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Abstract: This paper describes a new parallel kinematic architecture for 
machining applications: the orthoglide. This machine features three fixed 
parallel linear joints which are mounted orthogonally and a mobile platform 
which moves in the Cartesian x-y-z space with fixed orientation. The main 
interest of the orthoglide is that it takes benefit from the advantages of the 
popular PPP serial machines (regular Cartesian workspace shape and 
uniform performances) as well as from the parallel kinematic arrangement 
of the links (less inertia and better dynamic performances), which makes 
the orthoglide well suited to high-speed machining applications. Possible 
extension of the orthoglide to 5-axis machining is also investigated. 

1. Introduction 

Parallel kinematic machines (PKM) are commonly claimed to offer several 
advantages over their serial counterpart, like high structural rigidity, high 
dynamic capacities and high accuracy. On the other hand, they generally 
suffer from a reduced operational workspace due to the presence of internal 
singularities or self-collisions. Parallel kinematic machine tools attract the 
interest of more and more researchers and companies. Since the first 
prototype presented in 1994 during the IMTS in Chicago by Gidding&Lewis 
(the Variax), many other prototypes have appeared as could be seen during 
the last World Exhibition EMO’99 which was held in Paris in May 1999. A 
recent comparative study shows that certain parallel kinematic structures 
do have potential advantages over their serial counterparts (Wenger et al 
1999). Despite this, it is worth noting that many users of machine tools are 
still not convinced by the potential benefits of PKM. Most industrial 3-axis 
machine tools have a PPP kinematic architecture with orthogonal joint axes 
along the x, y, z directions. Thus, the motion of the tool in each of these 
direction is linearly related to the motion of one of the three actuated axes. 
Also, the performances (e.g. maximum speeds, forces, accuracy and rigidity) 
are constant in the most part of the Cartesian workspace, which is a 



 

 

parallelepiped. In contrast, the common features of most existing PKM are 
a Cartesian workspace shape of complex geometry and highly non linear 
input/output relations. For most PKM, the Jacobian matrix which relates 
the joint rates and the output velocities is not constant and not isotropic. 
Consequently, the performances may vary considerably for different points 
in the Cartesian workspace and for different directions at one given point, 
which is a serious drawback for machining applications. The orthoglide 
studied in this paper is designed in order keep the regularity of the 
Cartesian workspace shape as well as the uniformity of performances of the 
PPP machine tools, while taking benefit from the parallel kinematic 
arrangement of the links. 

The organisation of this paper is as follows. Next section is devoted to 
the presentation of existing PKM and of the orthoglide. Section 3 
investigates kinematic performances of the orthoglide. Possible extensions 
to 5-axis PKM of the orthoglide are discussed in section 4. Last section 
concludes this paper. 

2. Preliminaries 

2.1. EXISTING PROTOTYPE OR COMMERCIAL PKM 

There are many possible types of PKM architectures which find applications 
in motion simulators, robotic manipulators and more recently in machine 
tools (Merlet 1997). In the context of machine tool applications, most 
existing prototypes or commercial PKM can be classified into two general 
families: (i) PKM with fixed foot points and variable strut lengths and (ii) 
PKM with fixed length struts and moveable foot points.  

The first family comprises the so-called hexapod machines which, in 
fact, feature a Gough-Stewart platform architecture. Numerous examples of 
hexapods PKM exist: the VARIAX-Hexacenter (Gidding&Lewis), the 
CMW300 (Compagnie Mécanique des Vosges), the TORNADO 2000 (Hexel), 
the MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA (Okuma), the 
hexapod G500 (GEODETIC). In this first family, we find also hybrid 
architectures with a 2-axis wrist mounted in series with a 3-DOF parallel 
structure (e.g. the TRICEPT 805, Neos Robotics).  

The second family (ii) of PKM has been more recently investigated. In 
this category we find the HEXAGLIDE (ETH Zürich) which features six 
parallel (also in the geometrical sense) and coplanar linear joints. The 
HexaM (Toyota) is another example with non coplanar linear joints. A 3-
axis translational version of the hexaglide is the TRIGLIDE (Mikron), 
which has three coplanar and parallel linear joints. Another 3-axis 
translational PKM is proposed by the ISW Uni Stuttgart with the 



 

 

LINAPOD. This PKM has with three vertical (non coplanar) linear joints. 
The URANE SX (Renault Automation) and the QUICKSTEP (Krause & 
Mauser) are 3-axis PKM with three non coplanar horizontal linear joints. A 
hybrid parallel/serial PKM with three parallel inclined linear joints and a 
two-axis wrist is the GEORGE V (IFW Uni Hanover).  

To be complete, one should add the ECLIPSE machining center which 
does not fall into the aforementioned two PKM families. This is a 6-DOF 
over actuated machine with three vertical struts which can move 
independently on an horizontal circular prismatic joint.  

2.2. DESCRIPTION OF THE ORTHOGLIDE  

The orthoglide presented in this paper belongs to the family of 3-axis 
translational PKM with variable foot points and fixed length struts 
(figure 1). This machine has three parallel PRPaR identical chains (where P, 
R and Pa stands for Prismatic, Revolute and Parallelogram joint, 
respectively). Figure 2 shows the kinematics of each leg. The actuated joints 
are the three orthogonal linear joints. These joints can be actuated by 
means of linear motors or by conventional rotary motors with ball screws. 
The output body is connected to the prismatic joints through a set of three 
parallelograms, so that it can move only in translation (note that two 
parallelograms would be enough). An important feature of this PKM is the 
symmetry of the design (the three chains are identical, in particular, the 
lengths BiCi are equal) and the simplicity of the kinematic chains (all joints 
are have one DOF), which should contribute to lower the manufacturing 
costs. Also, the orthoglide is free of singularities and self-collisions. 

The design process which led us to this kinematic structure is a similar 
to the one we applied for a 2-axis machine (Chablat et al 2000). The main 
idea is to produce a parallel kinematic machine which be as close as 
possible to a serial PPP machine. Serial PPP machines are nice since their 
kinematics is quite simple and the displacements of the tool are intuitive. 
Furthermore, the Cartesian workspace is very simple since it is a 
parallelepiped defined by the limits of the actuated joints. Another 
interesting feature of PPP machines is the uniformity of the performances 
over the Cartesian workspace. However, the main drawback is due to the 
serial kinematic arrangement of the links: one link has to support and move 
the following link in the chain, which increases the total moving masses, 
and thus limits the dynamic performances of such machines. In the context 
of rapid machining, the parallel kinematic layout of the links is an 
interesting feature. The orthoglide has three orthogonal linear joints like 
conventional PPP machines but they have been put in parallel. The design 
is such that the Jacobian matrix which relates the joint rates and the 



 

 

Cartesian velocities is isotropic at the center point of the Cartesian 
workspace. At this point, the orthoglide is kinematically equivalent to a 
serial PPP machine. Furthermore, the design has been optimised such that, 
in the rest of the Cartesian workspace, the conditioning of the 
aforementioned Jacobian matrix remains under a reasonable limit. In 
particular, the singularities are sufficiently far away from the Cartesian 
workspace limits. 

 

 

 

Figure 1.  Orthoglide general architecture Figure 2. Leg kinematics 

2.3. KINEMATIC EQUATIONS AND SINGULARITY ANALYSIS 

Let .ρ be defined as the vector of actuated joint rates and .p as the velocity 
vector of point P: 
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The velocity .p of P can be written in three different ways. By 
traversing the closed-loop AiBiCiP in the three possible directions, we get: 

 .p = 
b1 - a1

||b1 - a1|| .ρ1 + (
.
θ1 i1 + 

.
β1 j1) × (c1 - b1) (1a) 

 .p = 
b2 - a2

||b2 - a2|| .ρ2 + (
.
θ2 i2 + 

.
β2 j2) × (c2 - b2) (1b) 

 .p = 
b3 - a3

||b3 - a3|| .ρ3 + (
.
θ3 i3 + 

.
β3 j3) × (c3 - b3) (1c) 



 

 

where ai, bi and ci represent the position vector of the points Ai, Bi and Ci, 
respectively, for i=1, 2, 3 (Ai and Bi cannot coincide).  

We want to eliminate the two idle joint rates 
.
,θi and 

.
,βi from equations 

(1a), (1b) and (1c), which we do upon dot-multiplying eq. (1i) by ci - bi: 

 (c1 - b1)T .,p = (c1 - b1)T
b1 - a1

||b1 - a1|| .ρ1 (2a) 

 (c2 - b2)T 
.
,p = (c2 - b2)T

b2 - a2
||b2 - a2|| .ρ2 (2b) 

 (c3 - b3)T 
.
,p = (c3 - b3)T

b3 - a3
||b3 - a3|| .ρ3 (2c) 

Equations (2a), (2b) and (2c) can now be cast in vector form, namely, 

 A .p = B .ρ 
where A and B are the parallel and serial Jacobian matrices, respectively: 

 A = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ (c1 - b1)T 

 (c2 - b2)T 
 (c3 - b3)T

     

B=

⎣
⎢
⎡

⎦
⎥
⎤(c1-b1)T

b1-a1
||b1-a1|| 0 0

0 (c2-b2)T
b2-a2

||b2-a2|| 0

0 0 (c3-b3)T
b3-a3

||b3-a3||

 (3) 

When A and B are not singular, we can also study the Jacobian kinematic 
matrix J (Merlet 1997) to optimise the manipulator, 

 .p = J .ρ with J= A-1 B (4a) 
or the inverse Jacobian kinematic matrix J-1, such that 

 .ρ = J-1 .p with J-1= B-1 A (4b) 
The parallel singularities (Chablat and Wenger 1998) occur when the 

determinant of the matrix A vanishes, i.e. when det(A)=0. In such 
configurations, it is possible to move locally the mobile platform whereas 
the actuated joints are locked. These singularities are particularly 
undesirable, because the structure cannot resist any force and control is 
lost. From eq. (3), it is apparent that the parallel singularities occur 
whenever the points Ci and Bi are coplanar: 
 (c1 - b1) = α (c2 - b2) + λ (c3 - b3) (5) 



 

 

or when the links BiCi are parallel: 
 (c1 - b1) // (c2 - b2) and (c2 - b2) // (c3 - b3) and (c3 - b3) // (c1 - b1) (6) 

These configurations cannot be reached with the design of the 
mechanism studied. 

Serial singularities arise when the serial Jacobian matrix, B, is no 
longer invertible, i.e., when det(B)=0. At a serial singularity, a direction 
exists along which any cartesian velocity cannot be produced. From 
equation (3), it is apparent that det(B)=0 when, for one leg i, 
(bi - ai) ⊥ (ci - bi). It is possible to avoid such singularities by adjusting the 
joint limits of the linear actuated joints. 

3. Performance analysis of the orthoglide 

3.1. NOTION OF CONDITION NUMBER  

The condition number of an m × n matrix M with m ≤ n, κ(M) can be defined 
in various ways; for our purposes, we define κ(M) as the ratio of the largest, 
σL, to the smallest, σS singular values of M (Golub 89),  

 κ(M) = 
σL
 σS

 (7) 

The singular values {σk}m,1 of M are defined as the square roots of the 
nonnegative eigenvalues of the positive semi-definite m × m matrix M MT. 

For the purpose of design and performances analysis, we need to define 
the condition number of the Jacobian matrix. The condition number of the 
Jacobian matrix is an interesting performance index since it characterises 
the distortion of a unit ball under the transformation represented by the 
Jacobian matrix at hand (Angeles 1997). The Jacobian matrix is said to be 
isotropic when its condition number attains its minimum value of one (there 
is no distortion). We know that the Jacobian matrix of a manipulator is 
used to relate (i) the joint rates and the Cartesian velocities, and (ii) the 
static load on the output link and the joint torques or forces. Thus, the 
condition number of the Jacobian matrix can be used to measure the 
uniformity of the distribution of the tool velocities and forces in the 
Cartesian workspace.  

3.2. INVERSE KINEMATIC JACOBIAN MATRIX 

For parallel manipulators, it is more convenient to study the conditioning of 
the Jacobian matrix that is related to the inverse transformation, which we 
have called inverse kinematic Jacobian matrix J-1 in equation (4b). In our 
case, matrices B and J-1 can be derived easily as follows: 
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 with ηi = (ci-bi)T
bi-ai

||bi-ai|| and J-1 = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

 1
η1

 (c1 - b1)T 

 1
η2

 (c2 - b2)T 

 1
η3

 (c3 - b3)T 

 (5) 

The matrix J-1 is isotropic when: 

 1
η1

 ||c1 - b1|| = 1
η2

 ||c2 - b2|| = 1
η3

 ||c3 - b3|| (6a) 

 (c1 - b1)T (c2 - b2) = 0, (c2 - b2)T (c3 - b3) = 0, (c3 - b3)T (c1 - b1) = 0 (6b) 
Equation (6a) states that the orientation between the axis of the 

prismatic joint and the link BiCi must be the same for each leg i. Equation 
(6b) means that the links BiCi must be orthogonal to one another.  

We note that there is no condition on the lengths of the link BiCi. We 
set them to be equal to one another, in order to have a symmetric design. 
On the other hand, the orthogonal orientation of the relative prismatic 
joints cannot be deduced from the isotropic condition. It can be defined by 
the manipulability analysis, as shown in the following section.  

3.3. MANIPULABILITY ANALYSIS 

In the case of serial PPP machine tool, a motion of an actuated joint yields 
the same motion of the tool. For a parallel machine, these motions are not 
equivalent. When the machine is close to a parallel singularity, a small joint 
rate can generate a large velocity of the tool. This means that the 
positioning accuracy of the tool is lower in certain directions near parallel 
singularities because the encoder resolution is amplified. In addition, a 
velocity amplification in one direction is equivalent to a loose of rigidity in 
this direction. The manipulability ellipsoids of the Jacobian matrix of 
robotic manipulators was defined several years ago (Salisbury and 
Craig 1982). This concept has then been applied as a performance index to 
parallel manipulators (Kim et al 1997). Note that, although the concept of 
manipulability is close to the concept of condition number, these two 
concepts do not provide the same information. The condition number 
quantifies the proximity to an isotropic configuration, i.e. where the 
ellipsoid is a sphere, or, in other words, where the velocity amplification is 
equal in any direction, but it does not provide information as to the 
magnitude of the velocity amplification. The manipulability ellipsoid of J-1 
will be used here for (i) justifying the orthogonal orientation of the prismatic 
joints and (ii) defining the joint limits of the orthoglide such that the 



 

 

maximal velocity amplification remains under a reasonable limit. We want 
that the velocity amplification factor and the force amplification factor be 
equal to one at the isotropic configuration. This condition implies that the 
three terms of equation (6a) must be equal to one: 

 1
η1

 ||c1 - b1|| = 1
η2

 ||c2 - b2|| = 1
η3

 ||c3 - b3|| = 1 (7) 

which implies that (bi - ai) and  (ci - bi) must be collinear for each i. Since, at 
the isotropic configuration, links BiCi are orthogonal to one another, (7) 
implies that the links AiBi are orthogonal, i.e. the prismatic joints are 
orthogonal. 

By using equation (4b), we can write a relation between the velocity .p 
of point P and the joint rates . ρ. For joint rates belonging to a unit ball, 
namely, ., ρ ≤ 1, the Cartesian velocities belong to an ellipsoid such that: 

 .,pT (J JT)-1 .,p ≤ 1 (8) 
The eigenvectors of matrix (J JT)-1 define the direction of its principal 

axes and the square roots ξ1, ξ2 and ξ3 of the eigenvalues of (J JT)-1 are the 
lengths of the aforementioned principal axes. The factors of velocity 
amplification in the directions of the principal axes are defined by ψ1 = 1 / ξ1
, ψ2 = 1 / ξ2 and ψ3 = 1 / ξ3 
To limit the variations of this factor in the Cartesian workspace, we impose 
1/3 ≤ ψi ≤ 3 all over the workspace. This condition leads to the definition of 
joint limits for the prismatic joints (Chablat et al 2000). 

3.4. CARTESIAN WORKSPACE ANALYSIS 

The Cartesian workspace is one of the most important performance 
evaluation criteria of PKM. However, the Cartesian workspace definition 
commonly considered (set of the reachable configurations of the output link) 
is insufficient to asses the real performances of a PKM since this definition 
does not take into account the possibility to execute motions inside the 
Cartesian workspace. This is of primary importance for parallel 
mechanisms which generally feature internal singularities which should not 
be crossed. Self collisions may also arise. To cope with the moveability of a 
manipulator, the connected regions of the Cartesian workspace were 
defined for serial manipulators (Wenger and Chedmail 1991) and, more 
recently, for parallel manipulators (Chablat and Wenger 1998). The 
Cartesian workspace connectivity can be further analysed according to 
which type of motions should be studied: the n-connectivity is intended to 
point-to-point motions and the t-connectivity is suitable for continuous 
trajectory tracking, like in arc-welding or machining. In the context of 
machine tool, the t-connected regions must be considered. More precisely, 



 

 

the t-connected regions of a PKM are the regions of the Cartesian 
workspace which are free of singularity (and collisions) and where any 
continuous path is feasible. The size and shape of the maximal t-connected 
region is of primary importance for the global geometric performances 
evaluation of a machine tool. The orthoglide has been designed such that its 
Cartesian workspace is free of singularities and self-collisions. Thus, the 
maximal t-connected region of the orthoglide is its Cartesian workspace. 
Figure 3 shows the Cartesian workspace of the orthoglide, and figure 4 
depicts a cross section. The Cartesian workspace has a fairly regular shape 
which is close to a cube. We have used here our general octree-based 
algorithm for the calculation of the workspace (Chablat 1998). If there is no 
obstacle to take into account, the workspace of the orthoglide can be easily 
calculated analytically by its boundaries. 

 
Figure 3. Cartesian workspace of Orthoglide using an octree model 

 
 

Figure 4. Workspace Cross section  Figure 5. Possible 5-axis machine tool  



 

 

4. Extension to 5-axis machines 

The orthoglide described above is dedicated to 3-axis machining 
applications. It can be extended to a 5-axis machine by adding a 2-axis 
orienting branch to the initial positioning structure. This can be done in two 
ways. The first approach consists in mounting this branch serially at the 
moving body, like for the Tricept 805 (see §2.1). However, this solution 
increases the moving masses since the orienting device must be carried by 
the positioning structure. Another solution is to mount the orienting branch 
on the base of the orthoglide, as shown in figure 5.  
 

Conclusions 

Presented in this paper is a new kinematic structure of PKM dedicated to 
machining applications: the Orthoglide. The main feature of this PKM 
design is its trade-off between the popular serial PPP architecture and the 
parallel kinematic arrangement of the links.  The workspace is simple, 
regular and free of singularity and self-collisions. The Jacobian matrix is 
isotropic at the centre point of the workspace. Most existing PKM suffer 
from high variations of speed and rigidity performances in their workspace 
(Wenger et al 1999). The velocity amplification factor of the orthoglide is 
one at the isotropic point and bounded by reasonable values in the rest of 
the workspace. Further analyses are under study. In particular, the link 
lengths can be optimised to have the best ratio between workspace volume 
and machine size. The construction of a prototype will be realised.  

References 
Wenger P., Gosselin C. and Maille B., 1999, "A Comparative Study of Serial and 

Parallel Mechanism Topologies for Machine Tools", Proc. PKM’99, Milano, 
1999, pp 23-32. 

Merlet J-P., 1997, Les robots parallèles, 2nd édition, Hermes, Paris, 1997. 
Chablat D., Wenger P. and Angeles J., 2000, "Conception Isotropique d'une 

morphologie parallèle: Application à l'usinage", 3th Int. Conf. On Integrated 
Design and Manufacturing in Mechanical Engineering, Montreal, May 2000. 

Chablat D. and Wenger P., 1998, "Working Modes and Aspects in Fully-Parallel 
Manipulator", IEEE Int. Conf. On Robotics and Automation, pp. 1964-1969. 

Golub, G-H. and Van Loan, C-F., 1989, Matrix Computations, The John Hopkins 
University Press, Baltimore. 

Angeles J., 1997, Fundamentals of Robotic Mechanical Systems, Springer-Verlag. 
Salisbury J-K. and Craig J-J., 1982, "Articulated Hands: Force Control and 

Kinematic Issues'', The Int. J. Robotics Res., Vol. 1, No. 1, pp. 4-17. 
Kim J., Park C., Kim J. and Park F.C., 1997, ”Performance Analysis of Parallel 

Manipulator Architectures for CNC Machining Applications”, Proc. IMECE 
Symp. On Machine Tools, Dallas. 



 

 

Wenger P. an Chedmail P., 1991, "Ability of a Robot to Travel through its Free 
Workspace", The Int. J. of Robotic Research, Vol. 3, No 10, pp. 214-227. 


