantages from both finite dimensional lattices and
mean-field networks: on the one hand, only a finite mem-
ory per node is needed, in opposition to the O(N 1/2) in
mean-field; on the other hand the convergence time is
expected to be much shorter than in finite dimensions.

VI. THE NAMING GAME ON GENERAL
COMPLEX NETWORKS

A. Pair selection strategies

Before describing the behavior of the Naming Game
dynamics on general networks, it is worth noting that
the definition of the model itself has in fact to be spec-
ified. Indeed, the two neighboring agents chosen to in-
teract have different roles: one (the speaker) transmits
a word and is thus more ”active” than the other (the
hearer). One should therefore specify whether, when
choosing a pair, one chooses first a speaker and then
a hearer among the speaker’s neighbors, or the reverse
order. If the agents sit on a fully connected graph or
on a regular lattice, or even on a random graph with
homogeneous degree distribution, they have an equiva-
lent neighborhood so the order is not important. In the
case of heterogeneous networks however, the degrees of
the first and the second chosen nodes can have very dif-
ferent distributions (respectively P (k) and kP (k)/〈k〉).
The asymmetry between speaker and hearer can couple
to the asymmetry between a randomly chosen node and
its randomly chosen neighbor, leading to different dy-
namical properties (this is the case for example in the
Voter model, as studied by Castellano [37]). We there-
fore distinguish more possibilities for the definition of the
Naming Game on generic networks.



6

• (i) A randomly chosen speaker selects (again ran-
domly) a hearer among its neighbors. This is prob-
ably the most natural generalization of the original
rule. We call this strategy direct Naming Game. In
this case, larger degree nodes will preferentially act
as hearers.

• (ii) The opposite strategy, here called reverse Nam-
ing Game, can also be carried out: we choose
the hearer at random and one of its neighbors as
speaker. In this case the hubs are preferentially
selected as speakers.

• (iii) A neutral strategy to pick up pairs of nodes
is that of considering the extremities of an edge
taken uniformly at random. The role of speaker
and hearer are then assigned randomly with equal
probability among the two nodes.

As shown in [38], a larger memory is used for the re-
verse rule, although the number of different words created
is smaller, and a faster convergence is obtained. This cor-
responds to the fact that the hubs, playing principally as
speakers, can spread their words to a larger fraction of
the agents, and remain more stable than when playing
as hearers, enhancing the possibility of convergence. De-
pending on the network under study, and similarly to the
Voter model case [37], the scaling laws of the convergence
time can even be modified. From the point of view of a re-
alistic interaction among individuals or computer-based
agents, the direct Naming Game in which the speaker
chooses a hearer among its neighbors seems somehow
more natural than the other ones. In the remainder of
this section therefore, we will focus on the direct Naming
Game.

B. Global quantities

Figure 5 reports, for homogeneous Erdös-Renyi (ER)
networks (left) and heterogeneous Barabási-Albert (BA)
networks (right), the temporal evolution of the three
main global quantities: the total number Nw(t) of words
in the system, the number of different words Nd(t), and
the rate of success S(t). The curves for the average use
of memory Nw(t) show a rapid growth at short times, a
peak and then a plateau whose length increases as the
size of the system is increased. The time and the height
of the peak, and the height of the plateau, are propor-
tional to N . A systematic study of the scaling behavior
shows that the convergence time tconv scales as Nβ with
β ' 1.4 for both ER and BA (see [22]). The apparent
plateau of Nw, on the other hand, does not correspond
to a steady state, as revealed by the continuous decrease
of the number of different words Nd in the system: in
this re-organization phase, the system keeps evolving by
elimination of words, although the total used memory
does not change significantly.
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FIG. 5: ER random graph (left) and BA scale-free network
(right) with 〈k〉 = 4 and sizes N = 103, 104, 5.104. Top: evo-
lution of the average memory per agent Nw/N versus rescaled
time t/N . For increasing sizes a plateau develops in the re-
organization phase preceding the convergence. The height of
the peak and of the plateau collapse in this plot, showing that
the total memory used scales with N . Bottom: evolution of
the number of different words Nd in the system. (Nd − 1)/N
is plotted in order to emphasize the convergence to the con-
sensus with Nd = 1. A steady decrease is observed even if the
memory Nw displays a plateau. The mean-field (MF) case is
also shown (for N = 103) for comparison.

The observed scaling law for the convergence time is a
general robust feature that is not affected by other topo-
logical details (average degree, clustering, etc), and more
surprisingly it seems to be independent of the partic-
ular form of the degree distribution. We have indeed
checked the value of the exponent β ' 1.4±0.1 for various
〈k〉, clustering, and exponents γ of the degree distribu-
tion P (k) ∼ k−γ for scale-free networks constructed with
the uncorrelated configuration model. These parameters
have instead an effect on other quantities such as the time
and the value of the maximum of memory, as shown in
Fig. 6, which displays the effects of increasing the aver-
age degree on the behavior of the main global quantities.
In both ER (left) and BA (right) models, increasing the
average degree provokes an increase in the memory used,
while the global convergence time is decreased: there is a
trade-off between memory and rapidity. We have also in-
vestigated the effect of increasing the clustering at fixed
average degree and degree distributions: the number of
different words is not changed, but the average mem-
ory used is smaller and the convergence takes more time:
it is more probable for a node to speak to 2 neighbors
that share common words because they are themselves
connected and have already interacted, so that it is less
probable to learn new words. At fixed average degree,
i.e. global number of links, less connections are available
to transmit words from one part of the network to the
other since many links are used in “local” triangles. The
local cohesiveness is therefore in the long run an obstacle
to the global convergence. This effect is similar to the
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FIG. 6: ER networks (left) and BA networks (right) with
N = 104 agents and average degree 〈k〉 = 4, 8, 16. The
increase of average degree leads to a larger memory used (Nw,
top) but a faster convergence. The maximum in the number
of different words is not affected by the change in the average
degree (bottom).

observation of an increase in the percolation threshold in
clustered networks, due to the fact that many links are
“wasted” in redundant local connections [39].

C. Cluster statistics

Further insights into the convergence mechanisms is
obtained by the investigation of the behavior of clus-
ters of words (recall that a cluster is any set of neigh-
boring agents sharing a common unique word). In low-
dimensional lattices indeed, the dynamics of the Naming
Game proceeds by formation of such clusters, that grow
through a coarsening phenomenon. As shown instead in
Fig. 7 for ER networks (a similar behavior is observed in
the BA case), the normalized average cluster size remains
very close to zero (in fact, of order 1/N) during the re-
organization phase that follows the peak in the number
of words, and converges to one with a sudden transi-
tion. The same behavior is shown also by the number of
clusters Ncl(t), that decreases to one very sharply. The
emerging picture is not that of a coarsening or growth
of clusters, but that of a slow process of correlations be-
tween inventories, followed by a multiplicative process of
cluster growth triggered by a sort of symmetry breaking
event in the success probability of the words (in favor of
the word that will ultimately survive).

VII. STRATEGIES FOR FASTER
CONVERGENCE

In all the investigated cases, the time to convergence
grows quite fast as a function of the system size. A
natural and important question is therefore whether it
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FIG. 7: Number of clusters Ncl and normalized average clus-
ter size 〈s〉/N vs. time for ER networks with N = 104, 〈k〉 = 4
(circles), 〈k〉 = 8 (squares), 〈k〉 = 16 (crosses).

is possible to improve the performance of the system.
More precisely, a major challenge would be to improve
the population-scale performances of the process without
loosing the simplicity of the microscopic rules, which is
the precious ingredient that allows for in-depth investiga-
tions of global-scale dynamics. To investigate this issue,
we come back for simplicity to the framework of mean-
field dynamics, in which all agents can interact with all
others.

Up to this point agents, when playing as speakers, ex-
tract randomly a word in their inventories. This feature,
along with the drastic deletion rule that follows a success-
ful game, is the distinctive trait of the model. Other pre-
viously proposed models use the possibility of associating
a weight to each word in each inventory [33]: weights are
updated at each interaction, with rewards for winning
words and penalties for the others. While such sophis-
ticated structures could in principle lead to faster con-
vergence, they also make the models more complicated,
compromising the possibility of a clear global picture of
the convergence process. We follow here a different route
which maintains the simplicity of the dynamical rules.
Among the words of a given agent, two words can be
easily distinguished: the last recorded one and the last
one that gave rise to a successful game, i.e. the first that
was recorded in the new inventory generated after the
successful interaction. Natural strategies to investigate
consist therefore in choosing systematically one of these
particular words. We shall refer to these strategies as
”play-last” and ”play-first” respectively.

A. ”Play-last” strategy

When the ”play-last” strategy is adopted, the peak
time and height scale respectively as tmax ∼ Nα with
α ≈ 1.3 and Nmax

w ∼ Nγ with γ ≈ 1.3, i.e. the used
memory is reduced, while the convergence time scales as
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tconv ∼ Nβ with β ≈ 2.0 (not shown). At the beginning
of the process, playing the last registered word creates a
positive feedback that enhances the probability of a suc-
cess. In particular a circulating word has more probabil-
ities of being played than with the usual stochastic rule,
thus creating a scenario in which less circulating words
are known by more agents. On the other hand the ”last
in first out” approach is highly ineffective when agents
start to win, i.e. after the peak. In fact, the scaling
tconv ∼ Nβ can be explained through simple analytical
arguments. Let us denote by Na the number of agents
having the word ”a” as last recorded one. This number
can increase by one unit if one of these agents is chosen as
speaker, and one of the other agents is chosen as hearer,
i.e. with probability Na/N× (1−Na/N); the probability
to decrease Na of one unit is equal to the probability that
one of these agents is a hearer and one of the others is
a speaker, i.e. (1 − Na/N)Na/N . These two probabili-
ties are perfectly balanced so that the resulting process
for the density ρa = Na/N can be written as an unbi-
ased random walk (with actually a diffusion coefficient
ρa(1− ρa)/N2); it is then possible to show that the time
necessary for one of the ρa to reach 1 is of order N2. In
summary, in this framework it is much more difficult to
bring to convergence all the agents, since each residual
competing word has a good probability of propagating to
other individuals.

B. ”Play-first” strategy

The ”play-first” strategy, on the other hand, leads to a
faster convergence. Due to a sort of arbitrariness in the
strategy before the first success of the speaker, the peak
related quantities keep scaling as in the usual model, so
that tmax ∼ Nα and Nmax

w ∼ Nγ with α ≈ γ ≈ 1.5. This
seems natural, since playing the first recorded word is es-
sentially the same as extracting it randomly when most
agents have only few words. In fact, in both cases no vir-
tuous correlations or feedbacks are introduced between
circulating and played words. However, playing the last
word which gave rise to a successful interaction strongly
improves the system-scale performances once the agents
start to win. In particular it turns out that for the differ-
ence between the peak and convergence time we obtain
(tconv−tmax) ∼ N δ with δ ≈ 1.15, so that the behavior of
the convergence time is the result of the combination of
two different power law regimes, i.e. tconv ∼ aNα + bN δ.
On the other hand, the usual stochastic rule leads to
(tconv − tmax) ∼ N1.5. This means that the ”play-first”
strategy is able to reduce the time that the system has
to wait before reaching the convergence, after the peak
region. This seems the natural consequence of the fact
that successful words increase their chances to be played
while suppressing the spreading of other competitors.
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FIG. 8: Play-smart strategy - scaling with the population
size N . Top - For the time of the peak tmax ∼ Nα, α ≈ 1.3,
while for the convergence time we have tconv ∼ aNα + bNδ

with δ ≈ 1.3, δ ≈ 1.0. Bottom - the maximum number of
words scales as Nmax

w ∼ Nγ with γ ≈ 1.3. The ”play-smart”
rule gives rise to a more performing process, from the point
of view of both convergence time and memory needed.
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FIG. 9: Success rate curves S(t) for the various strategies:
stochastic, ”play-last”, ”play-first” and ”play-smart”. At the
beginning of the process the stochastic and ”play-first” strate-
gies yield similar success rates, but then the deterministic rule
speeds up convergence. On the other hand also the ”play-
smart” and the ”play last” evolve similarly at the beginning,
but the latter reaches the final state much earlier through a
steep jump. It is worth noting that for three strategies the
S(t) curves present a characteristic S−shaped behavior, while
in the ”play-last” one the disorder-order transition is more
continuous (see inset in the top figure). All curves, both for
N = 103 and N = 104, have been generated averaging over
3× 103 simulation runs.

C. ”Play-smart”, an adaptive strategy

Compared to the usual random extraction of the played
word, the ”play-last” strategy is more performing at the
beginning of the process, while the ”play-first” one al-
lows to fasten the convergence of the process, even if it
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FIG. 10: Total number of words Nw(t) for the various strate-
gies: stochastic, ”play-last”, ”play-first” and ”play-smart”.
Due to different scaling behaviors of the process, differences
become more and more relevant for larger N (top figure:
N = 103; bottom figure: N = 104). The ”play-smart”
approach combines the advantages of ”play-last” and ”play-
first” strategies.

is effective only after the peak of the total number of
words. We therefore define a third alternative strategy
which results from the combination of the two. The new
prescription, called ”play-smart”, is the following:

• If the speaker has never took part in a successful
game, it plays the last word recorded;

• Else, if the speaker has won at least once, it plays
the last word it had a communicative success with.

The first rule will thus be applied mostly at the begin-
ning, and as the system evolves, the second rule will be
progressively adopted by more and more agents. Since
the change in strategy is not imposed at a given time,
but takes place gradually, in a way depending of the evo-
lution of the system, such a strategy has also the interest
of being in some sense self-adapting to the system’s ac-
tual state. In Fig. 8, the scaling behaviors relative to the
”play-smart” strategy are reported. Both the height and
time of the maximum follow the scaling of the ”play-last”
strategy: tmax ∼ Nα and Nmax

w ∼ Nγ with α ≈ γ ≈ 1.3.
The convergence time, on the other hand, scales as a su-
perposition of two power laws: tconv ∼ aNα + bN δ with
α ≈ 1.3, δ ≈ 1.0. Thus, the global behavior determined
by the ”play-smart” modification is indeed less demand-
ing in terms of both memory and time. In particular,
while the lowering of the peak height yields in fact a
slower convergence for the ”play-last” strategy, the pro-
gressive self-driven change in strategy allows to fasten the
convergence further than for the ”play-first” strategy.

Finally, in order to have an immediate feeling of what
different playing word selection strategies imply, we re-
port in Figs. 9 and 10 the success rate S(t) and the to-
tal number of words, Nw(t) relative to the four strate-
gies described previously, for two different sizes. The

Mean-field Lattices (d ≤ 4) Networks

Maximum memory N1.5 N N

Convergence time N1.5 N1+ 2
d N1.4±0.1

TABLE I: Scaling with the system size N of the maximum
number of words (memory) and time of convergence. Net-
works, thanks to the small-world property and the finite con-
nectivity, ensure a trade-off between the fast convergence of
mean-field topology and the small memory requirements of
lattices.

”play-first” and ”play-smart” curves exhibit the same ”S-
shaped” behavior for S(t) as in the case of the stochastic
model, while the ”play-last” rule affects qualitatively the
way in which the final state is reached. Indeed, in this
case the transition between the initial disordered state
and the final ordered one is more continuous (see the
inset in the top figure). Moreover, Fig. 10 illustrates
that the choice of the strategy has substantial quantita-
tive consequences for both necessary memory and time
needed to reach convergence, even if the changes in scal-
ing behavior could at first appear rather limited (from
N1.5 to N1.3). In particular, the ”play-smart” strategy,
which adapts itself to the state of the system, leads to a
drastic reduction of the memory and time costs and thus
to a dramatic increase in efficiency.

VIII. CONCLUSIONS

The Naming Game describes how a shared communica-
tion system may emerge in a population of agents. Here
we have reviewed some of the main aspects of the model,
focusing in particular on the role of different interaction
patterns on the global quantities of the model. We have
also investigated alternative strategies that speed up the
establishment of the final consensus state.

Different underlying topologies have the main effect of
changing the scaling with the system size N of two cru-
cial quantities of the model: the time required to reach a
consensus, tconv, and the maximum memory demanded
to the agents during the process, Nmax

w . In particular,
our analysis has pointed out that (i) finite connectivity
implies finite memory requirements for the agents and
(ii) the small-world property ensures a fast convergence
(see Table I). Indeed, these properties affect the mecha-
nism itself that leads to the final state. On the complete
graph (mean-field case), the process starts with an ini-
tial spreading of words (linear with time) throughout the
system followed by a longer period (O(N 3/2)) in which
words are exchanged among the agents. After the peak
of the total number of words (whose height is O(N 3/2)),
the total number of words decreases till a final rapid con-
vergence process leads the population to the adsorbing
configuration. On low-dimensional lattices, on the other
hand, the model converges very slowly (tconv/N ∼ N2/d,
where d is the dimension of the lattice), but the maxi-
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mum number of words scales as N , meaning that single
agents require a finite memory that does not depends on
N . The reason is related to the fast formation of many
different local clusters of agents with the same unique
word, that grow through a coarsening process. A trade-
off between lattices and fully connected graphs is offered
by small-world networks, in which a finite memory per
agent comes with a fast convergence N 1.4±0.1 ensured by
the spreading of different words across the shortcuts that
connect otherwise far-away regions of the graph. This
picture has been confirmed also by extensive numerical
studies on different kinds of complex networks, where in
addition we have addressed also the role of other im-
portant parameters (e.g. average connectivity, clustering
coefficient).

Finally, we have investigated whether the efficiency of
the Naming Game can be improved acting on the mi-
croscopic rules of the model. Focusing on the mean-field
case, we have checked the procedure describing which
word has to be played by the speaker. We have substi-
tuted the usual random extraction with extremely simple
deterministic rules, which exploit only the information
regarding the time at which different words are inserted
in the inventory of the agent. In particular, each agent
can identify two special words, namely the oldest and
the newest. We have shown that simple deterministic
rules can capitalize on, and somehow tune, the correla-

tion among the inventories, thus increasing the efficiency
of the Naming Game in terms of both the individual use
of memory and the convergence time.

In conclusion, we have shown that different topologies
have major effects on the global dynamics of the Naming
Game. We have also pointed out that simple modifica-
tions of the original rules can give rise to higher perfor-
mances that allow the population to save memory and
time to reach the final state. We believe that this find-
ings could be extremely relevant as far as application are
concerned, and in future more efforts should be made to
improve the model further. As we have seen, however,
each new rule should be tested on different topologies
in order to understand its potential consequences in real
world applications.
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[39] Serrano, M. Á., Boguna, M., ‘Percolation and epidemic
thresholds in clustered networks,’ Phys. Rev. Lett. 97,
088701 (2006).

[40] Even if for example the Potts model with q states has a
well defined q → ∞ limit, it is usually studied at fixed,
given q.


