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Abstract

We discuss a toy model in six dimensions that predicts two fermion generations, nat-
ural mass hierarchy and intergenerational mixing. Matter is described by vector-like
six dimensional fermions, one per each irreducible standard model representation.
Two fermion generations arise from the compactification mechanism, through orb-
ifold projection. They are localized in different regions of the compact space by a
six dimensional mass term. Flavour symmetry is broken via Yukawa couplings, with
a Higgs vacuum expectation value not constant in the extra space. A hierarchical
spectrum is obtained from order one dimensionless parameters of the six dimensional
theory. The Cabibbo angle arise from the soft breaking of six dimensional parity
symmetry. We also briefly discuss how the present model could be extended to cover

the realistic case.
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1. Introduction

In the last years our knowledge in flavour in physics has undergone a spectacular devel-
opment. On the experimental side, with the data from the existing B factories, BABAR
and Belle, we entered an era of precision tests in the quark sector. For instance the |V,
element of the quark mixing matrix is now known with a precision of few percents [1].
Moreover many independent measurements are now over-constraining the quark parame-
ters of the standard model (SM), and the success of the theory in fitting all the data is
really impressive. Also the picture in the lepton sector has been greatly clarified and, even
if we have not yet obtained precise determination of mass and mixing parameters, never-
theless a clear pattern has been identified from the solutions to the solar and atmospheric
neutrino problems [2].

On the theoretical side, we should honestly admit that flavour still represents one of
the great mysteries in particle physics. We do not know the scale at which the flavour
dynamics sets in. Perhaps at this scale a conventional, four dimensional, picture still
holds thus allowing us to analyze the flavour problem in the context of a local quantum
field theory in four space-time dimensions. Here the most powerful tool that we have to
decipher the observed hierarchy among the different masses and mixing angles is that of
spontaneously broken flavour symmetries [3]. In the idealized limit of exact symmetry,
only the heaviest fermions are massive: the top quark and, maybe, the whole third fam-
ily. The lightest fermions and the small mixing angles originate from breaking effects.
This beautiful idea has been widely explored in many possible versions, with discrete or
continuous symmetries, global or local ones. A realistic description of fermion masses in
this framework typically requires either a large number of parameters or a high degree of
complexity and we are probably unable to select the best model among the many exist-
ing ones. Moreover, in four dimensions we have little hopes to understand why there are
exactly three generations.

It might be the case that at the energy scale characterizing flavour physics a four-
dimensional description breaks down. For instance this happens in superstring theories
where the space-time is ten or eleven dimensional. In the ten dimensional heterotic string
six dimensions can be compactified on a Calabi-Yau manifold [4] or on orbifolds [5] and the
flavour properties are strictly related to the features of the compact space. In Calabi-Yau
compactifications the number of chiral generations is proportional to the Euler characteris-
tics of the manifold. In orbifold compactifications, matter in the twisted sector is localized
around the orbifold fixed points and the Yukawa couplings, arising from world-sheet in-
stantons, have a natural geometrical interpretation [6]. Recently string realizations where
the light matter fields of the standard model arises from intersecting branes have been
proposed. Also in this context the flavour dynamics is controlled by topological proper-
ties of the geometrical construction [7], having no counterpart in four dimensional field
theories.

Perhaps in the future the flavour mystery will be unraveled by string theory, but in the

meantime it would be interesting to explore, in a pure field theoretical construction, the



possibility of extra space-like dimensions. We can then take advantage of the greater free-
dom that a bottom-up field-theory approach possesses compared to string theory. More-
over in the last years a lot of progress has been done in understanding field theories with
extra spatial dimensions. These theories are ultraviolet divergent and should be cut-off at
some energy scale A, but they can still be useful as effective descriptions at low energies,
including the compactification scale. Semi-realistic models have been proposed within
orbifold compactification, allowing for light chiral fermions [8, 9]. The compactification
mechanism and the orbifold projection have also been exploited to break supersymmetry
[10, 11] and/or gauge symmetry [12, 13] with distinctive and attractive features [14].

It has soon been realized that also in a field theoretical description the existence of
extra dimensions could have important consequences for the flavour problem. For instance
in orbifold compactifications light four dimensional fermions may be either localized at the
orbifold fixed points or they may arise as zero modes of higher-dimensional spinors, with
a wave function suppressed by the square root of the volume of the compact space. This
led to several interesting proposals. It has been suggested that the smallness of neutrino
masses could be reproduced if the left-handed active neutrinos sit at a fixed point and
the right-handed sterile partners live in the bulk of a large fifth dimension [15]. In five
dimensional grand unified theories the heaviness of the third generation can be explained
by localizing the corresponding fields on a fixed point, whereas the relative lightness of
the first two generations as well as the breaking of the unwanted mass relations can be
obtained by using bulk fields [16].

Even more interesting is the case when a higher dimensional spinor interacts with a non-
trivial background of solitonic type. It has been known for a long time that this provides
a mechanism to obtain massless four dimensional chiral fermions [17, 18]. Moreover, since
the wave functions for the zero modes of the Dirac operator are localized around the core of
the topological defect, such a mechanism can play a relevant role in explaining the observed
hierarchy in the fermion spectrum [19]. Mass terms arise dynamically from the overlap
among fermion and Higgs wave functions. Typically, there is an exponential mapping
between the parameters of the higher dimensional theory and the four dimensional masses
and mixing angles, so that even with parameters of order one large hierarchies are created
[20]. In orbifold compactifications, solitons are simulated by scalar fields with a non-trivial
parity assignment that forbids constant non-vanishing vacuum expectation values (VEVs).
Under certain conditions, the energy is minimized by field configurations with a non-trivial
dependence upon the compact coordinates [21]. Also in this case the zero modes of the
Dirac operator in such a background can be chiral and localized in specific regions of the
compact space.

In models of this sort, several zero modes can originate from a single higher dimensional
spinor [17, 18]. For instance, in the model studied in ref. [22] there is a vortex solution that
arises in the presence of two infinite extra dimensions. It is possible to choose the vortex
background in such a way that the number of chiral zero modes of the four dimensional
Dirac operator is three. Fach single six dimensional spinor gives rise to three massless four

dimensional modes with the same quantum numbers, thus providing an elegant mechanism



for understanding the fermion replica. Recently this model has been extended to the case
of compact extra dimensions [23].

In the present work we propose a model where the different fermion generations orig-
inate from orbifold compactification, with a natural hierarchy among the fermion masses
and with a non-trivial mixing in flavour space. We consider the case of two extra dimen-
sions compactified on the orbifold T?/Z,, which allows for a straightforward inclusion of
localized gauge fields. Matter is described by vector-like six dimensional fermions with
the gauge quantum numbers of one standard model generation. As a result, the model
has neither bulk nor localized gauge anomalies. Here we focus on a toy model with two
generations, to discuss in a simple setting the features of our proposal and postpone the
search for a fully realistic model to a future investigation. The two generations arise as
zero modes of the Dirac operator by eliminating the unwanted chiralities of vector-like six
dimensional spinors through an orbifold projection. By consistency, the fermion mass is
required to be Zs-odd and, as a consequence, the two independent zero modes are localized
at the opposite sides of the sixth dimension. The two fermion generations are distinguished
by localizing the Higgs doublet around z¢ = 0. This gives automatically rise to the de-
sired mass hierarchy. A non-trivial flavour mixing also comes out naturally and does not
need any additional structure beyond the minimal one. Such a mixing is related to a soft
breaking of the six dimensional parity symmetry. In particular, in the quark sector of
our toy model, the empirical relation 8o & (/my/m; can be easily accommodated. The
essence of our proposal is to address within a unique higher dimensional framework both
the problem of fermion replica and that of flavour symmetry breaking. We believe that
the model described in the next sections represents a concrete step towards the realization

of such a program.
2. A model

We want to identify the different fermion generations with the appropriate components of a
higher dimensional fermion. A five dimensional (5D) fermion contains two 4D components
with opposite chirality. After projecting out the wrong chirality we are thus left with a
single generation. In 6D fermions can be chiral and a 6D chiral fermion has the same
content of a 5D fermion. The simplest conceivable case where two replica with the same
4D chirality are present is that of a 6D vector-like fermion and we will adopt this choice
to build a toy model with two fermion generations. To this purpose we consider two extra
spatial dimensions compactified on the orbifold T?/Z,, where T? is the torus defined by
z; = x; + 27 R; (1 = 5,6) and Z; is the parity symmetry (z5,2¢) — (—x5, —2g). As
fundamental region of the orbifold we can take, for instance, the rectangle (|z5| < 7R5),
(0 < 26 < mRg) (see fig. 1). There are four inequivalent fixed points under Z,. In
the chosen fundamental region they can be identified with (z5,26) = (0,0), (7Rs,0),
(0,7 Rg), (7 Rs, ™Rg). Our theory is invariant under the gauge group SU(3)@SU(2)@U(1).
To justify the use of 6D vector-like fermions as building blocks of our model, we also
ask invariance under 6D parity to start with. As a consequence, the Lagrangian has 6D

vector-like fermions W(®) (a = 1,...5), one for each irreducible representation of the SM,

3



R T2z,

-

I N I
-2mRg -TRg \ mRg 2nRg  Xg

Figure 1: Fundamental region of the orbifold T?%/7,.
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as summarized in table 1. With this set of fermion fields, our model is automatically free
from 6D gauge anomalies. As we will see later on, requiring exact 61 parity symmetry is
too strong an assumption to obtain a ‘realistic’ fermion spectrum. Although eventually we
will relax this assumption, for the time being we carry on our construction by enforcing

6D parity invariance. We have:

5
Ly = Loguge +1 > WETAD 0 (1)
a=1

where L, stands for the 6D kinetic term for the gauge vector bosons Ay (M =
0,...3,5,6) of SU(3)®@SU(2)@U(1) and D4¥(*) (A = 0,...3,5,6) denotes the appropriate
fermion covariant derivative. We recall that, up to the (x5, 2¢) dependence, a 6D vector-like
spinor is equivalent to a pair of 4D Dirac spinors: ¥ = (1, x)T. Moreover each 6D fermion
can be split into two chiralities ¥ = ¥, + W_, eigenstates of I';: Uy = (1+£17)/2 .
We choose a representation for the Dirac matrices in 6D where I'; = 45 ® o3 (see the
appendix), where o3 is the third Pauli matrix, so that in terms of 4D chiralities we have:
U, = (nr,xz)" and ¥_ = (n1, xr)". Each component 1z, g, X1,z transforms in the same
way under the gauge group. All fields are assumed to be periodic in z5 and xg. By in-
specting the kinetic terms, we see that consistency with the orbifold projection requires
a non-trivial assignment of the Z, parity. We take A, (u = 0,...3) even under Z; and A;
(¢ =5,6) Zy-odd. In the fermion sector, ng(ry and xpg(r) should have the same Z, parity,
which should be opposite for ngrr) and xpr). We choose Zg(m(%a),xga),n,(;a),xg)) equal
to (=1,+1,+1,—1) for @ = 1,4, and (+1,—1,—1,41) for @ = 2,3,5. At this level the
zero modes are the gauge vector bosons of the standard model and two independent chiral
fermions for each irreducible representation of the standard model, describing two mass-

less generations. There are no gauge anomalies in our model. Bulk anomalies are absent
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Table 1: Vector-like 6 fermions and their gauge quantum numbers.

field | SU(3) | SU(2) | U(1)
o 3 2 | +1/6
¢ 3 1 +2/3
v 3 1 -1/3
Wy 1 2 -1/2
P 5) 1 1 -1

because the 6D fermions are vector-like. There could be gauge 4D anomalies localized at
the four orbifold fixed points [24, 25]. In our model based on T?/Z,, the anomalies are the
same at each fixed point and they actually vanish with the quantum number assignments of
table 1 1. Indeed they are proportional to the anomalies of the 4D zero modes, which form
two complete fermion generations, thus providing full 4D anomaly cancellation. Fermion
masses in six dimension and Yukawa couplings do not modify this conclusion.

In the absence of additional interactions, each zero mode is constant with respect
to x5 and zg. Even by introducing a 6D (parity invariant) Yukawa interaction between
fermions and a Higgs electroweak doublet, we do not break the 4D flavor symmetry, which
is maximal. The first step to distinguish the two fermion generations is to localize them
in different regions of the compact space. In our model this can be done in a very simple

way, by introducing a 6D fermion mass term

L, = Zm(a)\ll(a)kll(“)

i — /1 =T

) VO 4 e (2)

where 6D parity requires m(,) to be real. This term is gauge invariant and relates left and

'We have explicitly checked this by adapting the analysis described in ref. [25].



right 4D chiralities. Therefore the mass parameters m,) are required to be Z;-odd and
cannot be constant in the whole (x5, z¢) plane. The simplest possible choice for m,) is a
constant in the orbifold fundamental region *:

ma) (s, T6) = fia)e(Ts) (3)

where €(z¢) denotes the (periodic) sign function. This function can be regarded as a
background field. In a more fundamental theory it could arise dynamically from the VEV
of a gauge singlet scalar field, periodic and Zy-odd [21]. Then the parameters (o) would
essentially represent Yukawa couplings. In our toy model we regard €(z¢) as an external
fixed background and neglect its dynamics.

The properties of the 4D light fermions are now described by the zero modes of the
4D Dirac operator in the background proportional to €(zg). These zero modes are the

normalized solutions to the differential equations:

(05 +106)x1," + p(aye(we)ny, = 0
(05 — i06)nf”) + piaye(way(? = 0
— (05 + 106X + pine(zenly) = 0
—(05 — i06)n) + payelze)xs) = 0, (4)

with periodic boundary conditions for all fields and with the Z; parities defined above.
By applying standard techniques (see appendix) we obtain:

e a=1.,4

J

1o e
e a=2,3,5
n(a) 1 1
(X’?a>) = @) | réy |67+ B0 | s | €7 (s )
R |10 1]

(@)
n
XL

20f course there is not a unique way of choosing the fundamental region and this leads to several

possible choices for m(,). Although we are now regarding ji(,) as real parameters, in the next section we
will also need results for complex pi(,). For this reason we carry out our analysis directly in the complex
case.



Figure 2: Wave functions fg)(;%,xg;), in units of /RsRe. They have been obtained by
choosing |p(a)|Re = 1(3) for continuous-blue (dashed-red) lines.

where fl(g)(;c) are 4D chiral spinors:

f](l) = ( o )

dy, St
F = up B =cp
f1(3) = dgr f2(3) = SR ) (7)
(4) _ [ VeL (4) _ [ VuL
I —() i —(ML)
e P

whereas 51(?;)($5,$6) are functions describing the localization of the zero modes in the

compact space:

—TI'|,u(a)|RG R )
{:£a)($57$6> = ‘ |Iu( )| e |/’L(a)”L6|per
\/27TR5 \/1 o e—27’[‘|lu(a)|R6
1 |H(a)]

€ (a5, 0) ol (8

V27 R \/1 _ 27| ey Re

In the above equations |zg|y., denotes a periodic function, coinciding with the ordinary
|zg| in the interval [—m Rg, mRe]. As in the case m(,) = 0, for each 6D spinor we have
two independent chiral zero modes, whose 4D dependence is described by f1(a2) They
are still constant in x5, but not in zg. Indeed, the zero mode proportional to fQ(a) is
localized at 2z = 0 (mod 27w Rg), whereas that proportional to fl(a) is peaked around

z¢ = mRg (mod 27 Rg) (see figure 2). The two zero modes with well-defined localization
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properties in the compact space have non-trivial components both along n and along x
and they are orthogonal to each other. The constant factors in egs. (8) normalize the zero
modes to 1. In our toy model, the number of zero modes is not related to a non-trivial
topological property of the background e(zg). The two zero modes are determined by
the orbifold projection. The presence of the background only induces a separation of the
corresponding wave functions in the compact space. Actually we can go smoothly from
localized to constant wave functions, by turning off the constants j (4, as apparent from
eqs. (8).

With the introduction of the background, we now have two fermion generations, one
sat at x¢ = 0 and the other at x¢ = mRg. From the point of view of the four-dimensional
observer, who cannot resolve distances in the extra space, there is still a maximal flavour
symmetry and, indeed, all fermions are still massless at this level. Fermions can acquire
masses in the usual way, by breaking the electroweak symmetry via the non-vanishing VEV
of a Higgs doublet H. If such a VEV were a constant in zg, then we would obtain equal
masses for the two fermion generations. Thus, to break the 4D flavour symmetry we need
a non-trivial dependence of the Higgs VEV upon zg. There are several ways to achieve
this. For instance, we might assume that H is a bulk field. Under certain conditions
it may happen that the minimum of the energy is no longer zg-constant. Examples of
this kind are well-known in the literature [26]. If H interacts with a suitable z4-dependent
background, there is a competition between the kinetic energy term, which prefers constant
configurations, and the potential energy term, which may favour a z¢-varying VEV. In
non-vanishing portions of the parameter space the minimum of the energy can depend non-
trivially on xg. In the minimal version of our toy model we will simulate this dependence
in the simplest possible way, by introducing a Higgs doublet H with hypercharge +1/2

localized along the line 4 = 0 ®. The most general Yukawa interaction term invariant

under Z,, 6D parity and SU(3) @ SU(2) @ U(1) reads:
Ly = |y, @yt 4 yq HY g 4 ye HT YEPE h.c.} §(ze) (9)

where H = io?H*. Notice that H has dimension +3/2 and y has dimension -3/2, in mass
units. In the next section we will see how a realistic pattern of masses and mixing angles
arises from these Yukawa interactions.

Summarizing, our model is described by the Lagrangian:
L=Ly+Ly+ Ly + Ly (10)

where L,, L,,, Ly are given in egs. (1), (2) and (9), respectively, while Ly, localized at
zg = 0, contains the kinetic term for the Higgs doublet and the scalar potential that breaks
spontaneously SU(2)@U(1). The complex phases in y can be completely eliminated via

field redefinitions: in the limit of exact 61 parity symmetry all parameters are real.

3 Alternatively, we could assume that H is localized at the orbifold fix point (z5,zs) = (0,0). From
the point of view of fermion masses and mixing angles, the two choices are equivalent. To avoid singular
terms in the action, we could also consider a mild localization, described by some smooth limit of the

Dirac delta functions involved in the present treatment. Our results would not be qualitatively affected.



3. Masses and Mixing Angles

The fermion mass terms arise from Ly after electroweak symmetry breaking, here de-
scribed by (H) = (0 v/v/2)T. To evaluate the fermion mass matrices we should expand
the 6D fermion fields in 4D modes and then perform the x5 and z¢ integrations. In prac-
tice, if we focus on the lightest sector, we can keep only the zero modes in the expansion.
We obtain:

R I k)] (cu_ Mo cur Mg )
' V2o - =)\ e b e
- Yd " |,U(1),u(3)| ( Cim MAz Cay A3 )
V2 2 /a1 - M)\ s A s
= Y, Hpe) ( Com Mads Cot A5 ) | (1)
V22 /-1 =22\ e A e
where
B S N U ) M Y1 L R AP
|M(1)#(2)| |#(1)M(3)| |M(4)M(5)|
and
A, = e Tli s (13)

These mass matrices, here given in the convention fgrmyfr, are not hermitian. Tt is
interesting to see that, for generic order-one values of the dimensionless combinations ¢y
and fi(,)Re, the mass matrices display a clear hierarchical pattern. Fermion masses of
the first generation are suppressed by A(,)A(3) compared to those of the second generation
and mixing angles are of order A(,) or A(g). This is quite similar to what obtained in 4D
models with a spontaneously broken flavour symmetry. Here the role of small expansion
parameters is played by the quantities A\,. However in our parity invariant model, the
parameters pi(,) are real and the coefficients cyy are ‘quantized’. Either ¢y or ¢;_ should
vanish and this implies no mixing. Indeed when 6D parity is conserved, we have only two
possible orientations of the fermionic zero modes in the (7, x) space: either (1,7) or (1, —1),
as apparent from eqs. (5) and (6). Thus the scalar product between two zero modes in
the (n, x) space is either maximal or zero. Modulo a relabelling among first and second
generations, this gives rise to a perfect alignment of mass matrices and a vanishing overall
mixing. To overcome this problem, we should relax the assumption of exact 6 parity
symmetry *. We will assume that 6D parity is broken ‘softly’, by the fermion-background
interaction described by £,,. This can be achieved by taking complex values for the mass

coefficients fi(,) °. In a fundamental theory such a breaking could be spontaneous: if mq)

“There are other possibilities that lead to a non-vanishing mixing. For instance we could introduce
several independent backgrounds and couple them selectively to the different fermion fields. In our view,
the solution discussed in the text is the simplest one.

All previous equations remain unchanged, but the first equality in eq. (2). Only the second one is

correct.



were complex fields, then the Lagrangian would still be invariant under 6D parity acting
as mq) mza). It might occur that the dynamics of the fields m,) led to complex VEVs
for m4), thus spontaneously breaking parity. In our toy model we will simply assume the
existence of such a complex background. All the relations that we have derived hold true
for the complex case as well and we have now hierarchical mass matrices with a non-trivial

intergenerational mixing. By expanding the results at leading order in A, we find:

2] Virmpe) |4y (5)]

me = vY——"c,— ms = vy m, = v+—|c._
e L R e R R
(14)
and
My A, —c_ m 2 — me -
Mo ::l__i___a__lAlAQ d ::J—ii———ai—lklAg ::| + = s (15)
Me |Cu-| ms |ca-| my |ce-|

Finally, after absorbing residual phases in the definition of the s and ¢ 4D fields, the
matrices m!m, and m;rlmd are diagonalized by orthogonal transformations characterized
by mixing angles 0, 4:

cu,d+
eu d —

’

A, (16)

Cu,d—

still at leading order in A,. Therefore the Cabibbo angle is given by:

o=

Barring accidental cancellations in the relevant combinations of the coefficients sy, the

Cye

))\1 . (17)

Cq—

Cabibbo angle is of order A;. Then, by assuming A3 & A; and Ay & A} we reproduce the
correct order of magnitude of mass ratios in the quark sector. These are small numbers in
the 4D theory, but can be obtained quite naturally from the 6D point of view: ()R ~
) Re ~ 0.5 and ) Re ~ 1.3. Similarly, by taking AsAs &~ A} we can naturally fit the
lepton mass ratio.

It can be useful to comment about the way flavour symmetry is broken in this toy
model. Before the introduction of the Yukawa interactions and modulo U(1) anomalies, the
flavour symmetry group is U(2)°. After turning the Yukawa couplings on, we can consider
several limits. When Rg — oo, the quantities A(,) vanish and the flavour symmetry is
broken down to U(1)°, acting non-trivially on the lightest sector. If Rg is finite and non-
vanishing, U(1)® is in turn completely broken down by A(,y # 0. Nevertheless, contrary to
what happens in models with abelian flavour symmetries, the coefficients of order one that
multiply the symmetry breaking parameters A(,) are now related one to each other. This
can be appreciated by taking the limit Rg — 0. We have A(,) = 1 and the residual flavour
symmetry is a permutation symmetry, separately for the lepton and the quark sectors:
Sy ® Ss.

Let us now briefly comment about neutrino masses and mixings in this set-up. The

most straightforward way to produce neutrino masses is to add a gauge singlet 6D fermion
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field, U, with Z, assignments (+1,—1,—1,+1). As for the case of charged fermions, by
introducing a mass term for U as in eq. (2) and a Yukawa interaction with ¥*) and H

as in eq. (9), we obtain a Dirac neutrino mass term

(18)

m, — Yu v |lu(4)’u(6)| (cu—/\4/\6 cl/+/\6)
T2 (-

Coy Mg Cye

A large mixing angle in the leptonic sector, 8y, is obtained for Ay = O(1), in which case

the neutrino mass hierarchy,

my, — |612/-|- - CZ_|)\4)\6

e 2

: (19)

my,

is controlled by Ag. At leading order, the left mixings in mim, and mim, correspond to

2 Ce,vt Cev— /\4
2 2 2 ?
(Ce,u— - ce,u+ )‘4>

so that 87, = 6, — 6. is naturally large. As in 4D, the smallness of these Dirac neutrino

tan 26, , =

(20)

masses with respect to the electroweak scale has to be imposed by an ad hoc suppression
of the Yukawa couplings y,. A natural suppression could be achieved by considering also
Majorana masses. Even if Majorana masses are not allowed in 6, various possibilities can
be envisaged to go around this obstacle, namely by reducing or by enhancing the number
of extra dimensions. For instance, one could write localized Majorana mass terms directly

on the 4D brane or even exploit a seventh warped extra-dimension [27].
4. Which scale for flavour physics?

Our 6D toy model is non renormalizable. It is characterized by some typical mass scale
A. At energies larger than this typical scale, the description offered by the model is not
accurate enough and some other theory should replace it. Up to now we have not specified
A. We could have in mind a traditional picture where A is very large, perhaps close to the
41D Planck scale, where presumably all particle interactions, including the gravitational
one, are unified in a fundamental theory. In this scenario we have the usual hierarchy
problem. Clearly our simple model cannot explain why v << A*? and we should rely
on some additional mechanism to render the electroweak breaking scale much smaller
compared to A. A supersymmetric or warped version of our toy model could alleviate the
technical aspect of the hierarchy problem. Alternatively, we could ask how small could
A be without producing a conflict with experimental data. For simplicity we assume
that the two radii Rs, Rg are approximately of the same order R. Due to the different
dimension between 61 and 4D fields, coupling constants of the effective 4D theory are
suppressed by volume factors and we require AR > 1 to work in a weakly coupled regime.
Therefore, lower bounds on 1/ R are also lower bounds for A. Lower bounds on 1/R come
from the search of the first Kaluza-Klein modes at the existing colliders or from indirect
effects induced by the additional heavy modes [8, 9, 28, 29]. These last effects lead to

11



departures from the SM predictions in electroweak observables. From the precision tests
of the electroweak sector, we get a lower bound on 1/R in the T'eV range. However, the
most dangerous indirect effects are those leading to violations of universality in gauge
interactions and those contributing to flavour changing processes. Indeed, whenever we
have a source of flavour symmetry breaking, we expect a violation of universality at some
level. In the SM such violation comes through loop effects from the Yukawa couplings and
it is tiny. In our model, as we will see, such effects can already arise at tree level and, to
respect the experimental bounds, a sufficiently large scale 1/R is needed [30].

Since in each fermion sector the two generations are described by two copies of the same
wave function, differing only in their localization along wg, the universality of the gauge
interactions will be guaranteed if the gauge vector bosons have a wave function perfectly
constant in zg. This is the case only for massless gauge vector bosons, such as the photon,
but, as we will see now, not necessarily for the massive gauge vector bosons like W and
Z. Moreover, also the higher Kaluza-Klein modes of all gauge bosons have non-constant
wave functions and their interactions with split fermions are in general non-universal.

We start by discussing the interactions between the lightest fermion generations and
the observed W and 7 vector bosons. Consider, for simplicity, the limit of vanishing gauge
coupling ¢’ for U(1). Then the free equation of motion for the gauge bosons W, of SU(2)
reads:

2
ow, + %h?(%)m =0 (21)

where h(z6) denotes the zg-dependent VEV of the Higgs doublet H. To avoid problems in
dealing with singular, ill-defined functions, here h(z) is a smooth function, VEV of a 6D
bulk field. From the eq. (21) we will see that, if h(zs) is not constant, then the lightest
mode for the gauge vector bosons is no longer described by a constant wave function.
Therefore the 4D gauge interactions, resulting from the overlap of fermion and vector
bosons wave functions, can be different for the two generations.

In general we are not able to solve the above equation exactly, but we can do this by a
perturbative expansion in g%, which we could justify a posteriori. At zeroth order the W?

mass and the corresponding wave function are given by:

(0)y2 0) _ 1
(my’)” =0 Wi = N (22)
At first order we find:
2 +7Rg
g
m%,V = 27-[-R6/0 d:ﬂg h2($6)
W, = WO + 6W,(z6))
Te u 2
SW(zs) = / du / dx(Sh?(z) — mhy) (23)
0 0

modulo an arbitrary additive constant in W, that can be adjusted by normalization. We
see that when h(zg) is constant, the usual result is reproduced: my = ¢g*h*/2 and the

corresponding wave function does not depend on zg. Eq. (23) allows us to compute the

12



fractional difference (g1 —¢2)/(g1 + g2) between the SU(2) couplings to the first and second

fermion generation, respectively. Focusing on Wj’, we obtain:

g1 — g2
g1 + g2

T das (1671 - 1€7)2) sw
TR dze (1672 + 1€°)2)

(24)

where a = 1,4. As expected, if 5Wi is xg-constant, then the gauge couplings are universal.
From the precision tests of the SM performed in the last decade at LEP and SLC we
expect that such a difference should not exceed, say, the per-mill level. We have analyzed
numerically eq. (24) for several choices of the parameters and for several possible profiles of
the VEV h(zg). We found that universality is respected at the per-mill level for mj, R; <
O(10™*) or 1/Re > 3 TeV.

Much more severe are the bounds associated to the interactions of the higher modes

arising from the Kaluza-Klein decomposition of the gauge vector bosons:

AM =1 Z tCAZ(mm)(-r)Zmn('TSa'rG) ) (25>

c,m,n

where {° are the generators of the gauge group factor, Az(m*”)(x) the corresponding 4D

vector bosons and z,,, (s, z¢) the periodic, Z;-even wave functions:

1 Ty Tg

Vs s

(26)

Zmn(T5, Te) = ,— +n—
( 59 6) RS RG )
In eq. (25) m and n > 0 are integers: m runs from —oo to +oo for positive n and from 0

to +oc for n = 0. From eq. (1) we obtain the 4D interaction term:

——ZZC A ) e f00) A @) (27)

abmn

where g denotes the gauge coupling constant of the relevant group factor and the scale
A has been included to make g dimensionless. The coefficients ¢J;* describe the overlap

among the fermion and gauge-hboson wave functions. We obtain:

CZ;)TL = 0 m 7é 0
CS,Z = 0 a#b
o 1 dus*RE (1 — (_1)”62|#a|ﬂ'R6)
11 VAlRs Rg2mo n? + A [PRE (1 — e2lralrFe)
G o= )

For odd n, the interactions mediated by AZ(O’”) (n > 0) are non-universal. By asking that
universality holds within the experimental limits, we get a lower bound on 1/R similar to
that discussed before, of the order of some T'eV. However, stronger bounds are obtained
from the interactions in eqs. (27,28), by considering their contribution to flavour changing

processes. Indeed, after electroweak symmetry breaking, we should account for the unitary
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transformations bringing fermions from the interaction basis to the mass eigenstate basis.
c(0,2n+1
u( )
changing interactions are produced. By integrating out the heavy modes A

are not invariant under such transformations and flavour
c(0,2n41)
n

obtain an effective, low-energy description of flavour violation in terms of four-fermion

The terms involving A

we

operators, suppressed by the square of the compactification scale, (1/Rs)*. The most
relevant effects of these operators have been discussed by Delgado, Pomarol and Quiros in
ref. [31] in a context which is very close to the one we are considering here. By analyzing
the contribution to Amyg and to ex, these authors derived a lower bound on 1/R of
O(100 TeV) and of O(1000 T'eV), respectively, which at least as an order of magnitude

applies also to our model.
5. Outlook

We have presented and analyzed a model for flavour in two extra dimensions. For each
irreducible representation of the SM, there is a single, vector-like 6D fermion. Four dimen-
sional fermion generations arise from orbifold projection in the compactification mecha-
nism. In the toy model discussed here there is only room for two generations and a
natural question is whether this approach can be generalized to the realistic case of three
generations. The obvious objection is that the number of 4D components of a higher
dimensional fermion is a power of two. In principle, an odd number of massless modes
can be obtained by eliminating some of the unwanted components via orbifold projection
and /or non-periodic boundary conditions. In our model flavour symmetry is broken in two
steps. First, the independent zero modes are localized at different points along the sixth
dimension by means of a generalized 6D mass term, described by a scalar background.
Our background is topologically trivial and does not modify the number of zero modes,
which is fixed by the orbifold projection. However, the presence of a background with a
non-trivial topology may change the number of chiral zero modes, thus contributing to
reproduce the realistic case [22, 23]. The flavour symmetry is then broken by turning
on standard Yukawa interaction with a Higgs field developing a non-constant VEV. In
the model explored here the geometry of the compact space is the simplest one and it is
essentially one dimensional. The generations are localized along the sixth dimension, and
the fifth dimension does not play any active role. In a more realistic model it might be
necessary to fully exploit the geometry of the compact space, in order to obtain a suc-
cessful arrangement for the zero modes. A specific problem is represented by the neutrino
sector, that we have only briefly touched here. In particular six dimensions seem inade-
quate to naturally reproduce small neutrino masses, due to the absence of Majorana mass
terms. Moving to higher dimensions could help also in this respect. Another unpleasant
feature of our toy model is that, despite its simplicity, it contains too many parameters
and there are no testable predictions. Clearly the issue of predictability is crucial for a
realistic model. Tt is possible that, by going to the realistic case of three generations,
the number of parameters does not increase, thus allowing for quantitative tests of this
approach. Alternatively, we could consider more constrained frameworks. A possibility

could be to exploit a grand unification symmetry to limit the number of parameters in

14



the fermion sector. Another interesting case is represented by theories where the Higgs
fields are identified with the extra components of higher dimensional gauge vector bosons
[32]. One of the main problems of these models is precisely to break flavour symmetry,
starting from universal Yukawa couplings, universality being dictated by gauge invariance
[33]. Our approach could provide a possible mechanism to realize such breaking.

Despite the fact that our model is incomplete in many respects, we think that it
possesses several interesting theoretical properties. At variance with most of the existing
41 models, the problem of flavour symmetry breaking is here tightly related to the problem
of obtaining the right number of generations. Starting from dimensionless parameters of
order one, we were able to obtain a hierarchical pattern of masses. They are described
by mass matrices that are very close in structure to those obtained in 4D models by
enforcing abelian flavour symmetries, and provide a successful description of both quark
and lepton spectra. The crucial difference is that, whereas in the 4D case, the order-
one coefficients multiplying powers of the symmetry breaking parameters are completely
undetermined, in our case those coefficients are strongly correlated and predictable in
terms of the underlying parameters. We have also a quite non-standard interpretation of
the intergenerational mixing, that appears to be related to a soft breaking of 6D parity
symmetry. Starting from vector-like 6D fermions transforming as a SM generation, we
automatically obtain cancellation of bulk and localized gauge anomalies, a rather non-
trivial result in 6D gauge theories. Hopefully some of these features could also become

part of a more realistic framework.
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Appendix

I’ matrices
We work with the metric
nMN:diag<1a_1a_1a_1a_1a_1) (29)

where M, N =0,1,2,3,5,6. The representation of 61) I'-matrices we use in the text is

I .
F#:(VO OM),FSZZ«O 705),r6:¢< 0 lJS), (30)
g s —1 s

with g =0,1,2,3. Here 4*, v5 are 4D y-matrices given by

o 10 ; 0 o 5 0 1
= = . = 1
! ( 01 7 —o' 0 7 1 0 ’ (31)

where ¢° are the Pauli matrices.

In 6D the analogous of s, I'7 (= T'7), is defined by:

v 0
F7 - FOF1F2F3F5F6 == ( 0 _75 ) . (32)

Localization of zero modes

Starting from eqs. (4), we obtain the following second order partial differential equations,

holding in the whole (x5, z4) plane:

(02 +08) X7 — || €(z6) X7 =21 pay (=1)" Su(ze) 7 = 0
(02 + 02) 7 — |p)l? E(xe) nf + 20 plyy (=1)F du(ze) xz = 0
(95 + 03) X% = (e () xR+ 20 oy (—1)" Gils) i = 0
(924 0Z) nf — i * €(26) Mf = 2 i pay (—1)F Silz6) xj = 0 (33)

where k is an integer, §;(2¢) = (26— k7 Rg) and the sum over k is understood. In the bulk

these equations are decoupled and identical for all fields. Away from the lines x¢ = k7 Rg
k € Z, they read:

(05 +05) ¢~ @l 6=0 (34)
with appropriate boundary conditions. Here ¢ stands for x7, n7, x%, ng- In each strip
kmRe¢ < x¢ < (k+ 1)m Rg, the general solution to this equation can be written in the form:

Te Zg . Ts

ap— - —
¢(k)(m,$5,$6) = Z Cﬁbk)(m) e Hs 4 Cfl(k)(m) e s | ¢ Bs (35)

nes
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with a, = /n? + |u.|? RZ. These solutions can be glued together by imposing periodicity

along ¢, 75 parity and the appropriate discontinuity across the lines x4 = km Rg. This last
requirement can be directly derived from eqs. (4) and eqs. (33). The fields ¢ should be
continuous everywhere, whereas their first derivatives have discontinuities A%*)(3g¢) given
by:
AR (Qsp) = =21 s
AP (Ged) = 24 s

~—~

¢') ¢'(2km Rg) at g = 2kmRg

&) &' ((2k 4+ 1)7 Rg) at  x = (2k + 1)7 Re (36)

~—~

[}

where (¢,¢") = (x7,n7), (N7 x2)s (XEnR)s (R, xR) and

—po i =nF, X7

) ={ e R )
po 0 =g, X7

Only for n = 0 these requirements have a non-trivial solution. This means that the zero

modes are independent of z5. More precisely, Z3-odd fields are identically vanishing, while

for even fields we get:

ngr(T, vs, t6) = N1(a)f1(a)($)6|ﬂa||x6|per
4+ N D (2) e |Hal [w6lper

X%,R(Iv Ts, xﬁ) =

(@)

where fl(g)(x) are r-dependent spinors and N]f; denote normalization constants, which

are explicitly given in eq. (8) of the text.

17



References

1]

2]

K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66 (2002)
010001.

G.L. Fogli talk at the X International Workshop on Neutrino Telescopes,
March 11-14, 2003, Venice (Italy), [http://axpd24.pd.infn.it/conference2003/];
G. Altarelli and F. Feruglio, arXiv:hep-ph/0206077 and talks at the X Inter-
national Workshop on Neutrino Telescopes, March 11-14, 2003, Venice (Italy),
[http://axpd24.pd.infn.it /conference2003/].

C.D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147 (1979) 277.

P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B 258 (1985)
46.

L. J. Dixon, J. A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B 261 (1985) 678 and
Nucl. Phys. B 274 (1986) 285.

L. E. Ibanez, Phys. Lett. B 181 (1986) 269; S. Hamidi and C. Vafa, Nucl. Phys. B
279 (1987) 465; L. J. Dixon, D. Friedan, E. J. Martinec and S. H. Shenker, Nucl.
Phys. B 282 (1987) 13.

See, for instance, D. Cremades, L. E. Ibanez and F. Marchesano, arXiv:hep-
th/0302105 and references therein.

A. Pomarol and M. Quiros, Phys. Lett. B 438 (1998) 255 [arXiv:hep-ph/9806263];
M. Masip and A. Pomarol, Phys. Rev. D 60 (1999) 096005 [arXiv:hep-ph/9902467];
R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Phys. Lett. B 462 (1999) 48
[arXiv:hep-ph/9907355]; T. Gherghetta and A. Pomarol, Nucl. Phys. B 586 (2000)
141 [arXiv:hep-ph/0003129]; N. Arkani-Hamed, L. J. Hall, Y. Nomura, D. R. Smith
and N. Weiner, Nucl. Phys. B 605 (2001) 81 [arXiv:hep-ph/0102090]; A. Delgado
and M. Quiros, Nucl. Phys. B 607 (2001) 99 [arXiv:hep-ph/0103058]; A. Delgado,
G. von Gersdorff, P. John and M. Quiros, Phys. Lett. B 517 (2001) 445 [arXiv:hep-
ph/0104112]; G. von Gersdorff, N. Irges and M. Quiros, Nucl. Phys. B 635 (2002)
127 [arXiv:hep-th/0204223]; G. von Gersdorfl, N. Irges and M. Quiros, arXiv:hep-
ph/0206029; C. Biggio and F. Feruglio, Annals Phys. 301 (2002) 65 [arXiv:hep-
th/0207014]; M. Carena, T. M. Tait and C. E. Wagner, Acta Phys. Polon. B 33
(2002) 2355 [arXiv:hep-ph/0207056]; G. von Gersdorff, N. Irges and M. Quiros, Phys.
Lett. B 551 (2003) 351 [arXiv:hep-ph/0210134]; F. del Aguila, M. Perez-Victoria and
J. Santiago, JHEP 0302 (2003) 051 [arXiv:hep-th/0302023].

T. Appelquist and H. U. Yee, Phys. Rev. D 67 (2003) 055002 [arXiv:hep-ph/0211023];
T. Appelquist, B. A. Dobrescu, E. Ponton and H. U. Yee, Phys. Rev. D 65 (2002)
105019 [arXiv:hep-ph/0201131]; T. Appelquist, B. A. Dobrescu, E. Ponton and

18



[10]

[11]

[12]

[13]

H. U. Yee, Phys. Rev. Lett. 87 (2001) 181802 [arXiv:hep-ph/0107056]; T. Appelquist
and B. A. Dobrescu, Phys. Lett. B 516 (2001) 85 [arXiv:hep-ph/0106140]; T. Ap-
pelquist, H. C. Cheng and B. A. Dobrescu, Phys. Rev. D 64 (2001) 035002 [arXiv:hep-
ph/0012100].

J. Scherk and J. H. Schwarz, Nucl. Phys. B 153 (1979) 61 and Phys. Lett. B 82
(1979) 60; P. Fayet, Phys. Lett. B 159 (1985) 121 and Nucl. Phys. B 263 (1986) 649.

I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quiros, Nucl. Phys. B 544 (1999)
503 [arXiv:hep-ph/9810410]; A. Delgado, A. Pomarol and M. Quiros, Phys. Rev. D 60
(1999) 095008 [arXiv:hep-ph/9812489]; D. E. Kaplan, G. D. Kribs and M. Schmaltz,
Phys. Rev. D 62 (2000) 035010 [arXiv:hep-ph/9911293]; R. Barbieri, L. J. Hall and
Y. Nomura, Phys. Rev. D 63 (2001) 105007 [arXiv:hep-ph/0011311]; T. Gherghetta
and A. Pomarol, Nucl. Phys. B 602 (2001) 3 [arXiv:hep-ph/0012378]; D. Marti and
A. Pomarol, Phys. Rev. D 64 (2001) 105025 [arXiv:hep-th/0106256]; R. Barbieri,
L. J. Hall and Y. Nomura, Nucl. Phys. B 624 (2002) 63 [arXiv:hep-th/0107004];
J. A. Bagger, F. Feruglio and F. Zwirner, Phys. Rev. Lett. 88 (2002) 101601
[arXiv:hep-th/0107128]; A. Masiero, C. A. Scrucca, M. Serone and L. Silvestrini,
Phys. Rev. Lett. 87 (2001) 251601 [arXiv:hep-ph/0107201]; R. Barbieri, L. J. Hall
and Y. Nomura, arXiv:hep-ph/0110102; G. von Gersdorff, M. Quiros and A. Riotto,
Nucl. Phys. B 634 (2002) 90 [arXiv:hep-th/0204041]; V. Di Clemente, S. F. King
and D. A. Rayner, Nucl. Phys. B 646 (2002) 24 [arXiv:hep-ph/0205010]; D. Marti
and A. Pomarol, Phys. Rev. D 66 (2002) 125005 [arXiv:hep-ph/0205034]; R. Bar-
bieri, G. Marandella and M. Papucci, Phys. Rev. D 66 (2002) 095003 [arXiv:hep-
ph/0205280]; R. Barbieri, L.. J. Hall, G. Marandella, Y. Nomura, T. Okui, S. J. Oliver
and M. Papucci, arXiv:hep-ph/0208153; C. Biggio, F. Feruglio, A. Wulzer and
F. Zwirner, JHEP 0211 (2002) 013 [arXiv:hep-th/0209046]; A. Delgado, G. von
Gersdorff and M. Quiros, JHEP 0212 (2002) 002 [arXiv:hep-th/0210181]; L. J. Hall,
Y. Nomura, T. Okui and S. J. Oliver, arXiv:hep-th/0302192.

Y. Hosotani, Phys. Lett. B 126 (1983) 309 and Annals Phys. 190 (1989) 233.

Y. Kawamura, Prog. Theor. Phys. 105 (2001) 999 [arXiv:hep-ph/0012125];
G. Altarelli and F. Feruglio, Phys. Lett. B 511 (2001) 257 [arXiv:hep-ph/0102301];
L. J. Hall and Y. Nomura, Phys. Rev. D 64 (2001) 055003 [arXiv:hep-ph/0103125];
A. Hebecker and J. March-Russell, Nucl. Phys. B 613 (2001) 3 [arXiv:hep-
ph/0106166]; R. Barbieri, L. J. Hall and Y. Nomura, Phys. Rev. D 66 (2002) 045025
[arXiv:hep-ph/0106190]; A. Hebecker and J. March-Russell, Nucl. Phys. B 625 (2002)
128 [arXiv:hep-ph/0107039]; L. J. Hall, Y. Nomura, T. Okui and D. R. Smith, Phys.
Rev. D 65 (2002) 035008 [arXiv:hep-ph/0108071]; T. j. Li, Nucl. Phys. B 619 (2001)
75 [arXiv:hep-ph/0108120]; R. Dermisek and A. Mafi, Phys. Rev. D 65 (2002) 055002
[arXiv:hep-ph/0108139]; A. Hebecker, Nucl. Phys. B 632 (2002) 101 [arXiv:hep-
ph/0112230]; K. S. Babu, S. M. Barr and B. s. Kyae, Phys. Rev. D 65 (2002) 115008

19



[14]

[15]

[16]

[17]

[18]

[arXiv:hep-ph/0202178]; A. Hebecker and J. March-Russell, Phys. Lett. B 539 (2002)
119 [arXiv:hep-ph/0204037]; T. Asaka, W. Buchmuller and L. Covi, Phys. Lett. B 540
(2002) 295 [arXiv:hep-ph/0204358]; L. J. Hall and Y. Nomura, arXiv:hep-ph/0207079;
N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Nucl. Phys. B 657 (2003) 169
[arXiv:hep-ph/0212035]; H. D. Kim and S. Raby, JHEP 0301 (2003) 056 [arXiv:hep-
ph/0212348].

For a review see M. Quiros, arXiv:hep-ph/0302189.

K. R. Dienes, E. Dudas and T. Gherghetta, Nucl. Phys. B 557 (1999) 25
[arXiv:hep-ph/9811428]; N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali and J. March-
Russell, Phys. Rev. D 65 (2002) 024032 [arXiv:hep-ph/9811448]; G. R. Dvali and
A. Y. Smirnov, Nucl. Phys. B 563 (1999) 63 [arXiv:hep-ph/9904211].

L. Hall, J. March-Russell, T. Okui and D. R. Smith, arXiv:hep-ph/0108161; Y. No-
mura, Phys. Rev. D 65 (2002) 085036 [arXiv:hep-ph/0108170]; T. Watari and
T. Yanagida, Phys. Lett. B 532 (2002) 252 [arXiv:hep-ph/0201086] and Phys. Lett.
B 544 (2002) 167 [arXiv:hep-ph/0205090]; L. J. Hall and Y. Nomura, Phys. Rev. D
66 (2002) 075004 [arXiv:hep-ph/0205067]; A. Hebecker and J. March-Russell, Phys.
Lett. B 541 (2002) 338 [arXiv:hep-ph/0205143].

R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976) 3398; R. Jackiw and P. Rossi, Nucl.
Phys. B 190 (1981) 681; E. J. Weinberg, Phys. Rev. D 24 (1981) 2669; V. A. Rubakov
and M. E. Shaposhnikov, Phys. Lett. B 125 (1983) 136.

S. Randjbar-Daemi, A. Salam and J. Strathdee, Nucl. Phys. B 214 (1983) 491;
S. Randjbar-Daemi, A. Salam and J. Strathdee, Phys. Lett. B 132 (1983) 56;
Y. Hosotani, Asymmetry In Higher Dimensional Theories,” Phys. Rev. D 29 (1984)
731.

N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D 61 (2000) 033005 [arXiv:hep-
ph/9903417].

E. A. Mirabelli and M. Schmaltz, Phys. Rev. D 61 (2000) 113011 [arXiv:hep-
ph/9912265]; G. R. Dvali and M. A. Shifman, Phys. Lett. B 475 (2000) 295
[arXiv:hep-ph/0001072]; D. E. Kaplan and T. M. Tait, JHEP 0006 (2000) 020
[arXiv:hep-ph/0004200]; S. J. Huber and Q. Shafi, Phys. Lett. B 498 (2001) 256
[arXiv:hep-ph/0010195]; G. C. Branco, A. de Gouvea and M. N. Rebelo, Phys. Lett. B
506 (2001) 115 [arXiv:hep-ph/0012289]; T. G. Rizzo, Phys. Rev. D 64 (2001) 015003
[arXiv:hep-ph/0101278]; S. Nussinov and R. Shrock, Phys. Lett. B 526 (2002) 137
[arXiv:hep-ph/0101340]; G. Barenboim, G. C. Branco, A. de Gouvea and M. N. Re-
belo, Phys. Rev. D 64 (2001) 073005 [arXiv:hep-ph/0104312]; A. Neronov, Phys.
Rev. D 65 (2002) 044004 [arXiv:gr-qc/0106092]; D. E. Kaplan and T. M. Tait, JHEP
0111 (2001) 051 [arXiv:hep-ph/0110126]; F. Del Aguila and J. Santiago, JHEP
0203 (2002) 010 [arXiv:hep-ph/0111047]; J. Maalampi, V. Sipilainen and 1. Vilja,

20



arXiv:hep-ph/0208211; Y. Grossman and G. Perez, Phys. Rev. D 67 (2003) 015011
[arXiv:hep-ph/0210053]; S. J. Huber, arXiv:hep-ph/0211056.

[21] H. Georgi, A. K. Grant and G. Hailu, Phys. Rev. D 63 (2001) 064027 [arXiv:hep-
ph/0007350].

[22] M. V. Libanov and S. V. Troitsky, Nucl. Phys. B 599 (2001) 319 [arXiv:hep-
ph/0011095]; J. M. Frere, M. V. Libanov and S. V. Troitsky, Phys. Lett. B 512 (2001)
169 [arXiv:hep-ph/0012306] and JHEP 0111 (2001) 025 [arXiv:hep-ph/0110045];
M. V. Libanov and E. Y. Nougaev, JHEP 0204 (2002) 055 [arXiv:hep-ph/0201162].

(23] J. M. Frere, M. V. Libanov, E. Y. Nugaev and S. V. Troitsky, arXiv:hep-ph/0304117;

see also refs. [18].

[24] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 516, 395 (2001)
[arXiv:hep-th/0103135]; C. A. Scrucca, M. Serone, L. Silvestrini and F. Zwirner,
Phys. Lett. B 525, 169 (2002) [arXiv:hep-th/0110073]; L. Pilo and A. Riotto, Phys.
Lett. B 546 (2002) 135 [arXiv:hep-th/0202144]; R. Barbieri, R. Contino, P. Crem-
inelli, R. Rattazzi and C. A. Scrucca, Phys. Rev. D 66, 024025 (2002) [arXiv:hep-
th/0203039]; S. Groot Nibbelink, H. P. Nilles and M. Olechowski, Phys. Lett. B
536, 270 (2002) [arXiv:hep-th/0203055]; G. von Gersdorfl and M. Quiros, arXiv:hep-
th/0305024.

[25] T. Asaka, W. Buchmuller and L. Covi, Nucl. Phys. B 648 (2003) 231 [arXiv:hep-
ph/0209144].

[26] E. Witten, Nucl. Phys. B 249 (1985) 557; W. D. Goldberger and M. B. Wise, Phys.
Rev. Lett. 83 (1999) 4922 [arXiv:hep-ph/9907447].

[27] T. Appelquist, B. A. Dobrescu, E. Ponton and H. U. Yee, Phys. Rev. D 65 (2002)
105019 [arXiv:hep-ph/0201131].

[28] I. Antoniadis, Phys. Lett. B 246 (1990) 377; V. A. Kostelecky and S. Samuel, Phys.
Lett. B 270 (1991) 21; I. Antoniadis, K. Benakli and M. Quiros, Phys. Lett. B 331
(1994) 313 [arXiv:hep-ph/9403290].

[29] F. del Aguila, M. Perez-Victoria and J. Santiago, Phys. Lett. B 492 (2000) 98
[arXiv:hep-ph/0007160]; F. del Aguila, M. Perez-Victoria and J. Santiago, JHEP
0009 (2000) 011 [arXiv:hep-ph/0007316]; F. del Aguila and J. Santiago, Phys. Lett.
B 493 (2000) 175 [arXiv:hep-ph/0008143].

[30] G. Burdman, Phys. Rev. D 66 (2002) 076003 [arXiv:hep-ph/0205329].

[31] A. Delgado, A. Pomarol and M. Quiros, JHEP 0001 (2000) 030 [arXiv:hep-
ph/9911252].

21



[32] D. B. Fairlie, Phys. Lett. B 82 (1979) 97; N. S. Manton, Nucl. Phys. B 158 (1979)
141; G. R. Dvali, S. Randjbar-Daemi and R. Tabbash, Phys. Rev. D 65 (2002) 064021
[arXiv:hep-ph/0102307].

(33] L. J. Hall, Y. Nomura and D. R. Smith, Nucl. Phys. B 639 (2002) 307 [arXiv:hep-
ph/0107331]; C. Csaki, C. Grojean and H. Murayama, arXiv:hep-ph/0210133; G. Bur-
dman and Y. Nomura, Nucl. Phys. B 656 (2003) 3 [arXiv:hep-ph/0210257]; I. Gogo-
ladze, Y. Mimura and S. Nandi, arXiv:hep-ph/0302176; C. A. Scrucca, M. Serone and
L. Silvestrini, arXiv:hep-ph/0304220.

22



