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Abstract—We provide a rigorous asymptotic method to build
approximate conditions equivalent to a thin layer. With these
conditions the electromagnetic field may be computed in domains
such as a biological cell, without meshing the membrane. The in-
fluence of the membrane is replaced by an appropriate condition
on the inner domain, while in the thin layer, the approximate
field is explicitly known. We give error estimates, which validate
our asymptotic method, and we present a few numerical results
performed with the finite element method.

Index Terms—Asymptotic methods, thin layers, finite element
method.

I. INTRODUCTION

THE distribution of the electromagnetic field in a biolog-

ical cell is important for bioelectromagnetic investiga-

tions. For instance, a sufficiently large amplitude of the trans-

membranar potential (TMP), which is the difference of the

electric potentials between both sides of the cell membrane,

leads to an increase of the permeability of this membrane

[1], [2]. This phenomenon, called electropermeabilization, has

been already used in oncology and holds promises in gene

therapy [3], justifying precise assessments of the TMP. Since

the experimental measurements of the TMP on living cells are

limited — essentially due to the thinness of the cell membrane,

which is a few nanometers thick — a numerical approach

is often chosen [1], [4]. However, these computations are

confronted with the heterogeneous parameters of the biological

cells. Actually, in the Fear and Stuchly model [5], the cell is

a medium of regular shape (without any corner) composed by

a homogeneous conducting cytoplasm of diameter of a few

micrometers surrounded by a very insulating membrane a few

nanometers thick (see Figure 1).

To avoid difficulties, most of the numerical computations

deal with unrealistic cells (spherical and ellipsoidal cells) with-

out details about the accuracy of the numerical method used

(typically the finite element method) [5]. However, biological

cells have non-trivial shapes and Sebastián et al. have shown

that the cell geometry has a significant influence on the electric
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σc = 1S/m

ǫc = 80 ǫ0

σm = 10−5 to 10−7S/m
ǫm = 11.3 ǫ0
δ ∼ few nanometers thick

l ∼ few µm

δ

Fig. 1. The electric model of the biological cell (see Fear et al. [5]).

field distribution. To perform computations on realistic cell

shapes by considering a conduction problem, Pucihar et al.

[1] propose to replace the membrane by a condition on the

boundary of the cytoplasm. This condition corresponds to

a contact resistance model but the details for asserting the

accuracy of their method are not given.

In this paper, we present a rigorous asymptotic method to

compute the electromagnetic field in smooth domains with

a thin layer. Since the proofs of our results are precisely

described in [6] and [7], we present the heuristics of the

method and the main results, which may be useful for electro-

magnetic computations in biological cells and we illustrate our

asymptotics with numerical simulations. For sake of simplicity,

we consider a bidimensional cell, however our method might

be easily extended to three-dimensional cells.

We deal with the quasistatic (also called dielectric) formula-

tion: results for the Helmholtz equation are given in [7]. Two

cases are considered:

• an electric field (i.e. a Neumann boundary condition)

is enforced directly on the exterior boundary of the

membrane; we build approximate boundary conditions

asymptotically equivalent to the membrane.

• the cell is embedded in an ambient medium submitted to

an electric potential; we build approximate transmission

conditions.

These approximate conditions are obtained to replace the thin

membrane but keeping a prescribed accuracy on the solution.

To justify this accuracy, we give error estimates between the

potential with the membrane and without the membrane but

with the approximate conditions.
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II. APPROXIMATE BOUNDARY CONDITIONS

A. Statement of the problem

Denote by Ω the biological cell composed by a cytoplasm

O surrounded by a thin membrane Oδ with thickness δ. Let

γ0 be the cytoplasm complex permittivity and γ1 this of the

membrane. Denote by γ the function equal to γ0 in O and γ1

in Oδ . The quasistatic formulation is given by:






∇ · (γ∇V ) = 0, in Ωδ

∂V

∂n
= φ, on ∂Ωδ;

(1)

φ is the electric field imposed on the boundary of the cell.

We suppose that this Neumann boundary condition is as

regular as we need and it satisfies
∫

∂Ωδ

φ(s) ds = 0. So that

V is uniquely determined, we impose the gauge condition
∫

∂O
V (s) ds = 0.

Our method might be decomposed in three steps. The first

step consists of a change of coordinates so that the thin

parameter δ appears explicitly in the equations. In the second

step, we choose an ansatz, supposing that the potential might

be written as a formal serie with respect to δ. Then, by

identifying the terms with the same power of δ, we obtain a

sequel of elementary problems. The final step is the rigorous

validation of our ansatz, providing a priori error estimates of

the method.

B. Change of coordinates

Since the bidimensional medium O is regular, in particular

the presence of corners is excluded, we may parametrize it

with the curvilinear coordinate. Suppose that the length of

∂O equals 1. There exists a 1-periodic function Ψ, such that

for all x ∈ ∂O, there exists a unique θ ∈ [0, 1] satisfying:

x = Ψ(θ), and ‖Ψ′(θ)‖ = 1. (2)

Denoting by n(θ) the exterior normal to ∂O at the point Ψ(θ),
we may parametrize the thin layer Oδ as follows:

Oδ = {Φ(η, θ) = Ψ(θ) + ηδn(θ), θ ∈ [0, 1]} . (3)

The curvature κ of ∂O is then the 1-periodic function defined

by:

∀θ ∈ [0, 1], κ(θ) = ‖n′(θ)‖ .

We denote by K the curvature of ∂O in Euclidean coordinates:

K(x) = κoΨ−1(x),

and we define ϕ as the boundary data φ translated on ∂O:

ϕ(x) = (φoΦ|η=1) oΨ−1(x).

The main idea of our asymptotic method is to write the

Laplace operator in local coordinates so that the thin parameter

δ appears explicitly. Denote by ∆η,θ the Laplace operator

written in (η, θ)-coordinates, then using change of coordinates

(2) we have:

∆η,θ =
1

1 + δηκ

(

∂η

(

1 + δηκ

δ
∂η

)

+ ∂θ

(

δ

1 + δηκ
∂θ

))

,

(4)

and the operators of normal derivative ∂n and tangential

derivative ∂t equal

∂n =
1

δ
∂η, ∂t = ∂θ. (5)

Supposing that V may be written as follows:

V = V0 + δV1 + · · · ,

we consider this expression of V with the Laplace operator in

local coordinates (4) and we order the terms of the equations:

∆ (V0 + δV1 + · · · ) = 0, in O, (6a)

1

δ
∂2

ηV0 + ∂2
ηV1 + κ∂ηV0

+ δ
(

∂2
ηV2 + κ∂ηV1 + ∂2

θV0

)

+ · · · = 0, in Oδ ,

(6b)

with transmission conditions on ∂O (the subscript ∂O− indi-

cates the cytoplasm side and η = 0+, the membrane side)

V0|∂O− + δV1|∂O− + · · · = V0|η=0+ + δV1|η=0+ + · · · ,
(6c)

γ0 (∂nV0|∂O− + δ∂nV1|∂O− + · · · ) = γ1

(1

δ
∂ηV0|η=0+

+ ∂ηV1|η=0+ + δ∂ηV2|η=0+ + · · ·
)

,
(6d)

and with the Neumann boundary condition on ∂Ωδ

1

δ
∂ηV0|η=1 + ∂ηV1 + · · · = φoΦ|η=1. (6e)

C. Elementary problems and error estimates

By identifying the terms with the same power of δ in (6)

we obtain the first two terms of the asymptotic expansion of

the solution V of Problem (1).

• Order 0. V0 satisfies:
{

∇ · (γ0∇V0) = 0, in O,

∂nV0 = (γ1/γ0)ϕ on ∂O.
(7)

• Order 1. V1 satisfies:
{

∇ · (γ0∇V1) = 0, in O,

∂nV1 = (γ1/γ0)
(

∂2
t V0 + Kϕ

)

on ∂O.
(8)

Denote by Vapp = V0 + δV1, we have the estimate:

‖V − Vapp‖H1(O) ≤ C

∣

∣

∣

∣

γ1

γ0

∣

∣

∣

∣

δ2‖ϕ‖. (9)

Therefore, to approximate the potential in the cytoplasm with

an accuracy of order δ2, we have to compute problems (7)–(8)

with appropriate boundary conditions for the cytoplasm.

It may be interesting to solve only one equivalent problem

with a non-classical boundary condition. Observe that Vapp

satisfies
{

∇ · (γ0∇Vapp) = 0,

∂nVapp = (γ1/γ0)
(

(1 + δK) ϕ +
(

δ∂2
t Vapp − δ2∂2

t V1

)

)

.

(10)



PAPER PC7-3. FULL PAPER ID 1395. 3

Therefore, we denote by Ṽapp the solution to
{

∇ ·
(

γ0∇Ṽapp

)

= 0, in O,

∂nṼapp − (γ1/γ0)δ∂
2
t Ṽapp = (γ1/γ0) (1 + δK) ϕ on ∂O.

(11)

Using (9) we have:

‖V − Ṽapp‖H1(O) ≤ C

∣

∣

∣

∣

γ1

γ0

∣

∣

∣

∣

δ2‖ϕ‖. (12)

In the thin layer1 Oδ , we have the explicit formulae of Vapp

written in local coordinates:

∀x ∈ Oδ, Vapp(x) = V0 (x|∂O) + δV1 (x|∂O)

+
(

(x − x|∂O) · n (x|∂O)
)

ϕ (x|∂O) ,

and we have the following estimate:

‖V − Vapp‖H1(Oδ) ≤ Cδ3/2‖ϕ‖. (13)

The boundary condition satisfied by Ṽapp is called approximate

boundary condition. Observe that if K equals 1, i.e. if O is

a disk, approximate boundary condition (11) is exactly the

same as boundary condition (10) of Krähenbühl and Muller

[8]. Here, we validate the result by an error estimate. We

may perform asymptotic expansion at any order n ≥ 0. We

emphasize that according to estimate (12), our approximate

boundary condition is valid for a bounded ratio |γ1/γ0|,
therefore it may be used to compute the electric field in

a biological cell. As soon as |γ1/γ0| is of order 1/δ (or

bigger), which means that the thin layer is very conducting,

approximate boundary condition (11) is no more valid. We

refer to [6] for a precise description of this case.

D. Numerical simulations

A geometry, where no analytic solution is known, has been

studied. In order to show the error due to the asymptotic expan-

sion, we are led to compute the solution of the problem with

and without the membrane; these computations are performed

using the finite element method.

A numerical validation for Estimation (13) can be difficult to

obtain because the error due to the asymptotic expansion have

to be greater than the discretization error. If the membrane is

very thin, we have to deal with a huge number of degrees of

freedom, which can prevent the use of a too thin membrane for

the numerical validation. This remark fully justifies the use of

the approximate conditions: by considering a thin membrane

but keeping a reasonable number of degrees of freedom for

the discretization, it is not possible to distinguish the solutions

with and without the membrane in the inner domain.

We perform computations with GetDP [9] for an elongated

cell Ω. In Figure 2 we present the steady state potentials when

the thin layer is insulating. Asymptotics (7) and (8) give the

approximate potential in O without meshing the membrane.

In Figure 3, we draw the error made by our asymptotics

with respect to the thickness δ. Observe for instance that if

δ = 10−2, the error made by our method is around 10% at

the order 0 and less than 1% at the order 1.

1Observe that x ∈ Oδ equals x = x|∂O + (x − x|∂O) · n (x|∂O), with
x|∂O the orthogonal projection of x on ∂O.

Fig. 2. Steady state potentials in an elongated cell with an insulating
membrane.

Fig. 3. Error versus the membrane thickness. γ0 = 5, γ1 = 0.5. The
continuous lines are the results of the numerical computations and the dotted
lines used an exponent estimated for (13) using the numerical results.

III. APPROXIMATE TRANSMISSION CONDITIONS

Suppose now that our cell Ωδ is embedded in an ambient

medium Oe, with conductivity equal to γe. We denote by

Ω = Ωδ ∪ Oe,

and by γ the function equal to γ0 in O, γ1 in Oδ and γe in

Oe. Consider the steady state voltage equations:







∇ · (γ∇V ) = 0, in Ω
∂V

∂n
= φ, on ∂Ω;

(14)

with φ as Neumann boundary condition on ∂Ω.

We have to replace the membrane by approximate trans-

mission conditions on the boundary of the cytoplasm. To

obtain these conditions, we extend the exterior potential up

to the boundary of the cytoplasm. Using the parametrization

(3) of the membrane and Taylor expansions with respect to the

normal variable, we then explicit the Dirichlet and Neumann

values of the potential on the exterior boundary of the cell in

terms of δ and of the Dirichlet and Neumann traces on the

boundary of the cytoplasm. More precisely, if we denote by

V e the potential in Oe formally extended to Oδ , and by Γδ



PAPER PC7-3. FULL PAPER ID 1395. 4

the exterior boundary of the cell, we have:

V e|Γδ
= V e|∂O + (x − x|∂O).n(x|∂O)∂nV e|∂O + · · · ,

∂nV e|Γδ
= ∂nV e|∂O + (x − x|∂O).n(x|∂O)∂2

nV e|∂O + · · · .

We are now ready to apply the machinery of the asymptotic

method presented in the previous section. We just give here

the first two terms of the asymptotic expansion of V solution

to (14).

• Order 0. V0 satisfies:






































∇ · (γ0∇V0) = 0, in O,

∇ · (γe∇V0) = 0, in Ω \ O,

∂nV0 = φ on ∂Ω

with transmission conditions on ∂O:

γ0∂nV0|∂O− = γe∂nV0|∂O+ ,

V0|∂O− = V0|∂O+ .

(15)

• Order 1. V1 satisfies:










































∇ · (γ0∇V1) = 0, in O,

∇ · (γe∇V1) = 0, in Ω \ O,

∂nV1 = 0 on ∂Ω

with transmission conditions on ∂O:

γ0∂nV1|∂O− − γ1∂nV1|∂O+ = (γ1 − γe) ∂2
t V0|∂O,

V1|∂O− − V1|∂O+ =
(

γ1−γe

γ1γe

)

γ0∂nV0|∂O− .

(16)

The approximate potential Vapp is then the sum V0 +δV1, and

there exists a constant Cγ0,γ1,γe,O δ-independent such that:

‖V − Vapp‖H1(O) ≤ Cγ0,γ1,γe,Oδ2‖φ‖. (17)

A. Numerical simulations

An elongated cell embedded in a square domain is con-

sidered as shown in Figure 4. The potential is enforced

Square domain: [−2; 2]2.
Radius of the interior extrem-
ity from the inner domain: 0.5.
Length of the straight part:
0.5.
Thickness of the membrane:
0.2.

Parameters for the simulation:

γ0 = γe = 1 + 0.01j

and γ1 = 0.01 + 1j.

Fig. 4. The geometry considered: a cell embedded in a square domain.
Representation with the thickest membrane.

on the upper and lower boundaries; homogeneous Neumann

conditions are considered for the lateral boundaries.

Figure 5 shows a numerical validation of the approximate

transmission conditions. Let us note that the calculated order

is non-optimal for the condition of order 1: an exponent of

1.7 is obtain instead of 2 as asserted in (17). As described

before, it can be practically difficult to show numerically the

estimate because the discretization error can be higher than

what is asserted in (17).

Fig. 5. Error versus the membrane thickness. γ1 = 0.01 + 1j, γ0 = γe =
1+0.01j. The continuous lines are the results of the numerical computations
and the dotted lines used an exponent estimated for (17) using the numerical
results.

IV. CONCLUSION

We have presented how to build rigorously approximate

conditions for the solution of the dielectric formulation in a

domain with a thin membrane. With our method we do not

have to mesh the membrane: the approximate field inside the

thin layer is known explicitly, and the potential outside the

membrane is the solution to the dielectric formulation with the

approximate condition. We provide rigorous a priori estimates

of the error. Moreover, we may build approximate boundary

condition at any order, if the domain and the boundary data are

enough regular (see [6], [7] for more details). This means that

we may build solutions, which approach the total potential

with an error in δn, for n as large as desired. The only

drawback is that the problem with the approximate condition

is less straightforward to discretize than the initial problem.

This method has been generalized to Helmholtz equation in

[7] and it might be applied for the 3D vector wave equation.

It would also be useful to consider domain with geometric

singularities.
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[4] S. Muñoz, J. Sebastián, M. Sancho, and J. Miranda, “Transmembrane
voltage induced on altered erythrocyte shapes exposed to rf fields,”
Bioelectromagnetics, vol. 25, no. 1, pp. 631–633 (electronic), 2004.

[5] E. Fear and M. Stuchly, “Modeling assemblies of biological cells exposed
to electric fields,” IEEE Trans. Bio. Eng., vol. 45, no. 1, pp. 1259–1271
(electronic), 1998.

[6] C. Poignard, “Asymptotics for steady state voltage potentials in a bidi-
mensionnal highly contrasted medium with thin layer,” Math. Meth. Appl.

Sci., July 2007, doi: 10.1002/mma.923.



PAPER PC7-3. FULL PAPER ID 1395. 5

[7] ——, “Rigorous asymptotics for the elecric field in TM mode at
mid-frequency in a bidimensional medium with thin layer,” 2006, 27
pages. Submitted. [Online]. Available: http://www.cmap.polytechnique.
fr/∼poignard/helmholtz-27.html
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