
HAL Id: hal-00165219
https://hal.science/hal-00165219

Submitted on 25 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exponential inequalities for self-normalized martingales
with applications

Bernard Bercu, Abderrahmen Touati

To cite this version:
Bernard Bercu, Abderrahmen Touati. Exponential inequalities for self-normalized martingales with
applications. The Annals of Applied Probability, 2008, 18, pp.1848-1869. �hal-00165219�

https://hal.science/hal-00165219
https://hal.archives-ouvertes.fr


ha
l-

00
16

52
19

, v
er

si
on

 1
 -

 2
5 

Ju
l 2

00
7

EXPONENTIAL INEQUALITIES FOR SELF-NORMALIZED

MARTINGALES WITH APPLICATIONS

BERNARD BERCU AND ABDERRAHMEN TOUATI

Abstract. We propose several exponential inequalities for self-normalized

martingales similar to those established by De la Peña. The keystone is the

introduction of a new notion of random variable heavy on left or right. Applica-

tions associated with linear regressions, autoregressive and branching processes

are also provided.

1. Introduction

Let (Mn) be a locally square integrable real martingale adapted to a filtration
F = (Fn) with M0 = 0. The predictable quadratic variation and the total quadratic
variation of (Mn) are respectively given by

<M>n=

n∑

k=1

E[∆M2
k |Fk−1] and [M ]n =

n∑

k=1

∆M2
k

where ∆Mn = Mn − Mn−1. The celebrated Azuma-Hoeffding’s inequality [4] is as
follows.

Theorem 1.1 (Azuma-Hoeffding’s inequality). Let (Mn) be a locally square inte-

grable real martingale such that, for each 1 ≤ k ≤ n, ak ≤ ∆Mk ≤ bk a.s. for some

constants ak < bk. Then, for all x ≥ 0,

(1.1) P(|Mn| ≥ x) ≤ 2 exp
(
− 2x2

∑n
k=1(bk − ak)2

)
.

Another result which involves the predictable quadratic variation (<M>n) is the
so-called Freedman’s inequality [12].

Theorem 1.2 (Freedman’s inequality). Let (Mn) be a locally square integrable real

martingale such that, for each 1 ≤ k ≤ n, |∆Mk| ≤ c a.s. for some constant c > 0.
Then, for all x, y > 0,

(1.2) P(Mn ≥ x, <M>n≤ y) ≤ exp
(
− x2

2(y + cx)

)
.

Over the last decade, extensive study has been made to establish exponential
inequalities for (Mn) relaxing the boundedness assumption on its increments. On
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the one hand, under the standard Bernstein’s condition that for n ≥ 1, p ≥ 2 and
for some constant c > 0,

n∑

k=1

E[|∆Mk|p|Fk−1] ≤
cp−2p!

2
<M>n,

De la Peña [8] recovers (1.2). Van de Geer [11] also proves (1.2) replacing <M>n by
a suitable increasing process. On the other hand, if (Mn) is conditionally symmetric
which means that for n ≥ 1, the conditional distribution of ∆Mn given Fn−1 is
symmetric, then De la Peña [8] establishes the nice following result.

Theorem 1.3 (De la Peña’s inequality). Let (Mn) be a locally square integrable

and conditionally symmetric real martingale. Then, for all x, y > 0,

(1.3) P(Mn ≥ x, [M ]n ≤ y) ≤ exp
(
−x2

2y

)
.

Some recent extensions of the above inequalities in a more general framework
including discrete-time martingales can also be found in [9], [10] where the condi-
tionally symmetric assumption is still required for (1.3). By a careful reading of
[8], one can see that (1.3) is a two-sided exponential inequality. More precisely, if
(Mn) is conditionally symmetric then, for all x, y > 0,

(1.4) P(|Mn| ≥ x, [M ]n ≤ y) ≤ 2 exp
(
−x2

2y

)
.

By comparing (1.4) and (1.1), we are only halfway to Azuma-Hoeffding’s inequality
which holds without the total quadratic variation [M ]n.

The purpose of this paper is to establish several exponential inequalities in the
spirit of the original work of De la Peña [8]. In Section 2, we shall propose two-sided
exponential inequalities involving <M>n as well as [M ]n without any assumption
on the martingale (Mn). Section 3 is devoted to the introduction of a new concept
of random variables heavy on left or right. This notion is really useful if one is
only interested in obtaining a one-sided exponential inequality for (Mn). It also
provides a clearer understanding of De la Peña’s conditional symmetric assumption.
We shall show in Section 4 that this new concept allows us to prove (1.3). As in [8],
we shall also propose exponential inequalities for (Mn) self-normalized by [M ]n or
<M>n. Section 5 is devoted to applications on linear regressions, autoregressive
and branching processes. All technical proofs are postponed in the appendices.

2. Two-sided exponential inequalities

This section is devoted to two-sided exponential inequalities involving both <
M>n and [M ]n. We start with the following basic lemma.

Lemma 2.1. Let X be a square integrable random variable with mean zero and
variance σ2 > 0. For all t ∈ R, denote

(2.1) L(t) = E

[
exp

(
tX − t2

2
X2

)]
.

Then, we have for all t ∈ R,

(2.2) L(t) ≤ 1 +
t2

2
σ2.

Proof. The proof is given in Appendix A. �
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Our first result, without any assumption on (Mn), is as follows.

Theorem 2.1. Let (Mn) be a locally square integrable martingale. Then, for all

x, y>0,

(2.3) P

(
|Mn| ≥ x, [M ]n+ <M>n≤ y

)
≤ 2 exp

(
−x2

2y

)
.

For self-normalized martingales, we obtain the following result.

Theorem 2.2. Let (Mn) be a locally square integrable martingale. Then, for all

x, y > 0, a ≥ 0 and b > 0,

(2.4) P

( |Mn|
a + b <M>n

≥ x, <M>n≥ [M ]n + y

)
≤2 exp

(
−x2

(
ab +

b2y

2

))
.

Moreover, we also have

(2.5) P

( |Mn|
a + b <M>n

≥ x, [M ]n ≤ y <M>n

)

≤ 2 inf
p>1

(
E

[
exp

(
−(p − 1)

x2

(1 + y)

(
ab +

b2

2
<M>n

))])1/p

.

Proof. The proof are given in Appendix B. �

Remark 2.1. It is not hard to see that (2.4) and (2.5) also hold exchanging the roles
of <M>n and [M ]n.

3. Random variables heavy on left or right

This section deals with our new notion of random variables heavy on left or right.
It allows us to improve Lemma 2.1

Definition 3.1. We shall say that an integrable random variable X is heavy on left
if E[X ] = 0 and, for all a > 0, E[Ta(X)] ≤ 0 where

Ta(X) = min(|X |, a)sign(X)

is the truncated version of X . Moreover, X is heavy on right if −X is heavy on
left.

Remark 3.1. Let F be the cumulative distribution function associated with X .
Standard calculation leads to E[Ta(X)] = −H(a) where H is the function defined,
for all a > 0, by

H(a) =

∫ a

0

F (−x) − (1 − F (x−)) dx

where F (x−) stands for the left limit of F at point x. Consequently, X is heavy
on left if E[X ] = 0 and, for all a > 0, H(a) ≥ 0. Moreover, H is equal to zero at
infinity as

lim
a→∞

H(a) = E[X ] = 0.

Furthermore, on can observe that a random variable X is symmetric if and only if
X is heavy on left and on right.

The following lemma is the keystone of our one-sided exponential inequalities.
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Lemma 3.2. For a random variable X and for all t ∈ R, let

L(t) = E

[
exp

(
tX − t2

2
X2

)]
.

1) If X is heavy on left, then for all t ≥ 0, L(t) ≤ 1.
2) If X is heavy on right, then for all t ≤ 0, L(t) ≤ 1.
3) If X is symetric, then for all t ∈ R, L(t) ≤ 1.

Proof. The proof is given in Appendix A. �

We shall now provide several examples of random variables heavy on left. More
details concerning those examples may be found in Appendix E. We wish to point
out that most of all positive random variables centered around their mean are heavy
on left. As a matter of fact, let Y be a positive integrable random variable with
mean m and denote

X = Y − m.

Discrete random variables.

1) If Y has a Bernoulli distribution B(p) with parameter 0 < p < 1, then X is
heavy on left, heavy on right, or symetric if p < 1/2, p > 1/2, or p = 1/2,
respectively.

2) If Y has a Geometric distribution G(p) with parameter 0 < p < 1, then X
is always heavy on left.

3) If Y has a Poisson distribution P(λ) with parameter λ > 0, then X is heavy
on left as soon as

2 exp(−λ)

[λ]∑

k=0

λk

k!
≥ 1.

One can observe that this condition is always fulfilled if λ is a positive
integer, see lemma 1 of [1].

Continuous random variables.

1) If Y has an exponential distribution E(λ) with parameter λ > 0, then X is
always heavy on left.

2) If Y has a Gamma distribution G(a, λ) with parameters a, λ > 0, then X
is always heavy on left.

3) If Y has a Pareto distribution with parameters a, λ > 0 i.e. Y = a exp(Z)
where Z has an exponential distribution E(λ), then X is always heavy on
left.

4) If Y has a log-normal distribution with parameters m∈ R and σ2 > 0 i.e.
Y = exp(Z) where Z has a Normal distribution N (m, σ2), then X is always
heavy on left.

4. One-sided exponential inequalities

Our next results are related to martingales heavy on left in the sense of the
following definition.

Definition 4.1. Let (Mn) be a locally square integrable martingale adapted to a
filtration F = (Fn). We shall say that (Mn) is heavy on left if all its increments
are conditionally heavy one left. In other words, for all n ≥ 1 and for any a > 0,
E[Ta(∆Mn)|Fn−1] ≤ 0. Moreover, (Mn) is heavy on right if (−Mn) is heavy on
left.
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We shall recover Theorem 1.3 under the assumption that (Mn) is heavy on left.

Theorem 4.1. Let (Mn) be a locally square integrable martingale heavy on left.

Then, for all x, y > 0,

(4.1) P

(
Mn ≥ x, [M ]n ≤ y

)
≤ exp

(
−x2

2y

)
.

For self-normalized martingales, our results are as follows.

Theorem 4.2. Let (Mn) be a locally square integrable martingale heavy on left.

Then, for all x > 0, a ≥ 0 and b > 0,

(4.2) P

(
Mn

a + b[M ]n
≥ x

)
≤ inf

p>1

(
E

[
exp

(
−(p − 1)x2

(
ab +

b2

2
[M ]n

))])1/p

,

and, for all y > 0,

(4.3) P

(
Mn

a + b[M ]n
≥ x, [M ]n ≥ y

)
≤ exp

(
−x2

(
ab +

b2y

2

))
.

Moreover, we also have

(4.4) P

(
Mn

a + b <M>n
≥ x, [M ]n ≤ y <M>n

)

≤ inf
p>1

(
E

[
exp

(
−(p − 1)

x2

y

(
ab +

b2

2
<M>n

))])1/p

.

Proof. The proof are given in Appendix C. �

Remark 4.1. In the particular case p = 2, Theorem 4.2 is due to De la Peña [8]
under the conditional symmetric assumption on (Mn). The only difference between
(2.5) and (4.4) is that (1 + y) is replaced by y in the upper-bound of (4.4).

Remark 4.2. A locally square integrable martingale (Mn) is Gaussian if, for all
n ≥ 1, the distribution of its increments ∆Mn given Fn−1 is N (0, ∆ < M >n).
Moreover, (Mn) is called sub-Gaussian if there exists some constant α > 0 such
that, for all n ≥ 1 and t ∈ R,

(4.5) E

[
exp(t∆Mn)|Fn−1

]
≤ exp

(α2t2

2
∆<M>n

)
.

It is well-known that if the increments of (Mn) are bounded or if (Mn) is Gaussian,
then (Mn) is sub-Gaussian. In addition, if (Mn) satisfies (4.5), then inequalities
(4.1), (4.2) and (4.3) hold with appropriate upper-bounds, replacing [M ]n by <M>n

everywhere. For example, (4.2) can be rewritten as

(4.6) P

(
Mn

a + b<M>n
≥ x

)
≤ inf

p>1

(
E

[
exp

(
−(p − 1)

x2

α2

(
ab +

b2

2
<M>n

))])1/p

.
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5. Applications

5.1. Linear regressions. Consider the stochastic linear regression given, for all
n ≥ 0, by

(5.1) Xn+1 = θφn + εn+1

where Xn, φn and εn are the observation, the regression variable and the driven
noise, respectively. We assume that (φn) is a sequence of independent and iden-
tically distributed random variables. We also assume that (εn) is a sequence of
identically distributed random variables, with mean zero and variance σ2 > 0.
Moreover, we suppose that, for all n ≥ 0, the random variable εn+1 is independent
of Fn where Fn = σ(φ0, ε1, . . . , φn−1, εn). In order to estimate the unknown pa-

rameter θ, we make use of the least-squares estimator θ̂n given, for all n ≥ 1, by

(5.2) θ̂n =

∑n
k=1 φk−1Xk∑n

k=1 φ2
k−1

It immediately follows from (5.1) and (5.2) that

(5.3) θ̂n − θ = σ2 Mn

<M>n

where

Mn =
n∑

k=1

φk−1εk and <M>n= σ2
n∑

k=1

φ2
k−1.

Let H and L the cumulant generating functions of the sequences (φ2
n) and (ε2

n),
respectively given, for all t ∈ R, by

H(t) = log E[exp(tφ2
n)] and L(t) = log E[exp(tε2

n)]

Corollary 5.1. Assume that L is finite on some interval [0, c] with c > 0 and denote
by I its Fenchel-Legendre transform on [0, c],

I(x) = sup
0≤t≤c

{xt − L(t)}.

Then, for all n ≥ 1, x > 0 and y > 0, we have

(5.4) P(|θ̂n − θ| ≥ x) ≤2 inf
p>1

exp
(n

p
H

(
− (p − 1)x2

2σ2(1 + y)

))
+ exp

(
−nI

(σ2y

n

))
.

Remark 5.1. Corollary 5.1 is also true if (φn, εn) is a sequence of independent and
identically distributed random vectors of R

2 such that the marginal distribution of
εn is symmetric. By use of (4.4), inequality (5.4) holds replacing (1 + y) by y in
the argument of H .

Remark 5.2. As soon as the sequence (εn) is bounded, the right-hand side of (5.4)
vanishes since we may directly compare [Mn] with <M>n. For example, assume
that (εn) is distributed as a centered Bernoulli B(p) distribution with parameter
0 < p < 1. If r = max(p, q), we clearly have for all n ≥ 0,

[M ]n ≤ r2

pq
<M>n .
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Consequently, we immediately infer from (2.5) that for all n ≥ 1 and x > 0,

P(|θ̂n − θ| ≥ x) ≤ 2 exp
(n

2
H

(
− x2

4r2

))
.

Furthermore, assume that (φn) is distributed as a normal N (0, τ2) distribution
with variance τ2 > 0. Then, we deduce that for all n ≥ 1 and x > 0,

P(|θ̂n − θ| ≥ x) ≤ 2 exp
(
−n

4
log

(
1 +

τ2x2

2r2

))
.

Proof. It follows from (2.5) that, for all n ≥ 1, x > 0 and y > 0,

P(|θ̂n − θ| ≥ x) = P

(
|Mn| ≥

x

σ2
<M>n

)
≤ Pn(x, y) + Qn(y)

where Qn(y) = P([M ]n > y<M>n) and

Pn(x, y) = 2 inf
p>1

(
E

[
exp

(
−(p − 1)

x2

2σ4(1 + y)
<M>n

)])1/p

,

= 2 inf
p>1

exp
(n

p
H

(
− (p − 1)x2

2σ2(1 + y)

))
.

In addition, for all y > 0 and 0 ≤ t ≤ c,

Qn(y) ≤ P

( n∑

k=1

ε2
k > σ2y

)
≤ exp(−σ2ty)E

[
exp

(
t

n∑

k=1

ε2
k

)]
,

≤ exp(−σ2ty + nL(t)) ≤ exp
(
−nI

(σ2y

n

))
,

which achieves the proof of Corollary 5.1. �

5.2. Autoregressive processes. Consider the autoregressive process given, for
all n ≥ 0, by

(5.5) Xn+1 = θXn + εn+1

where Xn and εn are the observation and the driven noise, respectively. We assume
that (εn) is a sequence of independent and identically distributed random variables
with standard N (0, σ2) distribution where σ2 > 0. The process is said to be stable
if |θ| < 1, unstable if |θ| = 1 and explosive if |θ| > 1. We can estimate the unknown
parameter θ by the least-squares or the Yule-Walker estimators given, for all n ≥ 1,
by

(5.6) θ̂n =

∑n
k=1 Xk−1Xk∑n

k=1 X2
k−1

and θ̃n =

∑n
k=1 Xk−1Xk∑n

k=0 X2
k

.

It is well-known that θ̂n and θ̃n both converge almost surely to θ and their fluctua-
tions can be found in [20]. In the stable case |θ| < 1, the large deviation principles
were established in [6]. More precisely, set

a =
θ −

√
θ2 + 8

4
and b =

θ +
√

θ2 + 8

4
.

Assume that X0 is independent of (εn) with N (0, σ2/(1− θ2)) distribution. Then,

(θ̂n) and (θ̃n) satisfy large deviation principles with good rate functions respectively
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given by

I(x) =





1

2
log

(
1 + θ2 − 2θx

1 − x2

)
if x ∈ [a, b],

log | θ − 2x | otherwise,

J(x) =






1

2
log

(
1 + θ2 − 2θx

1 − x2

)
if x ∈]− 1, 1[,

+∞ otherwise.

It is only recently that sharp large deviation principles were established for the

Yule-Walker estimator θ̃n in the stable, unstable and explosive cases [7]. Much of

work remains to be done for the least-squares estimator θ̂n. Our goal is to propose,

whatever the value of θ is, a very simple exponential inequality for both θ̂n and θ̃n.
For the sake of simplicity, we assume that X0 is independent of (εn) with N (0, τ2)
distribution where τ2 ≥ σ2.

Corollary 5.2. For all n ≥ 1 and x > 0, we have

(5.7) P(|θ̂n − θ| ≥ x) ≤ 2 exp
(
− nx2

2(1 + yx)

)

where yx is the unique positive solution of the equation h(yx) = x2 and h is the
function h(x) = (1 + x) log(1 + x) − x. Moreover, for all n ≥ 1 and x > 0, we also
have

(5.8) P(|θ̃n − θ| ≥ x + |θ|) ≤ 2 exp
(
− nx2

2(1 + yx)

)
.

Proof. The proof is given in Appendix D. �

Remark 5.3. Inequality (5.7) can be very simple if x is small enough. As a matter
of fact, one can easily see that for all 0 < x < 1, h(x) < x2/4. Consequently, it
immediately follows from (5.7) that, for all 0 < x < 1/2,

P(|θ̂n − θ| ≥ x) ≤ 2 exp
(
− nx2

2(1 + 2x)

)
.

Moreover, if θ > 0, we can deduce from (5.6) that, for all x > 0,

P(θ̃n − θ ≥ x) ≤ exp
(
− nx2

2(1 + yx)

)
.

5.3. Branching processes. Consider the Galton-Watson process starting from
X0 = 1 and given, for all n ≥ 1, by

(5.9) Xn =

Xn−1∑

k=1

Yn,k

where (Yn,k) is a sequence of independent and identically distributed, nonnegative
integer-valued random variables. The distribution of (Yn,k), with finite mean m
and variance σ2, is commonly called the offspring or reproduction distribution.
Hereafter, we shall assume that m > 1. In order to estimate the offspring mean m,
we can make use of the Lotka-Nagaev or the Harris estimators given, for all n ≥ 1,
by

(5.10) m̃n =
Xn

Xn−1
and m̂n =

∑n
k=1 Xk∑n

k=1 Xk−1
.
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Without loss of generality, we can suppose that the set of extinction of the process
(Xn) is negligeable. Consequently, the Lokta-Nagaev estimator m̃n is always well-
defined. It is well-known that m̃n and m̂n both converge almost surely to m and
their fluctuations are given in [2], [13], [14]. Moreover, the large deviation properties
associated with (m̃n) may be found in [3], [18], [19]. Our goal is now to establish, as
in the previous sections, exponential inequalities for both m̃n and m̂n. Denote by L
the cumulant generating function associated with the centered offspring distribution
given, for all t ∈ R, by L(t) = log E[exp(t(Yn,k − m))].

Corollary 5.3. Assume that L is finite on some interval [−c, c] with c > 0 and let I
be its Fenchel-Legendre transform,

I(x) = sup
−c≤t≤c

{xt − L(t)}.

Then, for all n ≥ 1 and x > 0,

(5.11) P(|m̃n − m| ≥ x) ≤ 2E[exp(−J(x)Xn−1)]

where J(x) = min(I(x), I(−x)). Moreover, we also have

(5.12) P(|m̃n − m| ≥ x) ≤ 2 inf
p>1

(
E

[
exp(−(p − 1)J(x)Xn−1)

])1/p

.

In addition, if Sn =

n∑

k=0

Xk, we have for all n ≥ 1 and x > 0,

(5.13) P(|m̂n − m| ≥ x) ≤ 2 inf
p>1

(
E

[
exp(−(p − 1)J(x)Sn−1)

])1/p

.

Proof. The proof is given in Appendix E. �

Remark 5.4. On the one hand, inequality (5.12) obviously holds for the Harris
estimator m̂n since we always have Sn ≥ Xn. On the other hand, in order to precise
the right-hand side of (5.11), (5.12) or (5.13), it is necessary to find an upper-bound
or to provide an explicit expression of the moment generating function of Xn. One
can easily carry out this calculation when the offspring distribution is the geometric
G(p) distribution with parameter 0 < p < 1. As a matter of fact, in that particular
case, the offspring mean m = 1/p and it follows from formula (7.3) of [14] that for
all 0 < s < 1,

E[sXn ] ≤ pns

1 − s
.

Consequently, for all n ≥ 1 and x > 0, we obtain the simple inequality

P(|m̃n − m| ≥ x) ≤ 2pn exp(−J(x))

p(exp(−J(x)) − 1)
.

If the offspring distribution is not geometric, on can precisely estimate the moment
generating function of Xn using Theorem 1, page 80 of [2] which gives a good
approximation of the distribution of Xn based on the limiting distribution

W = lim
n→∞

Xn

mn
a.s.
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Appendix A.

This appendix is devoted to the proofs of Lemma 2.1 and Lemma 3.2. Lemma
2.1 immediately follows from Jensen’s inequality. As a matter of fact, (2.1) implies
that for all t ∈ R,

L(t) ≥ exp
(

E

[
tX − t2

2
X2

])
≥ exp(− t2

2
σ2).

Consequently, we obtain that for all t ∈ R,

(A.1) L(t) ≥ 1 − t2

2
σ2.

Furthermore, for all t ∈ R,

(A.2) L(t) + L(−t) = 2 E

[
exp

(
− t2

2
X2

)
cosh(tX)

]
≤ 2

by the well-known inequality cosh(x) ≤ exp(x2/2). Hence, we obtain from (A.1)
together with (A.2) that for all t ∈ R,

L(t) ≤ 2 − L(−t) ≤ 1 +
t2

2
σ2.

Lemma 3.2 is much more difficult to prove. Let f be the function defined, for all
x ∈ R, by

f(x) = exp
(
x − x2

2

)
.

We clearly have f ′(x) = (1 − x)f(x) and f ′(−x) = (1 + x)f(−x). We shall also
make use of the functions a and b defined, for all x ∈ R, by a(x) = f ′(−x) and
b(x) = f ′(−x)−f ′(x). One can realize that, for all x > 0, 0 < a(x) < 1, 0 < b(x) <
2 and a′(x) < 0 as a′(x) = −(2x + x2)f(−x). After those simple preliminaries, we
are in position to prove Lemma 3.2. For all t ∈ R,

L(t) = E

[
exp

(
tX − t2X2

2

)]
=

∫

R

f(tx) dF (x)

where F is the distribution function associated with X . Integrating by parts, we
have for all t ∈ R,

L(t) = −t

∫

R

f ′(tx)F (x) dx = −t

∫ 0

−∞

f ′(tx)F (x) dx − t

∫ +∞

0

f ′(tx)F (x) dx,

= −t

∫ +∞

0

f ′(−tx)F (−x) dx − t

∫ +∞

0

f ′(tx)F (x) dx.(A.3)

Consequently, as

−t

∫ ∞

0

f ′(tx) dx =

[
− exp

(
tx − t2x2

2

)]+∞

0

= 1,

we obtain from (A.3) that, for all t ∈ R, L(t) = 1 − tI(t) where

(A.4) I(t)=

∫ +∞

0

f ′(−tx)F (−x)dx −
∫ +∞

0

f ′(tx)(1 − F (x))dx=A(t) + B(t)
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with

A(t) =

∫ +∞

0

a(tx)(F (−x) − (1 − F (x))) dx,

B(t) =

∫ +∞

0

b(tx)(1 − F (x)) dx.

First of all, assume that X is heavy on left. Our goal is to show that, for all t > 0,
the integral I(t) is nonnegative. We obviously have, for all t > 0, B(t) ≥ 0 as
b(tx) > 0. In addition, for any a > 0, let

H(a) =

∫ a

0

F (−x) − (1 − F (x)) dx.

Since H ′(a) = F (−a) − (1 − F (a)) almost everywhere, integrating once again by
parts, we find that

A(t) =

∫ +∞

0

a(tx)H ′(x) dx =
[
a(tx)H(x)

]+∞

0
−

∫ +∞

0

ta′(tx)H(x) dx,

= −t

∫ +∞

0

a′(tx)H(x) dx(A.5)

as H(0) = 0 and H vanishes at infinity. Hereafter, as X is heavy on left, H(a) ≥ 0
for all a ≥ 0. Moreover, we recall that, for all x > 0, a′(x) < 0. Hence, we
immediately deduce from (A.5) that, for all t > 0, A(t) ≥ 0. Consequently, relation
(A.4) leads to I(t) ≥ 0 and L(t) ≤ 1 for all t > 0, which completes the proof of
part 1) of Lemma 3.2. Next, if X is heavy on right, −X is heavy on left. Hence,
we immediately infer from (2.1) and part 1) of Lemma 3.2 that L(t) ≤ 1 for all
t < 0. Finally, part 3) of Lemma 3.2 follows from the conjunction of parts 1) and
2). Another straighforward way to prove part 3) is as follows. If X is symetric, we
have for all t ∈ R,

L(t) =

∫

R

f(tx) dF (x) =

∫ +∞

0

(f(tx) + f(−tx)) dF (x),

= 2

∫ +∞

0

exp(−t2x2/2) cosh(tx) dF (x) ≤ 1

by the well-known inequality cosh(x) ≤ exp(x2/2).

Appendix B.

In order to prove Theorem 2.1 and Theorem 2.2, we shall often make use of the
following lemma.

Lemma B.1. Let (Mn) be a locally square integrable martingale. For all t ∈ R and
n ≥ 0, denote

Vn(t) = exp
(
tMn − t2

2

(
[M ]n+ <M>n

))
.

Then for all t ∈ R, (Vn(t)) is a positive supermartingale with E[Vn(t)] ≤ 1.

Proof. For all t ∈ R and n ≥ 1, we have

Vn(t) = Vn−1(t) exp
(
t∆Mn − t2

2

(
∆[M ]n + ∆ <M>n

))
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where ∆Mn = Mn−Mn−1, ∆[M ]n = ∆M2
n and ∆ <M>n= E[∆M2

n|Fn−1]. Hence,
we deduce from Lemma 2.1 that for all t ∈ R,

E[Vn(t)|Fn−1] ≤ Vn−1(t) exp
(
− t2

2
∆ <M>n

)(
1 +

t2

2
∆ <M>n

)
,

≤ Vn−1(t).

Consequently, for all t ∈ R, (Vn(t)) is a positive supermartingale such that E[Vn(t)] ≤
E[Vn−1(t)] which implies that E[Vn(t)] ≤ E[V0(t)] = 1. �

We are now in position to prove Theorem 2.1 and Theorem 2.2 inspired by the
original work of De la Peña [8]. First of all, denote

Zn = [M ]n+ <M>n .

For all x, y > 0, let

An = {|Mn| ≥ x, Zn ≤ y}.
We have the decomposition An = A+

n ∪ A−
n where A+

n = {Mn ≥ x, Zn ≤ y} and
A−

n = {Mn ≤−x, Zn ≤ y}. By Markov’s inequality, we have for all t > 0,

P(A+
n ) ≤ E

[
exp

( t

2
Mn − tx

2

)
1IA+

n

]
,

≤ E

[
exp

( t

2
Mn − t2

4
Zn

)
exp

( t2

4
Zn − tx

2

)
1IA+

n

]
,

≤ exp
( t2y

4
− tx

2

)√
E[Vn(t)]P(A+

n ).

Hence, we deduce from Lemma B.1 that for all t > 0,

(B.1) P(A+
n ) ≤ exp

( t2y

4
− tx

2

)√
P(A+

n ).

Dividing both sides of (B.1) by
√

P(A+
n ) and choosing the value t = x/y, we find

that

P(A+
n ) ≤ exp

(
−x2

2y

)
.

We also find the same upper-bound for P(A−
n ) which immediately leads to (2.3).

We next proceed to the proof of Theorem 2.2 in the special case a = 0 and b = 1
inasmuch as the proof for the general case follows exactly the same lines. For all
x, y > 0, let

Bn = {|Mn| ≥ x <M>n, <M>n−[M ]n ≥ y} = B+
n ∪ B−

n

where

B+
n = {Mn ≥ x<M>n, <M>n−[M ]n ≥ y},

B−
n = {Mn ≤−x<M>n, <M>n−[M ]n ≥ y}.

By Cauchy-Schwarz’s inequality, we have for all t > 0,

P(B+
n ) ≤ E

[
exp

( t

2
Mn − tx

2
<M>n

)
1IB+

n

]
,

≤ E

[
exp

( t

2
Mn − t2

4
Zn

)
exp

( t

4
(t − 2x) <M>n +

t2

4
[M ]n

)
1IB+

n

]
.(B.2)
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Consequently, we obtain from (B.2) with the particular choice t = x that

(B.3) P(B+
n ) ≤ exp

(
−x2y

4

)√
P(B+

n ).

Therefore, if we divide both sides of (B.3) by
√

P(B+
n ), we find that

P(B+
n ) ≤ exp

(
−x2y

2

)
.

The same upper-bound holds for P(B−
n ) which clearly implies (2.4). Furthermore,

for all x, y > 0, let

Cn = {|Mn| ≥ x <M>n, [M ]n ≤ y <M>n} = C+
n ∪ C−

n

where

C+
n = {Mn ≥ x <M>n, [M ]n ≤ y <M>n},

C−
n = {Mn ≤−x <M>n, [M ]n ≤ y <M>n}.

By Holder’s inequality, we have for all t > 0 and q > 1,

P(C+
n ) ≤ E

[
exp

( t

q
Mn − tx

q
<M>n

)
1IC+

n

]
,

≤ E

[
exp

( t

q
Mn − t2

2q
Zn

)
exp

( t

2q
(t − 2x + ty) <M>n

)
1IC+

n

]
,

≤
(

E

[
exp

( tp

2q
(t − 2x + ty) <M>n

)])1/p

.(B.4)

Consequently, as p/q = p − 1, we can deduce from (B.4) and the particular choice
t = x/(1 + y) that

P(C+
n ) ≤ inf

p>1

(
E

[
exp

(
−(p − 1)

x2

2(1 + y)
<M>n

)])1/p

.

We also find the same upper-bound for P(C−
n ) which completes the proof of Theo-

rem 2.2.

Appendix C.

The proofs of Theorem 4.1 and Theorem 4.2 are based on the following lemma.

Lemma C.2. Let (Mn) be a locally square integrable martingale. For all t ∈ R and
n ≥ 0, denote

Wn(t) = exp
(
tMn − t2

2
[M ]n

)
.

1) If (Mn) is heavy on left, then for all t ≥ 0, (Wn(t)) is a supermartingale
with E[Wn(t)] ≤ 1.

2) If (Mn) is heavy on right, then for all t ≤ 0, (Wn(t)) is a supermartingale
with E[Wn(t)] ≤ 1.

3) If (Mn) is conditionally symmetric, then for all t ∈ R, (Wn(t)) is a super-
martingale with E[Wn(t)] ≤ 1.
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Proof. Lemma C.2 part 3) is due to De la Peña [8], Lemma 6.1. Our approach is
totally different as it mainly relies on Lemma 3.2. Assume that (Mn) is heavy on
left. For all t ∈ R and n ≥ 1, we have

Wn(t) = Wn−1(t) exp
(
t∆Mn − t2

2
∆[M ]n

)

where ∆[M ]n = ∆M2
n. We infer from Lemma 3.2 part 1) that for all n ≥ 1 and for

all t ≥ 0,

E

[
exp

(
t∆Mn − t2

2
∆M2

n

)
|Fn−1

]
≤ 1.

Consequently, for all t ≥ 0, (Wn(t)) is a positive supermartingale such that E[Wn(t)] ≤
E[Wn−1(t)] which leads to E[Wn(t)] ≤ E[W0(t)] = 1. The rest of the proof is also
a straightforward application of Lemma 3.2. �

By use of Lemma C.2, the proof of Theorem 4.1 is quite analogous to that of
Theorem 2.1 and therefore is left to the reader. We shall proceed to the proof of
Theorem 4.2 in the special case a = 0 and b = 1. For all x > 0, let An = {Mn ≥
x[M ]n}. By Holder’s inequality, we have for all t > 0 and q > 1,

P(An) ≤ E

[
exp

( t

q
Mn − tx

q
[M ]n

)
1IAn

]
,

≤ E

[
exp

( t

q
Mn − t2

2q
[M ]n

)
exp

( t

2q
(t − 2x)[M ]n

)
1IAn

]
,

≤
(

E

[
exp

( tp

2q
(t − 2x)[M ]n

)])1/p(
E

[
Wn(t)

])1/q

.(C.1)

Since (Mn) is heavy on left, it follows from lemma C.2 that for all t ≥ 0, E[Wn(t)] ≤
1. Consequently, as p/q = p−1, we can deduce from (C.1) and the particular choice
t = x that

P(An) ≤ inf
p>1

(
E

[
exp

(
−(p − 1)

x2

2
[M ]n

)])1/p

.

Furthermore, for all x, y > 0, let Bn = {Mn ≥ x[M ]n, [M ]n ≥ y}. As before, we
find that for all 0 < t < 2x,

P(Bn) ≤ E

[
exp

( t

2
Mn − t2

4
[M ]n

)
exp

( t

4
(t − 2x)[M ]n

)
1IBn

]
,

≤ exp
( ty

4
(t − 2x)

)
E

[
exp

( t

2
Mn − t2

4
[M ]n

)
1IBn

]
,

≤ exp
( ty

4
(t − 2x)

)√
P(Bn),

≤ exp
(
−x2y

2

)

choosing the value t = x. Finally, the last inequality of Theorem 4.2 is left to the
reader as its proof follows exactly the same arguments as (4.3).



EXPONENTIAL INEQUALITIES FOR SELF-NORMALIZED MARTINGALES 15

Appendix D.

We shall now focus our attention on the proof of Corollary 5.2. It immediately
follows from (5.5) together with (5.6) that for all n ≥ 1,

(D.1) θ̂n − θ = σ2 Mn

<M>n

where

Mn =
n∑

k=1

Xk−1εk and <M>n= σ2
n∑

k=1

X2
k−1.

The driven noise (εn) is a sequence of independent and identically distributed ran-
dom variables with N (0, σ2) distribution. Consequently, for all n ≥ 1, the distribu-
tion of the increments ∆Mn = Xn−1εn given Fn−1 is N (0, σ2X2

n−1) which implies
that (Mn) is a Gaussian martingale. Therefore, we infer from inequality (4.6) that
for all n ≥ 1 and x > 0,

P(|θ̂n − θ| ≥ x) = P

(
|Mn| ≥

x

σ2
<M>n

)
= 2P

(
Mn ≥ x

σ2
<M>n

)
,

≤ 2 inf
p>1

(
E

[
exp

(
−(p − 1)

x2

2σ4
<M>n

)])1/p

.(D.2)

Similar result may be found in [16], [21], [22]. We are now halfway to our goal and
it remains to find a suitable upper-bound for the right-hand side of (D.2). For all

t ∈ R such that 1 − 2σ2t > 0, if α = 1/
√

1 − 2σ2t, we deduce from (5.5) that, for
all n ≥ 1,

E[exp(tX2
n)|Fn−1] = exp(tθ2X2

n−1)E[exp(2θtXn−1εn + tε2
n)|Fn−1],

=
exp(tθ2X2

n−1)

σ
√

2π

∫

R

exp
(
− x2

2α2σ2

)
exp(2θtXn−1x)dx.

Hence, if β = 2tασθXn−1, we find via the change of variables y = x/ασ that

E[exp(tX2
n)|Fn−1] =

α exp(tθ2X2
n−1)√

2π

∫

R

exp(−y2

2
+ βy) dy,

= α exp
(
tθ2X2

n−1 +
β2

2

)
= α exp(tα2θ2X2

n−1)

which implies that, for all t < 0 and n ≥ 1,

(D.3) E[exp(tX2
n)|Fn−1] ≤ α.

Furthermore, as X0 is N (0, τ2) distributed with τ2 ≥ σ2, E[exp(tX2
0 )] ≤ α. It

immediately follows from (D.3) together with the tower property of the conditional
expectation that for all t < 0 and n ≥ 0,

(D.4) E[exp(t <M>n)] ≤ (1 − 2σ4t)−n/2.

Consequently, we deduce from the conjunction of (D.2) and (D.4) with the value
t = −(p − 1)x2/2σ4 and the change of variables y = (p − 1)x2 that for all x > 0
and n ≥ 1,

P(|θ̂n − θ| ≥ x) ≤ 2 inf
y>0

exp
(
−nx2

2
ℓ(y)

)
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where the function ℓ is given by

ℓ(y) =
log(1 + y)

x2 + y
.

We clearly have

ℓ′(y) =
x2 − h(y)

(1 + y)(x2 + y)2

where h(y) = (1 + y) log(1 + y) − y. One can observe that the function h is the
Cramer transform of the centered Poisson distribution with parameter one. Let yx

be the unique positive solution of the equation h(yx) = x2. The value yx maximises
the function ℓ and this natural choice clearly leads to (5.7). Finally, it follows from
(5.6) and (5.7) that for all x > 0 and n ≥ 1,

(D.5) P(|θ̃n − θ + θfn| ≥ x) ≤ 2 exp
(
− nx2

2(1 + yx)

)

where the random variable 0 ≤ fn ≤ 1. Hence, (D.5) implies (5.8) which completes
the proof of Corollary 5.2.

Appendix E.

We shall now proceed to the proof of Corollary 5.3. We only focus our attention
on the Harris estimator inasmuch as the proof for the Lotka-Nagaev estimator
follows essentially the same lines. First of all, relation (5.9) can be rewritten as

(E.1) Xn = mXn−1 + ξn

where ξn = Xn − E[Xn|Fn−1]. Consequently, we obtain from (5.10) together with
(E.1) that for all n ≥ 1,

m̂n − m =
Mn

Sn−1
where Mn =

n∑

k=1

ξk.

Moreover, for all n ≥ 1 and 0 ≤ t ≤ c, E[exp(tξn)|Fn−1] = exp(Xn−1L(t)) which
implies that

(E.2) E[exp(tMn − L(t)Sn−1)] = 1.

We are in position to prove (5.13). For all x > 0, let Dn = {|m̂n − m| ≥ x}.
We have the decomposition Dn = D+

n ∪ D−
n where D+

n = {m̂n − m ≥ x} and
D−

n = {m̂n −m ≤ −x}. By Holder’s inequality together with (E.2), we have for all
0 ≤ t ≤ c and q > 1,

P(D+
n ) ≤ E

[
exp

( t

q
Mn − tx

q
Sn−1

)
1ID+

n

]
,

≤ E

[
exp

( t

q
Mn − L(t)

q
Sn−1

)
exp

(1

q
(L(t) − tx)Sn−1

)
1ID+

n

]
,

≤
(

E

[
exp

(p

q
(L(t) − tx)Sn−1

)])1/p

.(E.3)

Taking the infimum over the interval [0, c], we infer from (E.3) that

(E.4) P(D+
n ) ≤

(
E

[
exp

(
−(p − 1)I(x)Sn−1

)])1/p

.
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Via the same lines, we also find that

(E.5) P(D−
n ) ≤

(
E

[
exp

(
−(p − 1)I(−x)Sn−1

)])1/p

.

Finally, (5.13) immediately follows from (E.4) and (E.5).

Appendix F.

This appendix is devoted to some justifications about the examples of random
variables heavy on left or right. Consider an integrable random variable X with
zero mean and denote by F its cumulative distribution function. Let H be the
function defined, for all a > 0, by

H(a) =

∫ a

0

F (−x) − (1 − F (x−)) dx.

We already saw that X is heavy on left if, for all a > 0, H(a) ≥ 0 while X is heavy
on right if, for all a > 0, H(a) ≤ 0. Let Y be a positive integrable random variable
with mean m and denote

X = Y − m.

Discrete random variables. Assume that Y is a discrete random variable taking
its values in N. For all n ≥ 0, let

sn =

n∑

k=0

P(Y = k).

After some straightforward calculations, we obtain that, for all a > 0,

H(a) = −a +

[m+a]∑

k=[m−a]

sk − s[m+a] + {m + a}s[m+a] − {m − a}s[m−a]

where, for all x ∈ R, [x] stands for the integer part of x and its fractional part {x}
is given by {x} = x − [x] and, of course, sn = 0 for all n < 0.

Continuous random variables. Assume that Y is a real random variable abso-
lutely continuous with respect to the Lebesgue measure. Denote by g its probability
density function. It is not hard to see that, for all a > 0,

H(a) = −a + 2a

∫ am

0

g(x) dx +

∫ m+a

am

(m + a − x)g(x) dx

where am = inf{m− a, 0}. Consequently, in order to check that X is heavy on left,
it is only necessary to show that, for all a > 0, H(a) ≥ 0.
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[1] Adell, J. A. and Jodrá, P. The median of the Poisson distribution, Metrika,
vol. 61, p. 337-346, 2005.

[2] Athreya, K. B. and Ney P. E. Branching processes, Springer-Verlag, Berlin,
1972.

[3] Athreya, K. B. and Vidyashankar A. N. Large deviation rates for branching
processes I. Single type case, Annals of Applied Probability, vol. 4, p. 779-
790, 1994.

[4] Azuma, K. Weighted sums of certain dependent random variables, Tôkuku
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cours de la libération, 33405 Talence cedex, France.

E-mail address: Bernard.Bercu@math.u-bordeaux1.fr
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