N

N

Approximate conditions replacing thin layers
Clair Poignard, Patrick Dular, Ronan Perrussel, Laurent Krahenbiihl, Laurent

Nicolas, Michelle Schatzman

» To cite this version:

Clair Poignard, Patrick Dular, Ronan Perrussel, Laurent Krdhenbiihl, Laurent Nicolas, et al.. Ap-
proximate conditions replacing thin layers. 2007. hal-00165049v1

HAL Id: hal-00165049
https://hal.science/hal-00165049v1

Preprint submitted on 24 Jul 2007 (v1), last revised 10 Jun 2008 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00165049v1
https://hal.archives-ouvertes.fr

PAPER PC7-3. 1

Approximate conditions replacing thin layers

Clair Poignard, Patrick Dular, Ronan Perrussel, Laurerdhiénbiihl, Laurent Nicolas, and Michelle Schatzman

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice,
after which this version may no longer be accessible.

Abstract—We provide a rigorous asymptotic method to build
approximate conditions equivalent to a thin layer. With these
conditions the electromagnetic field may be computed in donias
such as a biological cell, without meshing the membrane. Thia-
fluence of the membrane is replaced by an appropriate conditin
on the inner domain, while in the thin layer, the approximate
field is explicitly known. We give error estimates, which vaidate
our asymptotic method, and we present a few numerical resudt
performed with the finite element method.

Om =107°10 1077S/m
em = 11.3 ¢g
6 ~ few nanometers thick

Index Terms—Asymptotic methods, thin layers, finite element
method.

[ ~ few pm

. INTRODUCTION Fig. 1. The electric model of the biological cell (see Feaal. [5]).
HE distribution of the electromagnetic field in a biolog-

ical cell is important for bioelectromagnetic investiga-

tions. For instance, a sufficiently large amplitude of thns- shapes by considering a conduction problem, Pucéhaal.
membranar pOtential (TMP), Wh|Ch iS the diﬁerence Of thﬁ_] propOSe to rep'ace the membrane by a Condition on the
electric potentials between both sides of the cell membra%undary of the cytoplasm. This condition corresponds to
leads to an increase of the permeability of this membragecontact resistance model but the details for asserting the
[1], [2]. This phenomenon, called electropermeabilizatioas accuracy of their method are not given.

been already used in oncology and holds promises in genen this paper, we present a rigorous asymptotic method to
therapy [3], justifying precise assessments of the TMPCSincompute the electromagnetic field in domains with a thindaye
the experimental measurements of the TMP on living cells aggnce the proofs of our results are precisely described Jin [6
limited — essentia”y due to the thinness of the cell membrarhnd [7], we present the heuristics of the method and the main
which is a few nanometers thick — a numerical approag@sults, which may be useful for electromagnetic comportati

is often chosen [1], [4]. However, these computations afg biological cells and we illustrate our asymptotics with
confronted with the heterogeneous parameters of the baabg numerical simulations. For sake of simplicity, we consider
cells. Actually, in the Fear and Stuchly model [3], the csll ia pidimensional cell, however our method might be easily
a medium of regular shape (without any corner) composed Bytended to three-dimensional cells.

a homogeneous conducting cytoplasm of diameter of a femye deal with the quasistatic (also called dielectric) folmu

micrometers surrounded by a very insulating membrane a fg@n: results for the Helmholtz equation are given in [7].0Tw
nanometers thick (see Figure 1). cases are considered:

To avoid difficulties, most of the numerical computations , g electric field ile. a Neumann boundary condition)
deal with unrealistic cells (spherical and ellipsoidal€elith- is enforced directly on the exterior boundary of the
out details about the accuracy of the numerical method used membrane: we build approximate boundary conditions
(typically the finite element method) [5]. However, biologi asymptotically equivalent to the membrane.
cells have non-trivial shapes and Sebasgtal. have shown  , the cell is embedded in an ambient medium submitted to

that the cell geometry has a significant influence on thertect 5 glectric potential; we build approximate transmission
field distribution. To perform computations on realistidl ce conditions.

C. Poignard is with the Centre de Mathematiques AppliquagMr | N€S€ approximate conditions are obtained to replace the th
CNRS 7641, Ecole Polytechnique, F-91128, Palaiseau, France (e-mailembrane but keeping a prescribed accuracy on the solution.
poignard @cmapx.polytechnique.fr). To justify this accuracy, we give error estimates between th
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~o be the cytoplasm complex permittivity and this of the We suppose that” may be written as follows:
membrane. Denote by the function equal to, in © and~, V=Vt 5V
in O5. The quasistatic formulation is given by: = Vot oVi4.-.

P We replacé/ by its developmentin (4) and we order the terms
{g‘}(’yVV) =0, in Qs (1) o©f the equations:
%:qﬁ, on 9Qs; A(Vo+6Vi+---)=0, in O, (6a)

¢ is the electric field imposed on the boundary of the cell.}azvO +8,2]V1 + K0, Vo

We suppose that this Neumann boundary condition is ag " (6b)
regular as we need and it satisfifs, ¢(s)ds = 0. So that — + (V2 + k0, Vi + 05Vp) + -+ =0, in Os,

V' is uniquely determined, we impose the gauge condition o » ) o
[oo V(s)ds = 0. with transmission conditions ofO (the subscrippO~ indi-

Our method might be decomposed in three steps. The fifétes the cytoplasm side and= 0", the membrane side)

step consists of a change of coordinates so that the thi{}| + oV b =T + oW +...
parametep appears explicitly in the equations. In the second °'9¢~ 1180~ — 0ln=07 Lln=0% 7(60)
step, we choose an ansatz, supposing that the potentiat migh 1
be written as a formal serie with respect do Then, by ¢ (9,Vo|po- + 00, Vilpo- + ) = 71(537]‘/0|n:0+ od
identifying the terms with the same power &f we obtain a (6d)
sequel of elementary problems. The final step is the rigorous’ 9nVily—o+ + 00y Valy—o+ ++-+),
validation of our ansatz, providing priori error estimates of ;.4 \vith the Neumann boundary condition &f;
the method.
1
_ SanW)|n:1 + a’r]vl + = ¢Oq)|n:1- (69)
B. Change of coordinates
Since the bidimensional mediu® is regular, we may
parametrize it with the curvilinear coordinate. Supposat th ,
the length ofd®O equals 1. There exists a 1-periodic functiofy- Elémentary problems and error estimates
¥, such that for all: € 9O, there exists a uniqué € [0, 1] By identifying the terms with the same power &fin (6)
satisfying: we obtain the first two terms of the asymptotic expansion of
, the solutionV of Problem (1).
z=(6), and [[L()] =1. @) « Order 0.V, satisfies:
Denoting byn(6) the exterlor normal t&@O at theipomt\I/(e), V- (Vo) = 0, in O,
we may parametrize the thin layél; as follows: (7
Vo = (71/70)p 0n 0.
={®(n,0) = ¥(0 on(6), 6 1]}. 3 -
05 ={®(n,6) (6) +non(6), €0 1]} 3) « Order 1.V satisfies:
gc.e curvatures: of 90O is then the 1-periodic function defined V- (10VVi) =0, in O, ©
anvl = (71/’70) (8152‘/2)6 + ﬁ@) on 90.
Vo € [0,1], r(0) = [n"(0)] - .
Denote byV,,, = Vy + 0V1, we have the estimate:
We denote byR the curvature of) in Euclidean coordinates: y
1
ﬁ(m) _ KO\I/_l(m), HV - VappHHl(O) <C % 52”90”- )
and we definey as the boundary data translated orO: Therefore, to approximate the potential in the cytoplasiti wi
. an accuracy of ordef?, we have to compute problems (7)—(8)
p(x) = (¢o®|y=1) 0¥ (). with appropriate boundary conditions for the cytoplasm.

The main idea of our asymptotic method is to write the_'t may be inter_esting to solve only_(_)ne equivalent problem
Laplace operator in local coordinates so that the thin patem With @ non-classical boundary condition. Observe thigj,

5 appears explicitly. Denote by, o the Laplace operator satisfies

written in (n, §)-coordinates, then using change of coordinate{V (Y0 VVapp) =0,

(2) we have: OnVapp = (71/70)((1 +0R) ¢ + (007 Vapp — 62831/1)).

1 1+ dnk o (10)
Apg=—— —_—
(L Y (6,] ( 0 6,]) % (1 + 5nn89))

(4) Therefore, we denote by,,, the solution to
and the operators of normal derivativ, and tangential - .
{v- (yovva,,,,) —0, inoO,

derivative9; equal ) h
1 OnVapp — (’71/70)583‘/@1)1) = (71/’}/0) (1 + (5ﬁ) @ on 00.

On = 56‘7,, 0y = Op. (%) (11)
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Using (9) we have: /

~ Y
nv—anmnzchiﬁww 12)

In the thin layet Os, we have the explicit formulae Ofopp
written in local coordinates:

Ve € Os,  Vapp(x) = Vo (2]00) + 0V1 (2|o0) /

+ ((:c —zlpo) - n (93|6(9))<P (z]o0), -0.124 \4 0229

and we have the foIIowing estimate: Fig. 2. Steady state potentials in an elongated cell with resulating
membrane.
IV~ Vappllm05) < C6%2|l6))- (13)
The boundary condition satisfied n{yw is called approximate
boundary condition. Observe that £ equals lj.e if O is e
a disk, approximate boundary condition (11) is exactly the _§
same as boundary conditiqa0) of Krahenbuihl and Muller g g1t
[8]. Here, we validate the result by an error estimate. We £
may perform asymptotic expansion at any ordep 0. We =z Vs
emphasize that according to estimate (12), our approximate &
boundary condition is valid for a bounded ratje; /7o, £ )
therefore it may be used to compute the electric field in ' 107 e exponents 0.7
a biological cell. As soon a$yi/vo| is of order1/6 (or = — Order 1
bigger), which means that the thin layer is very conducting, ‘ © " Eetimated exponent: 207
approximate boundary condition (11) is no more valid. We 107 s 1o~

refer to [6] for a precise description of this case.

Fig. 3.  Error versus the membrane thickness. = 5, v1 = 0.5. The
D. N ical simulati continuous lines are the results of the numerical computatand the dotted
- Numerical simulations lines used an exponent estimated for (13) using the nunhedsalts.
A geometry, where no analytic solution is known, has been
studied. In order to show the error due to the asymptoticrexpa

sion, we are led to compute the solution of the problem with ||| A PPROXIMATE TRANSMISSION CONDITIONS
and without the membrane; these computations are performed
using the finite element method. Suppose now that our cells is embedded in an ambient

A numerical validation for Estimation (13) can be difficwdt t mediumO., with conductivity equal toy.. We denote by
obtain because the error due to the asympotic expansion have
to be greater than the discretization error. If the membiane =05U0,
very thin, we have to deal with a huge number of degrees ﬁd
freedom, which can prevent the use of a too thin membrane %r
the numerical validation. This remark fully justifies theeusf °

by~ the function equal toy, in O, vy, in Os and~, in
Consider the steady state voltage equations:

the approximate conditions: by considering a thin membrane V. (yVV) =0, in Q
but keeping a reasonable number of degrees of freedom for oV (14)
the discretization, it is not possible to distinguish thiigons o ¢, on oY

with and without the membrane in the inner domain. _ -

We perform computations with GetDP [9] for an elongate¥ith ¢ as Neumann boundary condition .
cell . In Figure 2 we present the steady state potentials when/Ve have to replace the membrane by approximate trans-
the thin layer is insulating. Asymptotics (7) and (8) give thmission conditions on the boundary of the cytoplasm. To
approximate potential i) without meshing the membrane. obtain these conditions, we extend the exterior potental u

In Figure 3, we draw the error made by our asymptotic,tQ the boundary of the cytoplasm. Usiqg the_parametrization
with respect to the thickness Observe for instance that if (3) Of the membrane and Taylor expansions with respect to the
§ = 5.10~3, the error made by our method is arour@fs at normal variable, we then explicit the Dirichlet and Neumann
the order 0 and % at the order 1. values of potential on the exterior boundary of the cell img

of § and of Dirichlet and Neumann traces on the boundary

10bserve that: € O3 equalsz = z|po + (¢ — z|po) - 1 (z]oo), With of the_cy_toplasm. More precisely, if we denote by the
z|po the orthogonal projection of on HO. potential inO, formally extended t@s, and byl's the exterior
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boundary of the cell, we have:

Vers = Va0 + (& — z|oo) . n(z|00)0n Vo0 + - - -,
Ve rs = 0nV° o0 + (z — 2]90).n(7]00) 02V oo + - - .

—

We are now ready to apply the machinery of the asymptotic
method presented in the previous section. We just give here

IV = Vippllart in the inner domain.

the first two terms of the asymptotic expansioniofolution ‘
to (14). 10
« Order 0.V; satisfies: oo 0
. + =+ Estimated exponent: 0.94
V- (VOVVO) = 07 In Oa - = Order 1
. -4 P = =+ Estimated exponent: 1.72
V- (%VV) =0, inQ\ O, i s i
1072 107!
Vo = ¢ onoQ) (15) 5
with transmission conditions ofO:
1000 Voloo- = Ye0nVoloo+ Fig. 5. Error versus the membrane thicknegs.= 0.01 + 1j, 70 = e =
V0|aof = V0|50+. 1+ 0.01j. The continuous lines are the results of the numerical caatipns
L and the dotted lines used an exponent estimated for (17y tisennumerical
o Order 1.V; satisfies: results.
V- (wVVi)=0, in O,
V- (7.VV1) =0, inQ\O, IV. CONCLUSION
9,V1 =0 on 9Q We have presented how to build rigorously approximate
with transmission conditions ofiO: conditions for the solution of the dielectric formulatiom a

Y00 Viloo- — 110 Vilso+ = (11 — 7e) 02Voloo, ~ domain with a thin membrane. With our method we do not
_ have to mesh the membrane: the approximate field inside the
- — = u g — . . . . - H
Viloo- = Vilao- ( Y )%8”‘/0|60 thin layer is known explicitly, and the potential outsidee th
membrane is the solution to the dielectric formulation
(16) brane is the soluti he dielectric formulation with
The approximate potentidl,,, is then the sun; +6V4, and approximate condition. We provide rigorous a priori estiesa

there exists a constant,, ., . o d-independent such that: of the error. Moreover, we may build approximate boundary
condition at any order, if the domain and the boundary data

2
IV = Vappll 1 (0) < Cro,31,7.,007 1] A7) are enough regular (see [6], [7] for more details). This nsean
_ _ _ that we may build solutions, which approach the total paant
A. Numerical simulations with an error ind™, for n as large as desired. This method has

An elongated cell embedded in a square domain is cdpeen generalized to Helmholtz equation in [7] and it might be
sidered as shown in Figure 4. The potential is enforc@pplied for the 3D vector wave equation.
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