
HAL Id: hal-00165288
https://hal.science/hal-00165288

Submitted on 25 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low latency solution for confidentiality and integrity
checking in embedded systems with off-chip memory

Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet, Russell Tessier, Wayne
Burleson

To cite this version:
Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet, Russell Tessier, Wayne Burleson. Low latency
solution for confidentiality and integrity checking in embedded systems with off-chip memory. Recon-
figurable communication-centric Socs 2007, Jun 2007, Montpellier, France. �hal-00165288�

https://hal.science/hal-00165288
https://hal.archives-ouvertes.fr


Low latency solution for confidentiality and integrity

checking in embedded systems with off-chip memory

Romain Vaslin, Guy Gogniat
Jean-Philippe Diguet
Eduardo Wanderley

University of Bretagne Sud
LESTER CNRS FRE 3427

Rue de Saint Maud
56321 Lorient Cedex France
email: vaslin@univ-ubs.fr

Russell Tessier, Wayne Burleson

University of Massachusetts
Dept of Electrical and Computer Engineering

309G Knowles Engineering Building
Amherst, Mass. 01003

email: tessier@ecs.umass.edu

Abstract

This paper proposes a complete hardware solution for
embedded systems that fully protects off-chip memory.
Our security core is based on one-time pad (OTP) en-
cryption and a CRC integrity check module. These
modules safeguard external memories for embedded pro-
cessors against a series of well-known attacks, includ-
ing replay attacks, spoofing attacks and relocation at-
tacks. The implementation limits memory space over-
head to 18.25 or 32.75%. It also reduces memory la-
tency from 22 cycles for an alternate approach to 11
or 3 clock cycles depending on desired performance.
The loss for software execution with our solution is
only 10% compared with a non-protected solution. A
FPGA-based implementation of the security core has
been completed to gauge the security overhead and to
compare our approach with existing solutions.

1 Introduction

With the development of new wireless communication
standards like WiFi and Bluetooth, inter-entity com-
munication (cell phone, PDA) is becoming unavoid-
able. Since sensitive data are often exchanged (e.g. a
credit card number), it is necessary to protect these
transfers. Security is quickly becoming a main bot-
tleneck for communicating entities especially for em-
bedded systems where performance is limited. More
and more systems are facing hardware and software
attacks [5]. Several solutions have been proposed that
protect system architectures (secure architecture) and
the data which is transferred (cryptography). Archi-
tecture protection mainly corresponds to the protec-

tion of data and the program stored in the system
memory. Communication protection is related to the
protection of data exchanged over an insecure commu-
nication channel.
As a consequence, various solutions have emerged that
improve system protection. It is essential that these
solutions support hardware architectures for embed-
ded systems that meet tight constraints on memory
size, performance and power consumption. In the fol-
lowing sections we propose a solution to fully protect
an external memory (confidentiality and integrity) of
embedded systems.
The paper is organized as follows. Section 2 describes
the threat model and state of the art existing solu-
tions. Section 3 details the one-time pad (OTP) pro-
tection and necessary extensions for integrity check-
ing. In section 4, a typical implementation of our solu-
tion which uses an Altera NIOS II embedded processor
[14] is described. Finally, section 5 offers perspectives
on this work.

2 State of the art

2.1 Threat model

As described in [6], the external memory of an em-
bedded system can face a variety of attacks, including
those involving probing of the bus between a processor
core and the memory. Often, an adversary can easily
examine the data and address values placed on a bus.
If the bus data is sensitive it must be ciphered with an
encryption algorithm such as 3DES [1] or AES [2]. In
this case, the confidentiality will be guaranteed. With
spoofing attacks, relocation attacks or replay attacks,
data ciphering along does not provide a sufficient level



of security. A spoofing attack (Figure 1) occurs when
an attacker provides a random data value on the bus,
causing the system to malfunction. A relocation or
splicing attack (Figure 2) occurs when an instruction
put on the bus by an attacker is copied from a dif-
ferent bus address. If the whole memory is encrypted
with the same key, the swapped instruction will be
executed instead of the original instruction. For ex-
ample, a swapped instruction could make the program
jump to malicious code stored in a non-ciphered part
of memory. The last type of attack a system might
face is a replay attack (Figure 3). This attack is sim-
ilar to a relocation attack but an attacker provides a
data value that was previously located at an address
before it was overwritten.

Figure 1: Spoofing attack

Figure 2: Relocation attack

Figure 3: Replay attack

2.2 Existing solutions

This section describes three existing memory protec-
tion solutions. Two of these approaches, XOM [8] [13]
and AEGIS [12] [10] [11], also provide other security
primitives such as secure context switching and se-
curity level management. However, in this paper we
solely evaluate techniques for external memory pro-
tection. For each technique there are system concerns
which impact cores in the designated secure area.

2.2.1 XOM

The eXecute Only Memory (XOM) [8] [13] approach
which provides memory protection, is based on com-
plex key management. Each memory partition is as-
sociated with a session key that is needed to decrypt
its contents. Encrypted sessions keys are stored in
main memory and can be decrypted using an asym-
metric secure private key. Decrypted session keys are
stored in the XOM key table. The private key re-
quired for the asymmetric decryption is stored in the
secure zone of the architecture. The algorithm used
for the symmetric deciphering is an AES 256. When
the core produces a cache miss, the 256 bits read from
the memory need to be decrypted. For this case, AES
increases the memory latency (case a on Figure 4).
Data integrity is ensured by a message authentication
code [7]. A hash of the data and its virtual address is
concatenated with the data. The hash is then ciphered
with the data and stored in memory. Although effec-
tive, this solution does not protect the system against
replay attacks.

2.2.2 AEGIS

AEGIS [12] [10] [11] is an additional memory security
solution. The confidentiality in the AEGIS solution
relies on OTP encryption. The mechanisms used in
OTP will be detailed in section 3.1. This encryption
method typically has a small impact on memory la-
tency at the cost of memory space overhead. The so-
lution used by AEGIS for integrity checking is called a
cached hash tree. This hashing approach is similar to
a Merkle tree [9] but to increase the efficiency of the
method some hash tree nodes are stored in a cache
memory. For Merkle trees, only the hash root of tree
is securely stored. All hashes must traverse the tree
until the root is reached. For cached hash trees, a
hash is only performed until the desired node is found
in the hash. As a result, cached hash trees offer better
results than Merkle trees. Cached hash trees can only
be considered secure if the hash cache memory is in a
trusted area of the system.



2.2.3 PE-ICE

PE-ICE [6] uses the spreading feature of block cipher-
ing algorithms for AES to provide system confiden-
tiality and integrity. Like XOM, a tag is added to
the data before ciphering. For read-only values, the
tag includes the memory address to prevent relocation
attacks. For read-write values, the address and a ran-
dom value are included to prevent replay attacks. Due
to the spreading feature of AES, if one memory bit is
modified, a huge impact will appear in the deciphered
value. Indeed, the output of an AES is influenced
by the input. The plaintext is composed of the data
and the tag. When the system performs a compari-
son between the deciphered tag and the original one
concatenated with the data, it can detect if data in-
tegrity has been maintained. Like XOM, PE-ICE can
have an impact on memory read latencies since de-
cryption can only be performed after the read of a full
cache line from external memory. Integrity checking
is added just with a comparator for the address and
the tag. So the amount of logic needed to guarantee
integrity is not important.

3 OTP encryption with exten-
sions for integrity checking

3.1 OTP encryption standard solution

OTP encryption was initially proposed by Gilbert Ver-
nam during World War I [3], but was only recently
adapted for digital memory protection [11]. This pre-
vious work proposed to use the memory read access
time to compute a random key called an OTP. This
key is then XOR’d with the ciphered data to obtain
the retrieved plaintext. Each OTP is created before a
memory write and is used for encryption. The same
OTP is used for subsequent decryption.
In most systems, memory accesses require a long la-
tency. As a result, the cache line read latency may be
long enough to perform OTP computation with AES.
The AES algorithm is used to generate a random key.
As shown in Figures 4(b) and (c), the latency added
by encryption is reduced compared to case a which
represents previous solutions (XOM, PE-ICE). These
previous solutions use the data to be stored as the
input for AES. In the case (b) on Figure 4, the la-
tency added by OTP encryption is only the latency of
a logical XOR operation. In general, the time needed
to retrieve the data from the memory for decryption
is longer than the time needed to compute the OTP
with AES.

From a security standpoint, it is essential that the
OTP key is used only one time. The OTP key is ob-
tained with AES, so the AES inputs also need to be
used just one time. If an OTP key is used several
times, information leakage may occur. The attacker
may be able to determine if data ciphered with a same
OTP have the same values. In some cases, this leak-
age could be considered to be a problem depending on
the level of desired security.
Since OTP computation is supported by AES, the in-
puts to AES must be determined. To prevent a system
against relocation attacks, the data memory address
is used as an AES core input for OTP generation (Fig-
ure 5). To prevent replay attacks, time stamps (TS)
are used. As shown in Algorithm 1, the TS value as-
sociated with each data address is incremented by 1
after each OTP generation. For each new cache line
memory write request, the system will compute a dif-
ferent OTP since the value of TS is incremented. The
TS values are stored in a memory for later use during
memory read operations. During a read, the original
TS value is used for comparative purposes (Algorithm
2). The retrieved TS value is provided to AES dur-
ing the read request. The result of AES will give the
same OTP as the one produced for the write request
and the encrypted data will become plaintext after be-
ing XOR’d (Algorithm 2).
Read-only data does not require protection against
replay attacks because these data are never modified.
No TS values are needed for these data so the amount
of TS memory space can be reduced. Read-only data
may be the target of relocation attacks but the ad-
dress used to compute the OTP guarantees protection
against these attacks. The size of the address and the
TS might not be long enough to completely fill the
AES function input, so padding may be necessary. A
random value (RV) is used to pad the input value.

Algorithm 1 - Cache memory write request:

1− CRC (@) = CRC {plaintext}
2− Time stamp incrementation : TS (@) = TS (@) + 1

3−OTP computation : OTP = AES {TS (@) , @, RV }
4− Ciphered data = plaintext⊕OTP

5− Ciphered data ⇒ memory

6− TS (@) ⇒ TS memory

7− CRC (@) ⇒ CRC memory



Algorithm 2 - Cache memory read request:

1−Get TS (@) ⇐ TS memory

2−Get CRC (@) ⇐ CRC memory

3−OTP computation : OTP = AES {TS (@) , @, RV }
4−Get ciphered data ⇐ memory

5− Plaintext = Ciphered data⊕OTP

6− CRC (@) ≡ CRC {plaintext}
7− Plaintext ⇒ cache memory

Highlighted operations are only available for the extended OTP

solution proposed here with integrity checking

The use of time stamp and data addresses for OTP
protects a system against replay and relocation at-
tacks. If data is replayed, the TS used for ciphering
will differ from the one used for deciphering. If data is
relocated, its address will differ from the one used to
generate the OTP. In both cases, the deciphered data
will be invalid. To use this information, the secure
memory access system must be able to detect that
the deciphered data is incorrect. Thus, we present an
extension to the OTP encryption in the next section.
Our OTP implementation is efficient because it per-
forms OTP computation (operation 3 in Algorithm 2)
in parallel with memory data requests (operation 4 in
Algorithm 2). The Figure 4 provides a view of the
gain.

3.2 Integrity checking extension

The system must be able to produce an error if an
OTP core indicates an OTP mismatch. Therefore,
a detection mechanism is needed. Additionally, in-
tegrity checking must be performed with a negligible
overhead to minimize latency. Our solution to this
issue involves the use of a CRC module. Prior to
OTP generation, the CRC of the cache line to be en-
crypted (operation 1 in Algorithm 1) is stored in a
cache (operation 7 in Algorithm 1). Later, when the
processor core requests a read, the CRC32 result of
the final XOR operation is compared with the CRC
value stored in the memory (operation 6 in Algorithm
2). If data is changed following storage, the CRC of
the retrieved value will differ from the stored value,
so the attack is detected. As previously stated, the
results of decryption following a replay or relocation
attack will differ, so the CRC will differ. As shown
in Figure 4 the latency added to the original OTP
solution by our extension is the latency of CRC com-
putation and checking. This CRC computation can
be completed in one clock cycle. With the extended
OTP, the minimum latency added to a memory access
is the time to obtain the result of the XOR and the

CRC check (case b on Figure 4).
Since the CRC is performed on a full data cache line
data, the operation can only be done when all the data
have been read from the memory and XOR’d. A way
to decrease the data retrieval latency is to perform
the XOR and CRC on a 32 bit word and not on a full
cache line (256 bits for example). It means that the
system won’t have to wait for the fetch of a full cache
line for the external memory. As soon as the first 32
bits have been read, the 32 bits word is deciphered
and checked for integrity so we save the latency for
retrieving data. The decryption and integrity check
for the other 32 bits word of the cache line (case c
on Figure 4) can then be pipelined. This approach re-
duces memory latency due to security but will consum
more memory space to store the CRC of each 32 bits
words..

Figure 5: OTP write request

Figure 6: OTP read request



Figure 4: Overview of the latency added by different security solutions

Base NIOS + OTP128 NIOS + OTP128

NIOS + CRC32 + CRC8

overhead overhead

Logic (ALUTs) 2198 6193 x2.81 6095 x2.77

Memory (KB) 512 600 +18.75% 662 31.25%

Read latency 0 11(8+3) +11 3(0+3) +3
(cycles)

Write latency 0 12(8+4) +12 12(8+4) +12
(cycles)

Table 1: Cost of security for NIOS II

4 Implementation with an em-
bedded processor

4.1 Global architecture features

The Altera NIOS II embedded processor has been used
to test our new memory protection approach. The
chosen configuration includes both an instruction and
a data cache, each with 512 bytes and a 256 bits cache
line. As seen in Figures 5 and 6, NIOS caches are in-
terconnected to the OTP design via a 32 bits connec-
tion. A 32-bit wide connection is also used to connect
the NIOS II to 4 Mbits of off-chip SDRAM.
For this work, we assume that the OTP core cannot
be attacked using techniques such as fault injection.
The memory space required to store the time stamps
and CRC values depends on the nature of the stored
data. Overheads are summarized in Equation 1.
As an example, we consider a system with a total
memory size of 512 KB and the solution with a 32 bits
CRC. A total of 256 KB is read-only data and the re-
maining 256 KB is read-write (RW) data. According
to Equation 1 we need to have OTP storage = 96 KB
(32 KB for TSstorage and 64 KB for CRC32storage

with a TS SIZE and a CRC32 SIZE of 32 bits).

Time stamps are unnecessary for read-only data.

Equation 1 - OTP memory consumption

OTP storage = TSstorage + CRCstorage

TSstorage =
(

RW DATA MEMORY SIZE
CACHE LINE WIDTH

)
∗ TS SIZE

CRC32storage =
(

TOTAL MEMORY SIZE
CACHE LINE WIDTH

)
∗ CRC SIZE

For our system, an AES core of 128 bits is selected to
minimize the hardware impact of OTP on the overall
design. As a result, OTP values are 128 bits long.
Since the AES core generates 128 bits and each cache
line has 256 bits per line, each 128 bits OTP must be
used twice to encrypt a full cache line. The CRC32
module has an input of 256 bits (a full cache line).
This module produces a 32 bits output which is stored
in the CRC32 cache (Figure 5) or compared with a
value stored in the cache (Figure 6). For the pipelined
version of the design the CRC8 has a 32 bits input and
an 8 bits output. Based on Equation 1, the memory
needs for CRC storage are of importance (160KB).



4.2 Cost of security

In this section, we present the cost of adding our mem-
ory protection mechanisms to a NIOS II based sys-
tem. In Table 1, it can be seen that the impact on
the design logic size in look-up tables (ALUTs) is sig-
nificant (x2.81). Memory overhead is 18.75% for our
chosen parameters. As discussed in the previous sec-
tion, these overheads depend on the memory architec-
ture and desired security level of the system (Equa-
tion 1). As underlined before with the pipeline ver-
sion the amount of memory needed is more important
(31.25%).
The added circuitry has an effect on latency; 11 addi-
tional cycles are needed to perform read transactions
compare with a base NIOS architecture (Table 1).
These 11 cycles include 8 cycles to perform the read
of a full cache line. The last 3 clock cycles represent
the time needed to perform the XOR and CRC check
operations on the data. This overhead is significant
but as shown in Figure 4 and in Table 2, the overhead
is less important for our new approach versus previous
approaches based on AES protection. With a CRC8,
the latency is reduced to the time needed to perform
the XOR and CRC8. This value measures 3 cycles
since it is not necessary to wait for the full cache line
data to be retrieved from external memory. As soon
as the first 32 bits are fetched, the module can deci-
pher and check the integrity of these first 32 bits.
In the case of our secure architecture, the overhead
for a write request is 12 cycles. A total of 8 cycles are
due to the time required to fetch data. The last 4 cy-
cles are due to OTP management. These latencies are
significant but all solutions requiring block ciphering
will require some latency. The benefit of a solution
depends on the time required to perform encryption
(Figure 4).
In Table 1, it clearly appears that there is a trade-
off to be made between the memory and the latency
overhead. Our approach provides an opportunity to
choose the best system depending on the application.
Moreover, we target a reconfigurable architecture (an
FPGA) which allows us to select the most appropriate
architecture at system power up.

4.3 Evaluation

In the previous section, we described the cost of secu-
rity for our solution. In this section, we compare this
cost to previous solutions described in section 2.2. Ta-
ble 2 summarizes a number of relevant cost values. All
of these approaches support the same level of security
(confidentiality and integrity for an off-chip memory).

The first desired point of comparison is logic area over-
head. Unfortunately, a lack of data from the other ap-
proaches make this comparison impossible. In general,
each approach requires at least one AES core. Differ-
ences include the number of cores used by each solu-
tion and the method chosen for integrity check. For
PE-ICE, there is no hardware cost for integrity check-
ing. For AEGIS, the integrity check (cached hashed
tree) uses an SHA-1 algorithm which is generally per-
formed in software. The software approach can be
time consuming. In [10], the authors propose a hard-
ware implementation of SHA-1 although no overhead
values are presented. For our case, the logic overhead
added by integrity checking is only in the CRC check
module.
In terms of memory, our solution consumes less space
than other solutions even if the overhead is around
32% for the version with the CRC8. AEGIS also guar-
antees confidentiality using OTP so it also requires
space for time stamps. However, the use of a cached
hash tree for integrity checking causes a memory over-
head of 33%. For XOM no memory overhead figures
have been published. However, since the XOM in-
tegrity check uses a MAC solution some storage space
will be needed to store hash signatures. Memory over-
head for PE-ICE results from tags (address and ran-
dom values) added to the data and also from on-chip
storage needed to securely store random values.
The next comparison point is system memory latency.
If we compare the latency of our new approach with an
earlier AES based solution (such as XOM or PE-ICE),
it will be less. For PE-ICE, latency is an issue due to
the time needed to check if a tag is the same as one
stored in on-chip memory. For AEGIS, which is based
on OTP encryption, the latency caused by confiden-
tiality is reasonable, but the integrity check is done in
software. This issue badly impacts the system. For
example, in [10], the authors report that the SHA-1
algorithm needs 4715 cycles to compute the hash. If
the implementation was done in hardware, the latency
would be around 80 cycles which is still significant. It
is clearly shown in Table 2 that our approach reduces
latency compared to other approaches. Only 3/11 cy-
cles are needed instead of the 22 cycles required by
previous AES based solutions.



base AES our solution our solution XOM PE-ICE AEGIS
(no integrity) OTP + CRC32 OTP + CRC8 AES + MAC AES OTP + hash trees

overhead overhead overhead overhead overhead
Memory (KB) 512 600 +18.75% 662 31.25% N/A N/A 776 +50.7% 768 +50%
Read latency 22(14+8) 11(8+3) -11 3(0+3) -19 22 0 25(17+8) +3 ≈(SHA-1) +4502/69

(cycles)
Write latency 22(14+8) 12(8+4) -10 12(8+4) -10 22 0 26(18+8) +4 N/A N/A

(cycles)

Table 2: Overhead comparison of all the solutions with a classic AES protected solution. The latencies presented, are those
added by encryption (the time to fetch data is included, 8 cycles are required)

Figure 7: Estimation of the overhead based on the number
of cache miss with non-protected architecture for different
application executions

Finally, Figure 7 gives an overview of the speed-up
versus software execution for our security solution.
For the most efficient version of our approach we re-
duce the overhead about 36% compared with a stan-
dard solution based on an AES ciphering (with no
integrity checking). The execution overhead due to
security compared with a non-protected solution is
around 10%, depending on the cache miss rate due to
the application. The price of this very high efficency
in software execution is the memory footprint. For
the pipelined version of our proposition, the overhead
in memory is around 32% which is less than all other
solutions. So we have a choice between : a secured
system with a low memory footprint and an average
latency; or a very low latency system with an medium
memory overhead.

5 Perspectives

In this paper, we have evaluated the impact of off-chip
memory security on a processor architecture and give
some estimation of the software execution overhead. A
number of interesting issues remain. The next step is
to study what is the best trade-off for memory/latency
overhead. In this paper, we only focus on 2 versions;
one for a full cache line CRC and the second one for

a 32 bits CRC. It will be interesting to perform some
experiments on 64 bits and 128 bits versions.
Since many embedded systems require battery-based
operation, power consumption is also an important
issue. A complete analysis of the power costs of our
approach is needed to evaluate the overhead of our so-
lution on power consumption. From a security stand-
point, additional work is needed to protect on-chip
memory used to store TS and CRC values. This mem-
ory could be targeted by fault injection attacks leading
to incorrect system operation.
The work presented in this paper uses a reconfigurable
target (FPGA). The features of reconfigurable archi-
tectures provide some interesting perspectives for se-
curity. It may be possible to adapt the security level
of the architecture in response to different threat lev-
els. In [4], the authors propose reconfigurable mecha-
nisms to provide for a fault tolerant AES. Another se-
curity adaptation opportunity might involve real-time
operating systems (RTOS). The RTOS may have spe-
cific primitives to enable hardware security primitives.
The isolation of non-sensitive data would reduce the
amount of memory needed to store TS and CRC tags.

6 Conclusion

This paper presents an efficient security solution (con-
fidentiality and integrity) for off-chip memory. OTP
encryption is combined with CRC integrity checking
to reduce memory access latency and secure memory
overheads. The demanding requirements of embedded
systems have led us to propose a solution for such sys-
tems. The next step for this approach might be the
implementation of memory overheads (TS and CRC)
in non-secure parts of the architecture which could be
exposed to fault injection.

References

[1] 3DES RFC 1851. ftp://ftp.rfc-editor.org/in-
notes/rfc1851.txt, September 1995.

[2] AES RFC 3565. ftp://ftp.rfc-editor.org/in-
notes/rfc3565.txt, July 2003.



[3] Ross J. Anderson. Security Engineering: A Guide to
Building Dependable Distributed Systems. John Wiley
& Sons, Inc., 2001.

[4] Wayne Burleson, Guy Gogniat, and Tilman Wolf.
Reconfigurable security support for embedded sys-
tems. In HICSS ’06: Proceedings of the 39th Annual
Hawaii International Conference on System Sciences
(HICSS’06), page 250.1, January 2006.

[5] David Dagon, Tom Martin, and Thad Starner. Mobile
phones as computing devices: The viruses are coming!
IEEE Pervasive Computing, 3(4):11–15, 2004.

[6] Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre
Guillemin, Michel Bardouillet, and Albert Martinez.
A parallelized way to provide data encryption and in-
tegrity checking on a processor-memory bus. In DAC
’06: Proceedings of the 43rd annual conference on De-
sign automation, pages 506–509, July 2006.

[7] H. Krawczyk, M. Bellare, and R.Canetti. Hmac:
Keyed-hashing for message authentification, February
1997.

[8] David Lie, Chandramohan A. Thekkath, and Mark
Horowitz. Implementing an untrusted operating sys-
tem on trusted hardware. In SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating sys-
tems principles, pages 178–192, October 2003.

[9] R. C. Merkle. Protocols for public key cryptography.
In IEEE Symposium on Security and Privacy, pages
122–134, 1980.

[10] G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. Aegis: archi-
tecture for tamper-evident and tamper-resistant pro-
cessing. In ICS ’03: Proceedings of the 17th annual in-
ternational conference on Supercomputing, pages 160–
171, 2003.

[11] G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. Efficient
memory integrity verification and encryption for se-
cure processors. In MICRO 36: Proceedings of the
36th annual IEEE/ACM International Symposium on
Microarchitecture, page 339, 2003.

[12] G. Edward Suh, Charles W. O’Donnell, Ishan
Sachdev, and Srinivas Devadas. Design and imple-
mentation of the aegis single-chip secure processor
using physical random functions. In ISCA ’05: Pro-
ceedings of the 32nd Annual International Symposium
on Computer Architecture, pages 25–36, 2005.

[13] David Lie Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tam-
per resistant software. In ASPLOS-IX: Proceedings
of the ninth international conference on Architectural
support for programming languages and operating sys-
tems, pages 168–177, 2000.

[14] ALTERA website. http://www.altera.com/.


