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High frequency dispersive estimates in dimension two

We prove dispersive estimates at high frequency in dimension two for both the wave and the Schrödinger groups for a very large class of real-valued potentials.

Introduction and statement of results

The purpose of this note is to prove dispersive estimates at high frequency for the wave group e it √ G and the Schrödinger group e itG , where G denotes the self-adjoint realization of the operator -∆ + V on L 2 (R 2 ) and V is a real-valued potential which decays at infinity in a way that G has no real resonances nor eigenvalues in an interval [a 0 , +∞), a 0 > 0. In fact, we are looking for as large as possible class of potentials for which we have dispersive estimates similar to those we do for the free operator G 0 . Hereafter G 0 denotes the selfadjoint realization of the operator -∆ on L 2 (R 2 ). It turns out that in dimension two one can get such dispersive estimates at high frequency for potentials satisfying sup

y∈R 2 R 2 |V (x)|dx |x -y| 1/2 ≤ C < +∞.
(

Clearly, (1.1) is fulfilled for potentials V ∈ L ∞ (R 2 ) satisfying

|V (x)| ≤ C x -δ , ∀x ∈ R 2 , (1.2) 
with constants C > 0, δ > 3/2. Given any a > 0, set χ a (σ) = χ 1 (σ/a), where χ 1 ∈ C ∞ (R), χ 1 (σ) = 0 for σ ≤ 1, χ 1 (σ) = 1 for σ ≥ 2. Our first result is the following Theorem 1.1 Let V satisfy (1.1). Then, there exists a constant a 0 > 0 so that for every a ≥ a 0 , 0 < ǫ ≪ 1, 2 ≤ p < +∞, we have the estimates

e it √ G G -3/4-ǫ χ a (G) L 1 →L ∞ ≤ C ǫ |t| -1/2 , t = 0, (1.3) 
e it √ G G -3α/4 χ a (G) L p ′ →L p ≤ C|t| -α/2 , t = 0, (1.4) 
where 1/p + 1/p ′ = 1, α = 1 -2/p.

The estimate (1.3) is proved in [START_REF] Cardoso | Dispersive estimates of solutions to the wave equation with a potential in dimensions two and three[END_REF] under tha assumption (1.2). Moreover, if in addition one supposes that G has no strictly positive resonances, it is shown in [START_REF] Cardoso | Dispersive estimates of solutions to the wave equation with a potential in dimensions two and three[END_REF] that (1.3) holds for any a > 0 still under (1.2). In dimension three an analogue of (1.3) is proved in [START_REF] Cardoso | Dispersive estimates of solutions to the wave equation with a potential in dimensions two and three[END_REF], [START_REF] Georgiev | Decay estimates for the wave equation with potential[END_REF] for potentials satisfying (1.2) with δ > 2, and extended in [START_REF] Pierfelice | On the wave equation with a large rough potential[END_REF] to a large subset of potentials satisfying sup

y∈R 3 R 3 |V (x)|dx |x -y| ≤ C < +∞. (1.5)
1

In dimensions n ≥ 4 there are very few results. In [START_REF] Beals | Optimal L ∞ decay estimates for solutions to the wave equation with a potential[END_REF], an analogue of (1.3) is proved for potentials belonging to the Schwartz class, while in [START_REF] Vodev | Dispersive estimates of solutions to the Schrödinger equation in dimensions n ≥ 4[END_REF] dispersive estimates with a loss of (n-3)/2 derivatives are obtained for potentials satisfying (1.2) with δ > (n+ 1)/2. Recently, in [START_REF] Moulin | Low frequency dispersive estimates for the wave equation in higher dimensions[END_REF] dispersive estimates at low frequency have been proved in dimensions n ≥ 4 for a very large class of potentials, provided zero is neighter an eigenvalue nor a resonance. Our second result is the following Theorem 1.2 Let V satisfy (1.1). Then, there exists a constant a 0 > 0 so that for every a ≥ a 0 , we have the estimate

e itG χ a (G) L 1 →L ∞ ≤ C|t| -1 , t = 0. (1.6)
Note that the estimate (1.6) (for any a > 0) is proved in [START_REF] Schlag | Dispersive estimates for Schrödinger operators in two dimensions[END_REF] for potentials satisfying (1.2) with δ > 2. In dimension three an analogue of (1.6) (for any a > 0) is proved in [START_REF] Rodnianski | Time decay for solutions of Schrödinger equations with rough and time-dependent potentials[END_REF] for potentials satisfying (1.5) with C > 0 small enough, and in [START_REF] Goldberg | Dispersive bounds for the three dimensional Schrödinger equation with almost critical potentials[END_REF] for potentials V ∈ L 3/2-ǫ ∩ L 3/2+ǫ , 0 < ǫ ≪ 1, not necessarily small. In dimensions n ≥ 4, an analogue of (1.6) (for any a > 0) is proved in [START_REF] Journé | Decay estimates for Schrödinger operators[END_REF] for potentials satisfying (1.2) with δ > n as well as the condition V ∈ L 1 . This result has been recently extended in [START_REF] Moulin | Low frequency dispersive estimates for the Schrödinger group in higher dimensions[END_REF] to potentials satisfying (1.2) with δ > n -1 and V ∈ L 1 . Note also the work [START_REF] Vodev | Dispersive estimates of solutions to the wave equation with a potential in dimensions n ≥ 4[END_REF], where an analogue of (1.6) (for any a > 0) with a loss of (n -3)/2 derivatives is obtained for potentials satisfying (1.2) with δ > (n + 2)/2. In [START_REF] Moulin | Low frequency dispersive estimates for the Schrödinger group in higher dimensions[END_REF] dispersive estimates at low frequency have been also proved in dimensions n ≥ 4 for a very large class of potentials, provided zero is neighter an eigenvalue nor a resonance.

To prove (1.3) we use the same idea we have already used in [START_REF] Moulin | Low frequency dispersive estimates for the wave equation in higher dimensions[END_REF] to prove low frequency dispersive estimates in dimensions n ≥ 4. The key point is the following estimate which holds in all dimensions n ≥ 2:

h ∞ -∞ V e it √ G0 ψ(h 2 G 0 )f L 1 dt ≤ γ n C n (V )h -(n-3)/2 f L 1 , h > 0, (1.7) 
where ψ ∈ C ∞ 0 ((0, +∞)), γ n > 0 is a constant independent of V , h and f , and

C n (V ) := sup y∈R n R n |V (x)|dx |x -y| (n-1)/2 < +∞.
(1.8)

Our approach is based on the observation that if

C n (V )h -(n-3)/2 ≪ 1, (1.9) 
then (1.7) implies (under reasonable assumptions on the potential) a similar estimate for the perturbed wave group, namely

h ∞ -∞ V e it √ G ψ(h 2 G)f L 1 dt ≤ C n (V )h -(n-3)/2 f L 1 .
(1.10)

When n = 3, (1.9) is fulfilled for small potentials and all h, when n ≥ 4, (1.9) is fulfilled for large h (i.e. at low frequency) without extra restrictions on the potential, while for n = 2, (1.9) is fulfilled for small h (i.e. at high frequency) again without restrictions on the potential others than (1.1). Note that (1.10) may hold without (1.9). Indeed, when n = 3, (1.10) is proved in [START_REF] Goldberg | Dispersive bounds for the three dimensional Schrödinger equation with almost critical potentials[END_REF] for potentials V ∈ L 3/2-ǫ ∩ L 3/2+ǫ and all h > 0, and then used to prove the three dimensional analogue of (1.6). In the present paper we adapt this approach to the case of dimension two, and show that (1.6) follows from (1.10) for potentials satisfying (1.1) only, provided the parameter a is taken large enough (see Section 3).

2 Proof of Theorem 1.1

Let ψ ∈ C ∞ 0 ((0, +∞)) and set

Φ(t; h) = e it √ G ψ(h 2 G) -e it √ G0 ψ(h 2 G 0 ).
We will first show that (1.3) and (1.4) follow from the following Proposition 2.1 Let V satisfy (1.1). Then, there exist positive constants C and h 0 so that for 0 < h ≤ h 0 we have

Φ(t; h) L 1 →L ∞ ≤ Ch -1 |t| -1/2 , t = 0. (2.1) Writing σ -3/4-ǫ χ a (σ) = a -1 0 ψ(σθ)θ -1/4+ǫ dθ,
where

ψ(σ) = σ 1/4-ǫ χ ′ 1 (σ) ∈ C ∞ 0 ((0, +∞))
, and using (2.1) we get

e it √ G G -3/4-ǫ χ a (G) -e it √ G0 G -3/4-ǫ 0 χ a (G 0 ) L 1 →L ∞ ≤ a -1 0 Φ(t; √ θ) L 1 →L ∞ θ -1/4+ǫ dθ ≤ C|t| -1/2 a -1 0 θ -3/4+ǫ dθ ≤ C|t| -1/2 , (2.2)
provided a is taken large enough. Clearly, (1.3) follows from (2.2) and the fact that it holds for G 0 . To prove (1.4), observe that an interpolation between (2.1) and the trivial bound

Φ(t; h) L 2 →L 2 ≤ C yields Φ(t; h) L p ′ →L p ≤ Ch -α |t| -α/2 , t = 0, (2.3) 
for every 2 ≤ p ≤ +∞, p ′ and α being as in Theorem 1.1. Now we write

σ -3α/4 χ a (σ) = a -1 0 ψ(σθ)θ -1+3α/4 dθ,
and use (2.3) to obtain (for 0 < α ≤ 1)

e it √ G G -3α/4 χ a (G) -e it √ G0 G -3α/4 0 χ a (G 0 ) L p ′ →L p ≤ a -1 0 Φ(t; √ θ) L p ′ →L p θ -1+3α/4 dθ ≤ C|t| -α/2 a -1 0 θ -1+α/4 dθ ≤ C|t| -α/2 , (2.4) 
provided a is taken large enough. Now, (1.4) follows from (2.4) and the fact that it holds for G 0 .

Proof of Proposition 2.1. We will first prove the following Lemma 2.2 Let V satisfy (1.1). Then, there exist positive constants C and h 0 so that for

0 < h ≤ h 0 we have ψ(h 2 G) -ψ(h 2 G 0 ) L 1 →L 1 ≤ Ch 1/2 . (2.5)
Proof. We will make use of the formula

ψ(h 2 G) = 2 π C ∂ ϕ ∂ z (z)(h 2 G -z 2 ) -1 zL(dz), (2.6) 
where L(dz) denotes the Lebesgue measure on C, ϕ ∈ C ∞ 0 (C) is an almost analytic continuation of ϕ(λ) = ψ(λ 2 ) supported in a small complex neighbourhood of supp ϕ and satisfying

∂ ϕ ∂ z (z) ≤ C N |Im z| N , ∀N ≥ 1.
For ±Im λ ≥ 0, Re λ > 0, set

R ± 0 (λ) = (G 0 -λ 2 ) -1 , R ± (λ) = (G -λ 2 ) -1 .
We have the identity

R ± (λ) 1 + V R ± 0 (λ) = R ± 0 (λ). (2.7)
It is well known that the kernels of the operators R ± 0 (λ) are given in terms of the zero order Hankel functions by the formula

[R ± 0 (λ)](x, y) = ±i4 -1 H ± 0 (λ|x -y|).
Moreover, the functions H ± 0 satisfy the bound

H ± 0 (λ) ≤ C|λ| -1/2 e -|Im λ| , |λ| ≥ 1, ±Im λ ≥ 0, (2.8) 
while near λ = 0 they are of the form

H ± 0 (λ) = a ± 0,1 (λ) + a ± 0,2 (λ) log λ, (2.9) 
where a ± 0,j are analytic functions. In particular, we have

H ± 0 (λ) ≤ C|λ| -1/2 , Re λ > 0, ±Im λ ≥ 0. (2.10)
Using these bounds we will prove the following Lemma 2.3 Let V satisfy (1.1). Then, there exist constants C > 0 and 0 < h 0 ≤ 1 so that for z ∈ C ± ϕ := {z ∈ supp ϕ, ±Im z ≥ 0}, we have the estimates

V R ± 0 (z/h) L 1 →L 1 ≤ Ch 1/2 , 0 < h ≤ 1, (2.11) V R ± (z/h) L 1 →L 1 ≤ Ch 1/2 , 0 < h ≤ h 0 , (2.12 
) 

R ± 0 (z/h) L 1 →L 1 ≤ Ch 2 |Im z| -2 , 0 < h ≤ 1, Im z = 0, (2.13) R ± (z/h) L 1 →L 1 ≤ Ch 2 |Im z| -2 , 0 < h ≤ h 0 , Im z = 0. ( 2 
y∈R 2 R 2 |V (x)||H ± 0 (z|x -y|/h)|dx ≤ Ch 1/2 R 2 |V (x)dx |x -y| 1/2 ≤ C ′ h 1/2 .
Similarly, the norm in the LHS of (2.13) is upper bounded by sup

y∈R 2 R 2 |H ± 0 (z|x -y|/h)|dx = h 2 sup y∈R 2 R 2 |H ± 0 (z|x -y|)|dx ≤ Ch 2 |Im z| -2 R 2 x -y -3/2 |x -y| -1 dx = C ′ h 2 |Im z| -2 ∞ 0 σ -3/2 dσ.
To prove (2.12) and (2.14) we will make use of the identity (2.7). It follows from (2.11) that there exists a constant 0 < h 0 ≤ 1 so that for 0 < h ≤ h 0 the operator 1 + V R ± 0 (z/h) is invertible on L 1 with an inverse satisfying

1 + V R ± 0 (z/h) -1 L 1 →L 1 ≤ C, z ∈ C ± ϕ , (2.15) 
with a constant C > 0 independent of z and h. Clearly, (2.12) follows from (2.11) and (2.15), while (2.14) follows from (2.13) and (2.15). 2

To prove (2.5) we rewrite the identity (2.7) in the form

R ± (z/h) -R ± 0 (z/h) = R ± 0 (z/h)V R ± 0 (z/h) 1 + V R ± 0 (z/h) -1 ,
and hence, using Lemma 2.3 and (2.15), we get

h -2 R ± (z/h) -h -2 R ± 0 (z/h) L 1 →L 1 ≤ Ch 1/2 |Im z| -2 , 0 < h ≤ h 0 , z ∈ C ± ϕ , Im z = 0. (2.
16) It is easy now to see that (2.5) follows from (2.6) and (2.16).

2

We will now derive (2.1) from the following Proposition 2.4 Let V satisfy (1.1). Then, there exist positive constants C and h 0 so that we have, for

0 ≤ s ≤ 1/2, f, g ∈ L 1 , e it √ G0 ψ(h 2 G 0 )f L ∞ ≤ Ch -3/2 |t| -1/2 f L 1 , h > 0, t = 0, (2.17) R 2 R 2 ∞ -∞ |t| s |x -y| -s V e it √ G0 ψ(h 2 G 0 )f (x) |g(y)| dtdxdy ≤ Ch -1/2 f L 1 g L 1 , h > 0, (2.18) R 2 R 2 ∞ -∞ |t| s |x -y|/h -s V e it √ G ψ(h 2 G)f (x) |g(y)| dtdxdy ≤ Ch s-1/2 f L 1 g L 1 , 0 < h ≤ h 0 . (2.19)
As in [START_REF] Vodev | Dispersive estimates of solutions to the wave equation with a potential in dimensions n ≥ 4[END_REF], using Duhamel's formula

e it √ G = e it √ G0 + i sin t √ G 0 √ G 0 √ G -G 0 - t 0 sin (t -τ ) √ G 0 √ G 0 V e iτ √ G dτ
we get the identity

Φ(t; h) = 2 j=1 Φ j (t; h), (2.20) 
where

Φ 1 (t; h) = ψ 1 (h 2 G) -ψ 1 (h 2 G 0 ) e it √ G ψ(h 2 G) +ψ 1 (h 2 G 0 )e it √ G0 ψ(h 2 G) -ψ(h 2 G 0 ) -iψ 1 (h 2 G 0 ) sin t G 0 ψ(h 2 G) -ψ(h 2 G 0 ) +i ψ 1 (h 2 G 0 ) sin t G 0 ψ(h 2 G) -ψ(h 2 G 0 ) , Φ 2 (t; h) = -h t 0 ψ 1 (h 2 G 0 ) sin (t -τ ) G 0 V e iτ √ G ψ(h 2 G)dτ,
where ψ 1 ∈ C ∞ 0 ((0, +∞)), ψ 1 = 1 on supp ψ, ψ(σ) = σ 1/2 ψ(σ), ψ 1 (σ) = σ -1/2 ψ 1 (σ). By Proposition 2.4 and (2.5), we have

Φ 1 (t; h)f L ∞ ≤ Ch -1 |t| -1/2 f L 1 + Ch 1/2 Φ(t; h)f L ∞ ,
(2.21)

t 1/2 | Φ 2 (t; h)f, g | ≤ h t/2 0 (t -τ ) 1/2 sin (t -τ ) G 0 ψ 1 (h 2 G 0 )g L ∞ V e iτ √ G ψ(h 2 G)f L 1 dτ +h t t/2 V sin (t -τ ) G 0 ψ 1 (h 2 G 0 )g L 1 τ 1/2 e iτ √ G ψ(h 2 G)f L ∞ dτ ≤ Ch -1/2 g L 1 ∞ -∞ V e iτ √ G ψ(h 2 G)f L 1 dτ +h sup t/2≤τ ≤t τ 1/2 e iτ √ G ψ(h 2 G)f L ∞ ∞ -∞ V sin (t -τ ) G 0 ψ 1 (h 2 G 0 )g L 1 dτ ≤ Ch -1 g L 1 f L 1 + Ch 1/2 g L 1 sup t/2≤τ ≤t τ 1/2 e iτ √ G ψ(h 2 G)f L ∞
, for t > 0, which clearly implies

t 1/2 Φ 2 (t; h)f L ∞ ≤ Ch -1 f L 1 + Ch 1/2 sup t/2≤τ ≤t τ 1/2 e iτ √ G ψ(h 2 G)f L ∞ . ( 2.22) 
By (2.20)-(2.22), we conclude

t 1/2 Φ(t; h)f L ∞ ≤ Ch -1 f L 1 + Ch 1/2 t 1/2 Φ(t; h)f L ∞ +Ch 1/2 sup t/2≤τ ≤t τ 1/2 Φ(τ ; h)f L ∞ . ( 2 

.23)

Taking h small enough we can absorb the second and the third terms in the RHS of (2.23), thus obtaining (2.1). Clearly, the case of t < 0 can be treated in the same way. 2

Proof of Proposition 2.3. The kernel of the operator e it

√ G0 ψ(h 2 G 0 ) is of the form K h (|x- y|, t), where K h (σ, t) = (2π) -1 ∞ 0 e itλ J 0 (σλ)ψ(h 2 λ 2 )λdλ = h -2 K 1 (σh -1 , th -1 ), (2.24)
where J 0 (z) = H + 0 (z) + H - 0 (z) /2 is the Bessel function of order zero. It is shown in [START_REF] Vodev | Dispersive estimates of solutions to the wave equation with a potential in dimensions n ≥ 4[END_REF] (Section 2) that K h satisfies the estimates (for all σ, h > 0, t = 0) 

|K 1 (σ, t)| ≤ C|t| -s σ s-1/2 , ∀s ≥ 0, (2.25) |K h (σ, t)| ≤ Ch -3/2 |t| -s σ s-1/2 , 0 ≤ s ≤ 1/2. ( 2 
≤ s ≤ 1/2, σ, h > 0, we have ∞ -∞ t/h s |K h (σ, t)| dt ≤ Ch -1 σ/h s-1/2 , (2.27) ∞ -∞ |t| s |K h (σ, t)| dt ≤ Ch -1/2 σ s-1/2 .
(2.28)

Proof. Clearly, (2.28) follows from (2.27). It is also clear from (2.24) that it suffices to prove (2.27) with h = 1. When 0 < σ ≤ 1, this follows from (2.25). Let now σ ≥ 1. We decompose K 1 as K + 1 + K - 1 , where K ± 1 is defined by replacing in (2.24) the function J 0 by

H ± 0 /2. Recall that H ± 0 (z) = e ±iz b ± 0 (z)
, where b ± 0 (z) is a symbol of order -1/2 for z ≥ 1. Using this fact and integrating by parts m times, we get

|K ± 1 (σ, t)| ≤ C m σ -1/2 |t ± σ| -m . (2.29) By (2.29), we obtain ∞ -∞ t s K ± 1 (σ, t) dt ≤ 2σ s ∞ -∞ K ± 1 (σ, t) dt + ∞ -∞ |t ± σ| s K ± 1 (σ, t) dt ≤ C ′ m σ s-1/2 ∞ -∞ |t ± σ| -m dt + C m σ -1/2 ∞ -∞ |t ± σ| s-m dt ≤ Cσ s-1/2 ,
which clearly implies (2.27) in this case. 2

To prove (2.19) we will use the formula

e it √ G ψ(h 2 G) = (iπh) -1 ∞ 0 e itλ ϕ h (λ) R + (λ) -R -(λ) dλ, (2.30) 
where ϕ h (λ) = ϕ 1 (hλ), ϕ 1 (λ) = λψ(λ 2 ). Combining (2.30) together with (2.7), we get

V e it √ G ψ(h 2 G) = (iπh) -1 ± ± ∞ -∞ V P ± h (t -τ )U ± h (τ )dτ, (2.31) 
where

P ± h (t) = ∞ 0 e itλ ϕ h (λ)R ± 0 (λ)dλ, U ± h (t) = ∞ 0 e itλ ϕ h (λ) 1 + V R ± 0 (λ) -1 dλ, where ϕ h (λ) = ϕ 1 (hλ), ϕ 1 ∈ C ∞ 0 ((0, +∞)) is such that ϕ 1 = 1 on supp ϕ 1 . The kernel of the operator P ± h (t) is of the form A ± h (|x -y|, t), where A ± h (σ, t) = ±i4 -1 ∞ 0 e itλ ϕ h (λ)H ± 0 (σλ)dλ = h -1 A ± 1 (σ/h, t/h). (2.32) 
In the same way as in the proof of Lemma 2.5 one can see that the function

A ± h satisfies the estimate ∞ -∞ |t| s A ± h (σ, t) dt ≤ Ch 1/2 σ s-1/2 (1 + h ǫs σ -ǫs ), 0 ≤ s ≤ 1/2, 0 < h ≤ 1, (2.33) 
where

ǫ s = 0 if 0 ≤ s < 1/2, ǫ s = ǫ if s = 1/2.
Clearly, it suffices to prove (2.19) with s = 0 and s = 1/2. For these values of s, using (1.1), (2.31) and (2.33), we obtain

R 2 R 2 ∞ -∞ |t| s |x -y|/h -s V e it √ G ψ(h 2 G)f (x) |g(y)| dtdxdy ≤ Ch -1 ± R 2 R 2 ∞ -∞ ∞ -∞ |x -y|/h -s (|t -τ | s + |τ | s ) × V P ± h (t -τ )U ± h (τ )f (x) |g(y)| dτ dtdxdy ≤ Ch -1 ± R 2 R 2 R 2 ∞ -∞ ∞ -∞ |V (x)| |x -y|/h -s (|t -τ | s + |τ | s ) ×|A ± h (|x -x ′ |, t -τ )| U ± h (τ )f (x ′ ) |g(y)| dτ dtdx ′ dxdy ≤ Ch -1 ± R 2 R 2 R 2 |V (x)| |x -y|/h -s |g(y)| × ∞ -∞ |τ | s |A ± h (|x -x ′ |, τ )|dτ ∞ -∞ U ± h (τ )f (x ′ ) dτ dx ′ dxdy +Ch -1 ± R 2 R 2 R 2 |V (x)| |x -y|/h -s |g(y)| × ∞ -∞ |A ± h (|x -x ′ |, τ )|dτ ∞ -∞ |τ | s U ± h (τ )f (x ′ ) dτ dx ′ dxdy ≤ Ch -1/2 ± R 2 R 2 R 2 |V (x)| |x -y|/h -s |x -x ′ | s-1/2 1 + h ǫs |x -x ′ | -ǫs |g(y)| × ∞ -∞ U ± h (τ )f (x ′ ) dτ dx ′ dxdy +Ch -1/2 ± R 2 R 2 R 2 |V (x)| |x -y|/h -s |x -x ′ | -1/2 |g(y)| × ∞ -∞ |τ | s U ± h (τ )f (x ′ ) dτ dx ′ dxdy := I 1 + I 2 .
(2.34)

To estimate I 1 when s = 1/2, set q = (2ǫ) -1 , 1/p + 1/q = 1, and observe that in view of (1.1) we have the bound

R 2 |V (x)| |x -y|/h -1/2 |x -x ′ | -ǫ dx ≤ R 2 |V (x)| |x -y|/h -p/2 dx 1/p R 2 |V (x)||x -x ′ | -1/2 dx 1/q ≤ C 1 R 2 |V (x)| |x -y|/h -1/2 dx 1/p ≤ C 1 h 1/(2p) R 2 |V (x)||x -y| -1/2 dx 1/p ≤ C 2 h 1/2-ǫ .
Thus, we obtain

I 1 ≤ C ′ h s-1/2 ± R 2 R 2 ∞ -∞ U ± h (τ )f (x ′ ) |g(y)| dτ dx ′ dy. (2.35)
To estimate I 2 when s = 1/2, we use the inequality

|x -y|/h -1/2 |x -x ′ | -1/2 ≤ |x ′ -y|/h -1/2 |x -y| -1/2 + |x -x ′ | -1/2 .
We get

I 2 ≤ C ′′ h -1/2 ± R 2 R 2 ∞ -∞ |τ | s |x ′ -y|/h -s U ± h (τ )f (x ′ ) |g(y)| dτ dx ′ dy. (2.36)
On the other hand, by the identity

1 + V R ± 0 (λ) -1 = 1 -V R ± 0 (λ) 1 + V R ± 0 (λ) -1 ,
we obtain 

U ± h (t) = ϕ h (t) - ∞ -∞ V P ± h (t -τ )U ± h (τ )dτ. (2.37) Since ϕ h (t) = h -1 ϕ 1 (t/h), we have ∞ -∞ |t| s | ϕ h (t)|dt ≤ Ch s . ( 2 
= 0 or s = 1/2, R 2 R 2 ∞ -∞ |t| s |x -y|/h -s U ± h (t)f (x) |g(y)| dtdxdy ≤ Ch s f L 1 g L 1 +Ch s+1/2 R 2 R 2 ∞ -∞ U ± h (τ )f (x ′ ) |g(y)| dτ dx ′ dy +Ch 1/2 R 2 R 2 ∞ -∞ |τ | s |x ′ -y|/h -s U ± h (τ )f (x ′ ) |g(y)| dτ dx ′ dy. ( 2 

.39)

Taking h small enough we can absorb the second and the third terms in the RHS of (2.39) and get the estimate 

R 2 R 2 ∞ -∞ |t| s |x -y|/h -s U ± h (t)f (x) |g(y)| dtdxdy ≤ C ′ h s f L 1 g L 1 . ( 2 
) = e itG ψ(h 2 G) -e itG0 ψ(h 2 G 0 ).
As in the previous section, one can derive (1.6) from the following Proposition 3.1 Let V satisfy (1.1). Then, there exist positive constants C and h 0 so that for 0 < h ≤ h 0 , we have

Ψ(t; h) L 1 →L ∞ ≤ Ch 1/2 |t| -1 , t = 0. (3.1)
Proof. We will derive (3.1) from (2.19). To this end, we will use the identity

e itλ 2 ϕ(h 2 λ 2 ) = ∞ -∞ e iτ λ ζ h (t, τ )dτ, (3.2) 
where ϕ ∈ C ∞ 0 ((0, +∞)), ϕ = 1 on supp ψ 1 , the functions ψ and ψ 1 being as in the previous section, and

ζ h (t, τ ) = (2π) -1 ∞ 0 e itλ 2 -iτ λ ϕ(h 2 λ 2 )dλ = h -1 ζ 1 (th -2 , τ h -1 ). ( 3.3) 
We deduce from (3.2) the formula

e itG ψ(h 2 G) = ∞ -∞ ζ h (t, τ )e iτ √ G ψ(h 2 G)dτ. (3.4) 
Given any integer m ≥ 0, integrating by parts m times and using the well known bound

∞ -∞ e itλ 2 -iτ λ φ(λ)dλ ≤ C|t| -1/2 , ∀t = 0, τ ∈ R,
where φ ∈ C ∞ 0 (R), one easily obtains the bound

|ζ 1 (t, τ )| ≤ C m |t| -m-1/2 τ m , ∀t = 0, τ ∈ R. (3.5) 
By (3.3) and (3.5),

|ζ h (t, τ )| ≤ C m h 2m |t| -m-1/2 τ /h m , ∀t = 0, τ ∈ R, h > 0, (3.6) 
for every integer m ≥ 0, and hence for all real m ≥ 0. By (2.5), (2.20) and (3.4), we get

| Ψ(t; h)f, g | ≤ Ch 1/2 Ψ(t; h)f L ∞ g L 1 + ∞ -∞ |ζ h (t, τ )| e iτ √ G0 ψ(h 2 G 0 )f, ψ 1 (h 2 G) -ψ 1 (h 2 G 0 ) g dτ + ∞ -∞ |ζ h (t, τ )| e iτ √ G0 ψ 1 (h 2 G 0 ) ψ(h 2 G) -ψ(h 2 G 0 ) f, g dτ + ∞ -∞ |ζ h (t, τ )| sin τ G 0 ψ 1 (h 2 G 0 ) ψ(h 2 G) -ψ(h 2 G 0 ) f, g dτ + ∞ -∞ |ζ h (t, τ )| sin τ G 0 ψ 1 (h 2 G 0 ) ψ(h 2 G) -ψ(h 2 G 0 ) f, g dτ +h ∞ -∞ τ 0 |ζ h (t, τ )| V e iτ ′ √ G ψ(h 2 G)f, sin (τ -τ ′ ) G 0 ψ 1 (h 2 G 0 )g dτ ′ dτ. (3.7) 
Using (3.6) with m = 1/2 and (2.27) with s = 1/2 together with (2.5), we obtain that the first integral in the RHS of (3.7) is upper bounded by

Ch|t| -1 R 2 R 2 ∞ -∞ τ /h 1/2 |K h (|x -y|, τ )| |f (x)| ψ 1 (h 2 G) -ψ 1 (h 2 G 0 ) g(y) dτ dxdy ≤ C|t| -1 R 2 R 2 |f (x)| ψ 1 (h 2 G) -ψ 1 (h 2 G 0 ) g(y) dxdy ≤ Ch 1/2 |t| -1 f L 1 g L 1 ,
and similarly for the next three integrals. The last term is upper bounded by

Ch 2 |t| -1 R 2 R 2 ∞ -∞ τ 0 |τ ′ /h| 1/2 + (τ -τ ′ )/h 1/2 K h (|x -y|, (τ -τ ′ ))
× V e iτ ′ √ G ψ(h 2 G)f (x) |g(y)| dτ ′ dτ dxdy

≤ Ch 3/2 |t| -1 R 2 R 2 ∞ -∞ |τ | 1/2 V e iτ √ G ψ(h 2 G)f (x) |g(y)| dτ ∞ -∞ K h (|x -y|, τ ) dτ dxdy +Ch 2 |t| -1 R 2 R 2 ∞ -∞ V e iτ √ G ψ(h 2 G)f (x) |g(y)| dτ ∞ -∞ τ /h 1/2 K h (|x -y|, τ ) dτ dxdy ≤ Ch 1/2 |t| -1 R 2 R 2 ∞ -∞ |τ | 1/2 |x -y|/h -1/2 V e iτ √ G ψ(h 2 G)f (x) |g(y)| dτ dxdy +Ch|t| -1 R 2 R 2 ∞ -∞ V e iτ √ G ψ(h 2 G)f (x) |g(y)| dτ dxdy ≤ Ch 1/2 |t| -1 f L 1 g L 1 ,
where K h (|x -y|, t) denotes the kernel of the operator sin t √ G 0 ψ 1 (h 2 G 0 ), and we have used (2.19) together with the fact that the function K h (σ, t) satisfies (2.27). Thus, we obtain

| Ψ(t; h)f, g | ≤ Ch 1/2 Ψ(t; h)f L ∞ g L 1 + Ch 1/2 |t| -1 f L 1 g L 1 ,
which clearly implies (3.1), provided h is taken small enough.
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