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High frequency dispersive estimates in dimension two

SIMON MOULIN

Abstract

We prove dispersive estimates at high frequency in dimension two for both the wave and
the Schrodinger groups for a very large class of real-valued potentials.

1 Introduction and statement of results

The purpose of this note is to prove dispersive estimates at high frequency for the wave
group ¢*VG and the Schrédinger group e®¢ | where G denotes the self-adjoint realization of
the operator —A + V on LQ(RQ) and V is a real-valued potential which decays at infinity
in a way that G has no real resonances nor eigenvalues in an interval [ag, +00), ag > 0. In
fact, we are looking for as large as possible class of potentials for which we have dispersive
estimates similar to those we do for the free operator Gy. Hereafter Gy denotes the self-
adjoint realization of the operator —A on L?(R?). It turns out that in dimension two one
can get such dispersive estimates at high frequency for potentials satisfying

V(z)|d
sup / L)llz < C < Ho0. (1.1)
yer2 Jrz2 |z —y|V/

Clearly, (1.1) is fulfilled for potentials V € L>°(R?) satisfying
V()] < Cla)™®, VaeR? (1.2)

with constants C > 0, § > 3/2. Given any a > 0, set x4(0) = x1(c/a), where x1 € C*°(R),
x1(o) =0 for 0 <1, x1(0) =1 for ¢ > 2. Our first result is the following

Theorem 1.1 Let V satisfy (1.1). Then, there exists a constant ag > 0 so that for every
a>ap, 0<exl, 2<p<+o0, we have the estimates

S C€|t|71/2a t 7é Oa (13)
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<l 40, (L4)
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where 1L/p+1/p' =1, a=1-2/p.

The estimate (1.3) is proved in [f] under tha assumption (1.2). Moreover, if in addition
one supposes that G has no strictly positive resonances, it is shown in [H] that (1.3) holds
for any a > 0 still under (1.2). In dimension three an analogue of (1.3) is proved in [g], [H]
for potentials satisfying (1.2) with § > 2, and extended in [E] to a large subset of potentials
satisfying

d
sup / [V{z)ldz < C < +o0. (1.5)
yeR3 JR3 |'T - y|



In dimensions n > 4 there are very few results. In % an analogue of (1.3) is proved for
potentials belonging to the Schwartz class, while in [[L1] dispersive estimates with a loss of
(n—3)/2 derivatives are obtained for potentials satisfying (1.2) with § > (n+1)/2. Recently,
in [ﬂ] dispersive estimates at low frequency have been proved in dimensions n > 4 for a very
large class of potentials, provided zero is neighter an eigenvalue nor a resonance.

Our second result is the following

Theorem 1.2 Let V satisfy (1.1). Then, there exists a constant ag > 0 so that for every
a > ag, we have the estimate

€ xa(G)]| 1o SCRITE t#0. (1.6)

Note that the estimate (1.6) (for any a > 0) is proved in [[] for potentials satisfying
1.2) with § > 2. In dimension three an analogue of (1.6) (for any a > 0) is proved in
ﬁm for potentials satisfying (1.5) with C' > 0 small enough, and in [f] for potentials V
L3/2=¢ N [3/2F€ (0 < ¢ < 1, not necessarily small. In dimensions n > 4, an analogue of
(1.6) (for any a > 0) is proved in [ for potentials satisfying (1.2) with § > n as well as
the condition V € L. This result has been recently extended in [E] to potentials satisfying
(1.2) with § > n— 1 and V € L!. Note also the work [[9), where an analogue of (1.6) (for
any a > 0) with a loss of (n — 3)/2 derivatives is obtained for potentials satisfying (1.2)
with § > (n +2)/2. In [J dispersive estimates at low frequency have been also proved in
dimensions n > 4 for a very large class of potentials, provided zero is neighter an eigenvalue
nor a resonance.

To prove (1.3) we use the same idea we have already used in [ﬂ] to prove low frequency
dispersive estimates in dimensions n > 4. The key point is the following estimate which
holds in all dimensions n > 2:

h [ veresmcas]|,, dt < CuWh IRl B0 )

where ¢ € C§°((0,400)), 7 > 0 is a constant independent of V', h and f, and

V(z)ld
Crn(V) := sup / Lﬁf? < +o00. (1.8)
yemn Jen To — 07
Our approach is based on the observation that if
Cn(V)h~(n=3/2 « 1, (1.9)

then (1.7) implies (under reasonable assumptions on the potential) a similar estimate for the
perturbed wave group, namely

h/ Hve“@p(h?c;)fHLl dt < Co(V)h= =372 £|| . (1.10)

When n = 3, (1.9) is fulfilled for small potentials and all h, when n > 4, (1.9) is fulfilled for
large h (i.e. at low frequency) without extra restrictions on the potential, while for n = 2,
(1.9) is fulfilled for small & (i.e. at high frequency) again without restrictions on the potential
others than (1.1). Note that (1.10) may hold without (1.9). Indeed, when n = 3, (1.10) is
proved in [{] for potentials V € L3/27¢ N L3/2+€ and all h > 0, and then used to prove the
three dimensional analogue of (1.6). In the present paper we adapt this approach to the case
of dimension two, and show that (1.6) follows from (1.10) for potentials satisfying (1.1) only,
provided the parameter a is taken large enough (see Section 3).



2 Proof of Theorem 1.1
Let ¢ € C§°((0,+00)) and set

O(t; h) = eVOP(h2G) — V(2 G).
We will first show that (1.3) and (1.4) follow from the following

Proposition 2.1 Let V satisfy (1.1). Then, there exist positive constants C' and hg so that
for 0 < h < hg we have

1@t M)l 1o < CRTYETY2, E £ 0. (2.1)
Writing
7o) = [ wtas)e e,
0

where ¥(a) = o'/~ (o) € C§°((0,+00)), and using (2.1) we get

eit\/EG—3/4—eXa(G) B €it\/G_0G83/476Xa(GO)‘

LY'—L~
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o1/ 4y < Cwm/ o=t edg < Cle|TV2 (22)
0

<[ o)
0

provided a is taken large enough. Clearly, (1.3) follows from (2.2) and the fact that it holds
for Gy. To prove (1.4), observe that an interpolation between (2.1) and the trivial bound

Ll—[

1@t M) L2pe <C

yields
1@t D) s o < CHTOJH72, £ £ 0, (2.3)

for every 2 < p < 400, p’ and « being as in Theorem 1.1. Now we write

0730‘/4)(@(0) = / w(09)971+30‘/4d9,
0

and use (2.3) to obtain (for 0 < oo < 1)

eit\/aG—?;a/ZlXa (G) o eit\/G_oGaga/4Xa (GO)‘

L?' —LP

—1

g/ H(I)(t; \/5)’ 9*1+3a/4d930|t|*a/2/ g-1Helidg < Cltmo/2,  (2.4)
0 0

provided a is taken large enough. Now, (1.4) follows from (2.4) and the fact that it holds for
Go.

Ly —Lp

Proof of Proposition 2.1. We will first prove the following

Lemma 2.2 Let V satisfy (1.1). Then, there exist positive constants C' and hgy so that for
0 < h < hy we have
[(h*G) — Y(h*Go)|| 1 0 < CRM. (2.5)



Proof. We will make use of the formula

b(hG) = / 02 ()0°G — )21 (dz), (2.6)

where L(dz) denotes the Lebesgue measure on C, ¢ € C§°(C) is an almost analytic continu-
ation of p(A\) = ¥ (\?) supported in a small complex neighbourhood of supp ¢ and satisfying

9y

?(z) < Cy|ImzN, VN >1.
z

For £Im A > 0, Re A > 0, set
REQ) = (Go— X", REN) = (@)~

We have the identity
RE(N) (1+VRF (V) = RF(\). (2.7)

It is well known that the kernels of the operators ROjE (\) are given in terms of the zero order
Hankel functions by the formula

[Ry (W](z,y) = Fid™ Hy (Alz — y).
Moreover, the functions Hoi satisfy the bound
|[HF(\)| < CIA[7H2e7IMmAL A > 1, £Im A > 0, (2.8)
while near A = 0 they are of the form
HE(\) = aojfl()\) + aiQ(A) log A, (2.9)

where aOi ; are analytic functions. In particular, we have

|HF (V)] < CIA7Y2, ReA >0, £Im A > 0. (2.10)
Using these bounds we will prove the following

Lemma 2.3 Let V satisfy (1.1). Then, there exist constants C > 0 and 0 < hg < 1 so that
for z € C% :={z € supp ¢, £Im z > 0}, we have the estimates

|[VRE(z/h)|| 1,0 SCHY2, 0<h <1, (2.11)
|[VEE(z/h)|| 10 < ChY2, 0 <h < h, (2.12)
|R (2/R)||,, ., <CR*[Imz["2, 0<h <1 Imz#0, (2.13)
|R=(2/h)|| 1 < Ch*Imz|™2, 0 <h < hg, Imz #0. (2.14)

Proof. By (1.1) and (2.10), the norm in the LHS of (2.11) is upper bounded by

|V( >|1/2 Sclh1/2

sup [V @IHG Gle — yl/h)jde < O1
R?2 R

yeR?2 2 |:L' —

Similarly, the norm in the LHS of (2.13) is upper bounded by

sup, [ | el —yl/lde = 12 sup [ 113Gl — i) jdo

yeR? yeER



§Ch2|1mz|_2/ <x—y>_3/2|x—y|_1dx:C/h2|1mz|_2/ (0)73/%do.
R? 0

To prove (2.12) and (2.14) we will make use of the identity (2.7). It follows from (2.11) that
there exists a constant 0 < hg < 1 so that for 0 < h < hy the operator 1 + VROi(z/h) is
invertible on L' with an inverse satisfying

H(1 +VR3E(z/h))’1‘

o S C, zeCg, (2.15)

with a constant C' > 0 independent of z and h. Clearly, (2.12) follows from (2.11) and (2.15),
while (2.14) follows from (2.13) and (2.15). O

To prove (2.5) we rewrite the identity (2.7) in the form

R*(2/h) — RE(2/h) = RE(z/)VRE (2/h) (1 + VRE(2/h)) ",

and hence, using Lemma 2.3 and (2.15), we get
|h"2R*(2/h) — h >Ry (2/h)|| ., < Ch'*[Im 2|72, 0<h<h, z€CE Imz#0.
(2.16)
It is easy now to see that (2.5) follows from (2.6) and (2.16). O

We will now derive (2.1) from the following

Proposition 2.4 Let V satisfy (1.1). Then, there exist positive constants C' and hg so that
we have, for 0 < s <1/2, f,g € L',

VERG) S| < ORI s, b 0,8 A0, (2.17)
/ / / %]z —y|~* Veitmw(hQGo)f(z)’|g(y)|dtd$dy
R2JR?2 J -0
<Ch 2| fllllgley, k>0, (218)
/ / / [t (o = y1/) " [VerCun2G) £(w)| lg(w)] dedady
R2 JR?2 J—-0c0

< CR* Y2 flallgllnr, 0< k< h. (2.19)

As in [[1F], using Duhamel’s formula

(VG _ /T, gf ) (V& - /G - /sm«tm;jm—o)Vede

we get the identity
2
=" (1:), (2.20)
j=1

where

O, (t;h) = (01 (h°G) — 1 (h*Go)) VG (2 Q)
1 (h%Go)e™C (p(h*G) — ¥(h*Gy))
—in (h2Go)sin (1/Go ) (£(h2G) = Y(H2Gy)
+idh (12Go)sin (1v/Go ) ($(12G) - (12Go) ),
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Dyt h) = h/o 1 (h2Go) sin ((t - T)\/G_O) VelrVey(h2@)dr,

where v1 € C3°((0,+00)), ¥1 = 1 on supp ¢, (o) = 0/29(0), ¥1(0) = 0~/ (0). By
Proposition 2.4 and (2.5), we have

[@1(t; h) fll e < CRTHETY2) fllr + CRYZ | (8 R) £ e (2.21)
Y2 (Do (85 h) £, 9)]
t/2
< h/ (t —7)4/2
0

+h/t/t2HVsin ((t - V/Go) i (h2Go| 772

sin ((t - T)\/G_()) zzl(h2Go)gHLoc HVe”‘/EQ/J(hQG)fHL1 dr

YCyway|| ar

gCh_1/2||gHL1/ [vervveay| ar
+h sup /2
t/2<7<t

VI /_ |Vsin (0 = 7)v/Go) n0*Go)g|, ar
< Ch~ gl Il + OB 2lglor sup_ /2

eVCyma| .
for ¢ > 0, which clearly implies

tY2 | ®a(t; h) || oo < CR7Y|fll1 +ChAY? sup 71/2

t/2<7t<t

e”‘/éq/)(hQG)fHLm L (2.22)

By (2.20)-(2.22), we conclude
2@t h) fll e < ChTH|fllr + CRVPE2 Dt ) fl oo

+ChY2 sup V2| ®(T;h) f|| oo - (2.23)

t/2<7<t
Taking h small enough we can absorb the second and the third terms in the RHS of (2.23),
thus obtaining (2.1). Clearly, the case of t < 0 can be treated in the same way. O

Proof of Proposition 2.3. The kernel of the operator ¢/*VG04(h2Gy) is of the form Kj, (|z—
yl,t), where

Kn(o,t) = (2m)~* / h e To(aN)Y(RPA)NAN = h 2Ky (oh™t th™h), (2.24)
0

where Jo(z) = (Hg (z) + H (2)) /2 is the Bessel function of order zero. It is shown in ||
(Section 2) that K}, satisfies the estimates (for all o,h > 0, t # 0)

|K1(0,t)] < Clt|~5(0)*" Y2, Vs >0, (2.25)

|Kn(o,t)] < Ch=32)t| 75012, 0<s<1/2. (2.26)

Clearly, (2.17) follows from (2.26) with s = 1/2. Tt is easy also to see that (2.18) follows
from (1.1) and the following



Lemma 2.5 For all 0 < s<1/2, o0,h > 0, we have

/ (t/R)* Ko, 8)] dt < Ch=Y (o /R)*~1/2, (2.27)
/ t|* | Kp(o,t)] dt < Ch™Y2g571/2, (2.28)

Proof. Clearly, (2.28) follows from (2.27). It is also clear from (2.24) that it suffices to
prove (2.27) with h = 1. When 0 < ¢ < 1, this follows from (2.25). Let now o > 1. We
decompose K; as K + K, , where KljE is defined by replacing in (2.24) the function Jy by
HZE /2. Recall that Hi(z) = e**bT(z), where bi(z) is a symbol of order —1/2 for z > 1.
Using this fact and integrating by parts m times, we get

|KiE(0,t)] < Cono™ Y2t + 0| 7™. (2.29)

By (2.29), we obtain

/<t>S|K1i(o,t)|dt§2aS/ |Kiat\dt+/ t £ o|° |Ki (0,t)| dt

gc;nas—l/Q/ |tio|_mdt+0ma_1/2/ |t + o*~™dt < Co®~Y/2,

— 00

which clearly implies (2.27) in this case. O

To prove (2.19) we will use the formula
e™VGy(h2G) = (imh) ™" / e on(A) (RT(A) = R~(\)) dA, (2.30)
0
where ¢ (\) = @1(hA), p1(A) = Mp(A?). Combining (2.30) together with (2.7), we get

VeVGy(h2G) = (irh)~ Zi/ VPE(t— 1)UL (7)dr, (2.31)

where

PO = [ B 0RE

UE®t) = /OOO e on(N) (1 + VRgE(A))’1 d\,

where ¢n(A) = @1(hA), @1 € C§°((0,+00)) is such that g1 = 1 on supp¢i. The kernel of
the operator P;"(t) is of the form AF(|z — y|,t), where

Af(o,t) = +ida™! / PRV HE (oN)d\ = h AL (o /h, t/h). (2.32)
0

In the same way as in the proof of Lemma 2.5 one can see that the function Af satisfies the
estimate

/ t]* |Aif (o,)] dt < ChY 20" /2(1+ h0™%), 0<s<1/2, 0<h<1, (2.33)

where e, =0if0<s<1/2, e, =€if s =1/2.



Clearly, it suffices to prove (2.19) with s = 0 and s = 1/2. For these values of s, using
(1.1), (2.31) and (2.33), we obtain

/m /R /o; 81° (= yl/m) "
schlg/m /R /Z/Zqzy|/h>s(|t7|s+ms>

X ’VPi t—T)UE(T)f ‘ lg(y)| drdtdxdy

<o S [ o e et o)

<|AF (| — 2'|,t — )| |UE (1) £ ()| 19(y)| drdtda’ dzdy

gth;//R/R [l = 91/~ lg(w)
y (/Z |T|S|Ag(|x—x'|,7)|dr) (/Oo yU,f(T)f(x’)ydT) da’ dady
ron 3 [ L V@ s o)
X (/OO |AE (| — 2], )|dT) (/_O:O |7|® \U,f(T)f(z')\dT) da’ dxdy
e S B B T e e (R R 0
X < [ h \UE(r) £ ()] dT> da’ dxdy
DY / /R 2 /R V@ (e = yl/B) " e a7 o)

X (/00 |7|® |Uhi(7)f(x’)| dT) dx'dedy == I, + I. (2.34)

VetVey(h?a) f(x)| lg(y)| didzdy

To estimate I; when s = 1/2, set ¢ = (2¢)~%, 1/p + 1/q = 1, and observe that in view of
(1.1) we have the bound

L@l = vi/m e oo
R2

< ([ w@lte - si/m dx)”p ([ vt x/|1/2d$)”q

<o ([ v@lte-ui/m dx)l/p

1/p
< Cyp!/eP) (/ |V (@)||z - y|_1/2dx) < Cyht/?e,
R?2



Thus, we obtain
I gc’hrwz/ / / UE @) £()] |9 ()| drda’dy. (2.35)
+ JR?JR?J-oc0
To estimate I> when s = 1/2, we use the inequality
B —1/2 (.. -1/2 r -1/2 _ |12 _ 712
(lz —yl/h)" """ o — 2|77 < (|2" — y[/h) |z —y|™ /" + [z — 2| :

We get

p<cn 23 [ e ) U £ gl drde'dy. (230)

+ /JR2JR?J-cc

On the other hand, by the identity

(1+VRF(N) ™ =1-VRF(\) (1+VRF(N)

we obtain -
U= (t) = Gu(t) — / VPE(t— 1)UE (7)dr (2.37)
Since
Pn(t) = b~ @1 (t/h),
we have -
/ 1% Bn (1)]dE < Ch. (2.38)

Using (2.37) and (2.38), in the same way as in the proof of (2.34)-(2.36), we obtain with
s=0ors=1/2,

/ / / ° (2 — yl/B) ™ |UE (0 ()] l9(w)| dededy < CB[L ]2 llg] oo
R2 JR?2 J—

sontt [ ][ e @) et draa'dy

con [ [ [ e O s (2

Taking h small enough we can absorb the second and the third terms in the RHS of (2.39)
and get the estimate

L L e o= im = ot sl dedsdy < Crfluslglr. (240

Now (2.19) follows from (2.34)-(2.36) and (2.40). O

3 Proof of Theorem 1.2

Set
(t; h) = e"Cp(h2Q) — e Yop(h2Gy).

As in the previous section, one can derive (1.6) from the following



Proposition 3.1 Let V satisfy (1.1). Then, there exist positive constants C' and hg so that
for 0 < h < hy, we have

1R < CHYHY, £ 0, (3.1)

Proof. We will derive (3.1) from (2.19). To this end, we will use the identity

o0

eitAZSa(thz):/ A (L, T)dT, (3.2)

— 00

where ¢ € C§°((0, +00)), ¢ = 1 on supp 1, the functions ¢ and v being as in the previous
section, and

Cn(t, ) = (2m) 7" /O N N TIAG(R2NZ) AN = BTGy (th 2, ThY). (3.3)

We deduce from (3.2) the formula
et (hEG) = / Cu(t, 7)™V (h2G)dr. (3.4)
Given any integer m > 0, integrating by parts m times and using the well known bound
’/ emz_”’\qﬁ()\)d)\} <Clt|~Y?, vt#0,7€R,
where ¢ € C§°(R), one easily obtains the bound
Gt )| < Colt| "™ Y2(r)™, Vt£0, 7 €R. (3.5)
By (3.3) and (3.5),
ICh(t, 7)| < Coh®™ |t~ Y2 (7 /D)™, Yt #0, 7€ R, h >0, (3.6)

for every integer m > 0, and hence for all real m > 0. By (2.5), (2.20) and (3.4), we get

(W(t;h) f, g) < ChY2 | W (th) fll oo N9l

s [ Gl (G, (41(126) — 1 (12G) )| ar

[ o)

— 00

<e”@¢1(h2G0) ($(h2G) — (h*Gy)) f,g>’ dr

= [ 10 (sin (73/Go) 6a(02Go) (6(0°G) — (17Go)) £.9)| dr

— 00

+ [ el (sin (/o) 41(02Go) (3026) - 502G £.)| dr

— 00

+h/°; /OT [Cu(t, 7)) ’<Veir’\/51/)(h2G)f, sin ((T —~ T’)\/(TO) ,;;1<th0>9>‘ ardr. (37)

Using (3.6) with m = 1/2 and (2.27) with s = 1/2 together with (2.5), we obtain that the
first integral in the RHS of (3.7) is upper bounded by

cnte™ [ [ [ e R - s £ 01(02G) — (G glo)] drdady

10



<l [ [ 1@ 1026) —in (2G0)) atw)| drdy < Ch21e1 | sl

and similarly for the next three integrals. The last term is upper bounded by

e [ [ [T (i e = m )[R = ol (- )

x [VerVeun26) f(@)| lgw)] dr'drdudy
<cw [ ][ e verCuee) o) lawlar [ |Rala = ol drdady
R2 JR?2 J—-oc0 _
+Ch2|t|71/ / / ‘Ve”‘@w(h2 ‘|g |d7'/ (t/h) UQ‘Kh |z — yl, )‘dexdy
R2 JR?2 J -0

< CRY2)g / 2 /R 2 / 2 (0 Ve (n26) £ @) gty | drdedy

vond = [ [ ven ) s o) sy

< CR2 7 f e llgll e

where Kj,(|z — y|,t) denotes the kernel of the operator sin (tv/Go) U1 (h2Gy), and we have
used (2.19) together with the fact that the function K (o, t) satisfies (2.27). Thus, we obtain

(Lt h)fg) < CRY2 () fll e gl + CRYP I gl e,

which clearly implies (3.1), provided h is taken small enough. i
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