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We provide a rigorous asymptotic method to build approximate conditions equivalent to a thin layer. With these conditions the electro-
magnetic field may be computed in domains such as a biological cell, without meshing the membrane. The influence of the membrane is
replaced by an appropriate condition on the inner domain, while in the thin layer, the approximate field is explicitly known. We give error
estimates, which validate our asymptotic method, and we present a few numerical results performed with the finite-element method.

Index Terms—Asymptotic methods, finite-element method, thin layers.

I. INTRODUCTION

THE distribution of the electromagnetic field in a biological
cell is important for bioelectromagnetic investigations. For

instance, a sufficiently large amplitude of the transmembranar
potential (TMP), which is the difference of the electric poten-
tials between both sides of the cell membrane, leads to an in-
crease of the permeability of this membrane [1], [2]. This phe-
nomenon, called electropermeabilization, has already been used
in oncology and holds promises in gene therapy [3], justifying
precise assessments of the TMP. Since the experimental mea-
surements of the TMP on living cells are limited—essentially due
to the thinness of the cell membrane, which is a few nanometers
thick—a numerical approach is often chosen [1], [4]. However,
these computations are confronted with the heterogeneous pa-
rameters of the biological cells. Actually, in the Fear and Stuchly
model [5], the cell is a medium of regular shape (without any
corner) composed by a homogeneous conducting cytoplasm of
diameter of a few micrometers surrounded by a very insu-
lating membrane a few nanometers thick (Fig. 1).

To avoid difficulties, most of the numerical computations deal
with unrealistic cells (spherical and ellipsoidal cells) without de-
tails about the accuracy of the numerical method used (typically
the finite-element method) [5]. However, biological cells have
nontrivial shapes and Sebastián et al. have shown that the cell
geometry has a significant influence on the electric field dis-
tribution. To perform computations on realistic cell shapes by
considering a conduction problem, Pucihar et al. [1] propose to
replace the membrane by a condition on the boundary of the
cytoplasm. This condition corresponds to a contact resistance
model but the details for asserting the accuracy of their method
are not given.

In this paper, we present a rigorous asymptotic method to
compute the electromagnetic field in smooth domains with a
thin layer. Since the proofs of our results are precisely described
in [6] and [7], we present the heuristics of the method and the
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Fig. 1. Electric model of the biological cell (see Fear et al. [5])

main results, which may be useful for electromagnetic com-
putations in biological cells and we illustrate our asymptotics
with numerical simulations. For sake of simplicity, we consider
a bidimensional cell; however, our method might be easily ex-
tended to three-dimensional (3-D) cells.

We deal with the quasi-static (dielectric) formulation: results
for the Helmholtz equation are given in [7]. The problem is
nondimensionalized: each quantity refers to a physical quantity
but has no physical unit. Two cases are considered.

• An electric field (i.e., a Neumann boundary condition) is
enforced directly on the exterior boundary of the mem-
brane; we build approximate boundary conditions asymp-
totically equivalent to the membrane.

• The cell is embedded in a medium submitted to an electric
potential; we build approximate transmission conditions.

These approximate conditions are obtained to replace the thin
membrane but keeping a prescribed accuracy on the solution. To
justify this accuracy, we give error estimates between the poten-
tial with the membrane and without the membrane but with the
approximate conditions.

II. APPROXIMATE BOUNDARY CONDITIONS

A. Statement of the Problem

Denote by the biological cell composed by a cytoplasm
surrounded by a thin membrane with thickness . Let be
the cytoplasm complex permittivity (nondimensionalized) and

this of the membrane. Denote by the function equal to
in and in . The quasi-static formulation is

in
on (1)
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where is the electric field imposed on the boundary of the
cell. We suppose that this Neumann boundary condition is as
regular as we need and it satisfies . So that

is uniquely determined, we impose the gauge condition
.

Our method might be decomposed in three steps. The first
step consists of a change of coordinates so that the thin param-
eter appears explicitly in the equations. In the second step, we
choose an ansatz, supposing that the potential might be written
as a formal series with respect to . Then, by identifying the
terms with the same power of , we obtain a sequel of elemen-
tary problems. The final step is the rigorous validation of our
ansatz, providing a priori error estimates of the method.

B. Change of Coordinates

Since the bidimensional medium is regular, in particular
the presence of corners is excluded, we may parametrize it with
the curvilinear coordinate. Suppose that the length of equals
1. There exists a 1-periodic function , such that for all ,
there exists a unique satisfying

and (2)

Denoting by the exterior normal to at the point ,
we may parametrize the thin layer as follows:

(3)

The curvature of is then the 1-periodic function defined
by

We denote by the curvature of in Euclidean coordinates:

and we define as the boundary data translated on

The main idea of our asymptotic method is to write the Laplace
operator in local coordinates so that the thin parameter ap-
pears explicitly. Denote by the Laplace operator written
in -coordinates, then using change of coordinates (2) we
have

(4)

and the operators of normal derivative and tangential deriva-
tive equal

(5)

Supposing that may be written as follows:

we consider this expression of with the Laplace operator in
local coordinates (4) and we order the terms of the equations:

in (6a)

in (6b)

with transmission conditions on (the subscript indi-
cates the cytoplasm side and , the membrane side)

(6c)

(6d)

and with the Neumann boundary condition on

(6e)

C. Elementary Problems and Error Estimates

By identifying the terms with the same power of in (6), we
obtain the first two terms of the asymptotic expansion of the
solution of Problem (1).

• Order 0. satisfies

in ,
on

(7)

• Order 1. satisfies:

in ,
on

(8)

Denote by , we have the estimate

(9)

Therefore, to approximate the potential in the cytoplasm with
an accuracy of order , we have to compute problems (7) and
(8) with appropriate boundary conditions for the cytoplasm.

It may be interesting to solve only one equivalent problem
with a nonclassical boundary condition. Observe that
satisfies

(10)
Therefore, we denote by the solution to

in ,
on

(11)
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Using (9), we have

(12)

In the thin layer1 , we have the explicit formulas of
written in local coordinates:

and we have the following estimate:

(13)

The boundary condition satisfied by is called approxi-
mate boundary condition. Observe that if equals 1, i.e., if
is a disk, approximate boundary condition (11) is exactly the
same as boundary condition (10) of Krähenbühl and Muller [8].
Here, we validate the result by an error estimate. We may per-
form asymptotic expansion at any order . We emphasize
that according to estimate (12), our approximate boundary con-
dition is valid for a bounded ratio ; therefore, it may be
used to compute the electric field in a biological cell. As soon
as is of order (or bigger), which means that the thin
layer is very conducting, approximate boundary condition (11)
is no more valid. We refer to [6] for a precise description of this
case.

D. Numerical Simulations

A geometry, where no analytic solution is known, has been
studied. In order to show the error due to the asymptotic expan-
sion, we are led to compute the solution of the problem with and
without the membrane; these computations are performed using
the finite-element method.

A numerical validation for estimation (13) can be difficult
to obtain because because it necessitates the error due to the
asymptotic expansion to be greater than the discretization error.
If the membrane is very thin, we have to deal with a huge number
of degrees of freedom, which can prevent the use of a too thin
membrane for the numerical validation. This remark fully jus-
tifies the use of the approximate conditions: by considering a
thin membrane but keeping a reasonable number of degrees of
freedom for the discretization, it is not possible to distinguish the
solutions with and without the membrane in the inner domain.

We perform computations with GetDP [9] for an elongated
cell . The width of the interior region equals 1. In Fig. 2, we
present the steady state potentials when the thin layer is insu-
lating. Asymptotics (7) and (8) give the approximate potential
in without meshing the membrane.

In Fig. 3, we draw the error made by our asymptotics with
respect to the thickness . Observe for instance that if ,
the error made by our method is around 10% at the order 0 and
less than 1% at the order 1.

1Observe that x 2 O equals x = xj +(x�xj ) �n(xj ), with xj
the orthogonal projection of x on @O.

Fig. 2. Steady-state potentials in an elongated cell with an insulating
membrane.

Fig. 3. Error versus the membrane thickness.  = 5;  = 0:5. The con-
tinuous lines are the results of the numerical computations and the dotted lines
used an exponent estimated for (13) using the numerical results.

III. APPROXIMATE TRANSMISSION CONDITIONS

A. Elementary Problems and Error Estimates

Suppose now that our cell is embedded in an ambient
medium , with conductivity equal to . We denote by

and by the function equal to in in and in .
Consider the steady-state voltage equations

in
on (14)

with as Neumann boundary condition on .
We have to replace the membrane by approximate transmis-

sion conditions on the boundary of the cytoplasm. To obtain
these conditions, we extend the exterior potential up to the
boundary of the cytoplasm. Using the parametrization (3) of the
membrane and Taylor expansions with respect to the normal
variable, we then explicit the Dirichlet and Neumann values of
the potential on the exterior boundary of the cell in terms of
and of the Dirichlet and Neumann traces on the boundary of the
cytoplasm. More precisely, if we denote by the potential in

formally extended to , and by the exterior boundary
of the cell, we have
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Fig. 4. The geometry considered: a cell embedded in a square domain. Repre-
sentation with the thickest membrane.

We are now ready to apply the machinery of the asymptotic
method presented in the previous section. We just give here the
first two terms of the asymptotic expansion of solution to (14).

• Order 0. satisfies:

in
in

on
with transmission conditions on

(15)

• Order 1. satisfies

in
in

on
with transmission conditions on

(16)

The approximate potential is then the sum , and
there exists a constant -independent such that

(17)

B. Numerical Simulations

An elongated cell embedded in a square domain is considered
as shown in Fig. 4. The potential is enforced on the upper and
lower boundaries; homogeneous Neumann conditions are con-
sidered for the lateral boundaries.

Fig. 5 shows a numerical validation of the approximate
transmission conditions. Let us note that the calculated order
is nonoptimal for the condition of order 1: an exponent of 1.7
is obtain instead of 2 as asserted in (17). As described before,
it can be practically difficult to show numerically the estimate
because the discretization error can be higher than what is
asserted in (17).

IV. CONCLUSION

We have presented how to build rigorously approximate con-
ditions for the solution of the dielectric formulation in a do-
main with a thin membrane. With our method we do not have to
mesh the membrane: the approximate field inside the thin layer
is known explicitly, and the potential outside the membrane is

Fig. 5. Error versus the membrane thickness.  = 0:01 + 1j;  =  =

1 + 0:01j. The continuous lines are the results of the numerical computations
and the dotted lines used an exponent estimated for (17) using the numerical
results.

the solution to the dielectric formulation with the approximate
condition. We provide rigorous a priori estimates of the error.
Moreover, we may build approximate boundary condition at any
order, if the domain and the boundary data are regular enough
(see [6] and [7] for more details). This means that we may build
solutions, which approach the total potential with an error in ,
for as large as desired. The only drawback is that the weak
formulation and the space of test functions for the problem with
the approximate condition are less standard than in the original
problem. This method has been generalized to the Helmholtz
equation in [7] and it might be applied for the 3-D vector wave
equation. It would also be useful to consider a domain with geo-
metric singularities.
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