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Abstract— The compensated Horner algorithm and the Horner  simulate twice the IEEE-754 double precision [4], [5]. The com-
algorithm with double-double arithmetic improve the accuracy pensated Horner algorithm introduced in [6] is an alternative tc
of polynomial evaluation in IEEE-754 floating point arithmetic.  the Horner algorithm implemented with double-double arithmetic

Both yield a polynomial evaluation as accurate as if it was com- e
puted with the classic Horner algorithm in twice the working pre- In both cases the accuracy of compujé@) is improved and now

cision. Both algorithms also share the same low-level computation verifies
of the floating point rounding errors and cost a similar number Ip(z) — p(z)| 2
of floating point operations. We report numerical experiments Ip(z)| < u+ cond(p, z) x O(u’). @

to exhibit that the compensated algorithm runs at least twice as . . . .
fast as the double-double one on modern processors. We propose-Cmparing to Relation (1), this relation means that the compute

to explain such efficiency by identifying more instruction level Vvalue is now as accurate as the result of the Horner algorithr
parallelism in the compensated implementation. Such property performed in twice the working precision with a final rounding
also applies to other compensated algorithms for summation, dot back to this working precision —the same behavior is mentione

product and triangular linear system solving. More generally this iy [7] for compensated summation and dot product.
paper illustrates how this kind of performance analysis may be

useful to highlight the actual efficiency of numerical algorithms. As for Relation (1) the accuracy of the compensated result sti

) ) depends on the condition number and may be arbitrarily bad fc
,r']”dex TermS—A(éC:_J'I’ate po:y“‘?'ﬂ'a' ﬁvalgatlon,. Homﬁr algo- jj_conditioned polynomial evaluations. Nevertheless, this bount
rithm, compensated Horner algorithm, floating point arithmetic, o4\ that the compensated Horner algorithm may yield a ful
IEEE-754 standard, instruction level parallelism, performance S . o .
evaluation. precision accuracy for not too ill-conditioned polynomials, that
is for p and z such that the second tersond(p, z) x O(u?) is
I. INTRODUCTION small compared to the working precisien In [8] we prove that
the compensated evaluation is faithfully rounded for conditior

N this paper, we consider polynomial evaluation in ﬂoatin%umbers up tao(u~1). By faithful rounding we mean that the

point arithmetic restricted to entries and polynomial coeffi- . . . .
. ) . - C(fmputed result is one of the two floating point neighbors of the
cients being floating point values. Such cases appear for example

. . . . act resultp(z). We also provide a dynamical test to answer
when evaluating elementary functions [1] and in geometric coqio- b (@) P y

utations where accurate polynomial evaluation is crucial [2], [3 the question "is the computed compensated result a faithf
P poly ' founding of the exact evaluation?” thanks to a computable an

A. Accurate Polynomial Evaluation validated bound for the final absolute error jigz).

The following inequality bounds the accuracy of the floatin

point resultp(z) of the polynomial evaluatiop(z), for example % Previous Results and Motivation for Efficiency Analysis

with the classic Horner algorithm. We have Compensated Horner evaluation is fast. By fast we mean that
Ip(z) — P(@)] runs at least twice as fast as the double-double Horner counterp:
p\]’Tﬁ < cond(p, z) x O(u), (1) still providing the same output accuracy. The implementatior

core of these “double-like” algorithms is the computation of the
where u is the computing precision and the condition numbe&gynding errors generated by the floating point operators. Fc
cond(p, z) is a scalar larger thanthat only depends on the entrycompensated implementations, these rounding errors are us
z and onp coefficients —its expression will be given furtheri, correct the result of the original algorithm. Such low-level
Hence the computed valy# x) suffers from less exact digits thancomputation depends on the arithmetic attributes. In [9] we
what the computing precision provides. This loss of accuracy Mgyesent experimental results to exhibit how to benefit from th
be arbitrarily large as evaluating the polynomisht thex entry  ,5ed multiply and add operator. It appears tBMA should be
is more ill-conditioned, as for example in the neighborhood of pided in the evaluation part of the compensated algorithm bt
multiple root. . o . preferred when computing the rounding errors. Measures showir
When the computing precisian s not sufficient (compared 10 the efficiency of the compensated Horner algorithm also whe
cond(p,z)) to guarantee a desired accuracyjifx), several solu- EMA is not available are briefly presented in [8].
tions implementing a computation with more bits exist. Double- |, poth cases these experiments illustrate the practice
double algorithms are well-known and well-used solutions té’rficiency of the compensated algorithm we announced befort

Ph. Langlois and N. Louvet are members of DALI Research Team, ELIAUNevertheless we were not able to explain why the measure
Laboratory at Universit de Perpignan, France. overhead factor introduced by the compensated evaluatic



TABLE |
HOW TO EXPLAIN THE OVERHEAD DIFFERENCES BETWEEN FLOP COUNTS AND MEASURED TIMBES

Compensated| Horner with
Horner Horner double-double
Number of flop 2n 22n+5 28n + 4
Overhead w.r.t. Horner: number of flop 1 ~ 11 ~ 14
Overhead w.r.t. Horner: range of measured times 1 2.7—3.2 8.5—9.7

algorithm is significantly better than the one introduced by ithe compensated and the double-double Horner algorithms ai
double-double counterpart. Counting of floating point operatiopsove that the compensated implementation benefits for more IL
is still commonly used in the field of numerical analysis tdhan the double-double one. Appendix contains all the measur:
compare the performances of different numerical algorithms. Bpiteviously analyzed in Section IlI.
this classic technique is clearly not sufficient to answer to the
open question we address here, as this is summarized in TablB.l.Notations and Hypothesis
How to explain that computed Horner actually runs twice as fastthroughout the paper, we assume a floating point arithmeti
as the double-double Horner whereas their flop counts are vefynpiiant with the IEEE-754 floating point standard [11]. We
similar? Let us remark that the same property is identified bunsiraint all the computations to be performed in one working
still unexplained for summation and dot product in [7]. precision, with the “round to the nearest” rounding mode. We
) ] ‘also assume that no overflow nor underflow occurs during th
In this paper we propose to answer to this open questigBmpytations. Next notations are standard (see [12, chap. 2] f
presenting how the actual efficiency of the compensated Homglample)F is the set of all normalized floating point numbers and
algo_rithm can be e>_<plained thanks to itsstruction level par- |, denotes the unit roundoff, that is half the spacing betwieand
allelism (ILP). Quoting Hennessy and Patterson [10, p.172}ye pext representable floating point value. For IEEE-754 doubl
“all processors since about 1985 ...use pipelining to OVe”?‘Pecision with rounding to the nearest, we have= 2753 ~
the execution of instructions and improve performances. Thjs; . y—16
potential overlap among instructions is called instruction-level T symbolse, &, ® ando represent respectively the floating
parallelism since the instructions can be evaluated in parallel.hoint addition, subtraction, multiplication and division. For more
We propose a detailed analysis of the ILP of compensatggmplicated arithmetic expressions(-) denotes the result of
Horner and Horner with double-double algorithms. We quantify floating point computation where every operation inside the

the average number of instructions that can be theoreticaljrenthesis is performed in the working precision. So we hav
executed in one clock cycle on an ideal processor. This idggl examplea @ b = fi(a + b)

processor is one where all the artificial constraints on ILP are
removed [10, p.240]. In this context, the theoretical IPC (instruc- \when no underflow nor overflow occurs, the following standarc

tions per clock) is about six times better for the compensat@ghdel describes the accuracy of every considered floating poi
Horner algorithm than for its double-double counterpart. Evepmputation. For two floating point numbessand b and for o
double-double arithmetic operation ends with a renormalizatign 11 _ /1, the floating point evaluatiofi(a o b) of a o b is

step [4], [5]. We also show that avoiding these renormalizatiafy,ch that

steps the compensated Horner algorithm presents more ILP than

the Horner algorithm with double-double arithmetic. We conclud&@ob) = (aob)(1+e1) = (aob)/(1 +e2),With  [e1], [e2] < u.
that the compensated algorithm exhibits more potential to benefit (3)
from the superscalar facilities of modern processors. In ourlt is classic to keep track of thel + ) factors when nesting

point of view, this gives a qualitative explanation of its practicelf I?rithmetic operations using;, := ku/(1 — ku). We have
efficiency. 1,1 + &) < 1+ 4 [12, chap. 3]. When using these

notations, we always implicitly assuniex < 1 andk > 0.

C. Outline Il. FROM HORNER TOCOMPENSATEDHORNER ALGORITHM

The paper is organized as follows. In Section Il we describe theThe compensated Horner algorithm improves the classic Horn
main steps from the classic Horner algorithm to the compensaiggation by computing a correcting term to compensate thi
Horner algorithm. This Section summarizes some results alreadyinding errors the Horner iteration generates in floating poin
presented in [8]: error free transformations of arithmetic opegrithmetic. Main results about compensated Horner algorithm ai

ations, extension to an error free transformation of the Horngfimmarized in this section and may be skipped if [8] is alread!
polynomial evaluation, final correction and the correspondingown. '

theoretical accuracy bound. We present experimental measures of
the running times for the compensated Horner algorithm and the polynomial evaluation and Horner algorithm
challenging Horner with double-double arithmetic in Section IlI. . . .

. ) : . The classic condition number of the evaluation ygfc) =
Since the classic flop count fails to explain these observed res i at a given entryz is [13]
we devote the last Section IV to a detailed comparison of these=0 @it 9 ¥ '
two algorithms. We introduce the notions of ILP and IPC on cond(p, ) — S, |ai|\x'|z _ p(z) .

| i aiz®] ~ |p(@)]

(4)

an ideal processor. Then we highlight the common parts within



For any floating point value: we denote byHorner (p,z) the Algorithm 3 EFT of the product of two floating point numbers
result of the floating point evaluation of the polynomjalat =  function [z, y] = TwoProd (a, b)

using the classic Horner algorithm recalled below. T=a®b
% splitting of a andb to high and low parts

Algorithm 1 Horner algorithm % splitter = (1 + 2L%)) is a predefined constant,
function rq = Horner (p, z) % with ¢ the mantissa length

n = an as = splitter ® a; bs = splitter ® b

fori=n—-1:-1:0 ap = as © (as © a); b, =bs © (bs ©b)

i =Tit1 ®T®a; ap = a = Gp, by="b—bp

end % rounding error i ® b

y=a; b0 (z©ap@by) Sa;Rby) Sap by

The accuracy of Algorithm 1 verifies introductory inequality (1)
with O(u) = 72, and previous condition number (4). ClearlyAlgorithm 4 EFT of the sum of twaorted floating point numbers
the condition numbercond(p,z) can be arbitrarily large. In fynction [z, 4] = FastTwoSum (a, b)
particular, whertond(p, z) > v;,!, We cannot guarantee that the o, Assume|a| > |b|
computed resulHorner (p, z) contains any correct digit. T=a®b
. y=(a0z)Bb
More accuracy can be reached at the same computing preci-
sion thanks to error free transformation (EFT). We review well
known results concerning the EFT of the elementary floating
point operations+, — and x. Then we introduce an EFT for of FastTwoSum on superscalar processors [7]. We also mentior
polynomial evaluation proving that the error generated by thkat a significant improvement diwoProd is defined when a
Horner algorithm is exactly the sum of two polynomials wittFused-Multiply-and-Add operator is available as Intel Itanium
floating point coefficients. or IBM PowerPC [16]. We detailed how to benefit from such
instruction in [9].

B. EFT for the elementary operations
Let o be an operator i+, —, x}, a andb be two floating C. An EFT for the Horner algorithm

point numbers, andc = fi(a o b). Then there exists a floating  The pext EFT for the polynomial evaluation with the Horner
point valuey such thata o b = 7 + y. The differencey between gigqrithm exhibits the exact rounding error generated by th

the exact result and the computed result is the rounding eriQg ner algorithm together with an algorithm to compute it.
generated by the computation of. Let us emphasize that

this relation between four floating point values relies on reﬁilgorithm 5 EFT for the Homner algorithm
operators and exact equalitye., not on approximate floating
point counterparts. Ogitat al. [7] name such a transformation
an error free transformation. The practical interest of the EFT'" — 9»

comes from next Algorithms 2 and 3 that compute the exactfor i=n—-1:-1:0

error termy for o = + ando = x. [pi; mi] = TwoProd (r;1, z)

[ri, oi] = TwoSum (p;, a;)

Let m; be the coefficient of degregin pr
Let o; be the coefficient of degregein p,

function [rg, px, ps] = EFTHorner(p, z)

For the EFT of the addition we use the well knoiwoSum
algorithm by Knuth [14, p.236] that requires 6 flop (floating point
operations). TwoProd by Veltkamp and Dekker [15] performs end
the EFT of the product and requires 17 flop. We also describe
Dekker'sFastTwoSum version of the EFT for the addition that
will be used further for double-double computation.

Theorem 1 ( [8]): Let p(z) = >, a;z' be a polynomial of
degreen with floating point coefficients, and let be a floating
point value. Then Algorithm 5 computes badttorner (p, z) and
two polynomialspr andp, of degreen—1 with floating point co-

Algorithm 2 EFT of the sum of two floating point numbers

function [z, y] = TwoSum (a, b) efficients, such thafHorner (p, ) , pr, ps] = EFTHorner (p, z) .
T=adb If no underflow occurs, the polynomial evaluation verifies
Zz=x0a
y=(ao(x62)d(boz) p(z) = Horner (p,z) + (px + ps)(z). (5)

Relation (5) means that algorithfBFTHorner is an EFT for

We notice that algorithm®woSum and TwoProd only require  POlynomial evaluation with the Horner algorithm.

well optimizable floating point operations. They apply for the

IEEE rounding to the nearest rounding mode. They do not use Compensated Horner algorithm

branches, nor access to the mantissa that can be time-consumingmm Theorem 1 the forward error in the floating point evalu-
FastTwoSum costs less flop thafwoSum but only applies to
sorted entries. When this condition is reofpriori satisfied, it is
well known that a dynamic sorting ruins the actual performances ¢ = p(z) — Horner (p, z) = (pr + po)(x),

ation of p(x) with the Horner algorithm is



where both polynomialsp, and p, are exactly identified u=' andu~2, this relative error degrades to no accuracy at all
by EFTHorner (Algorithm 5) —this latter also computesAs usual, thea priori error bound (7) appears to be pessimistic
Horner (p,z). Therefore, the key of the compensated algdsy many orders of magnitude.

rithm is to compute, in the working precision, the approximate

Horner (pr © po, x) of the final errorc and then a corrected result ||| E xperIMENTAL RESULTS FORPERFORMANCEANALYSIS

7 = Horner (p, z) @ Horner (px ® po, ) . Now we start to focus the open question that motivates thi
paper presenting our implementations and the correspondir
measured running-times for Compensated Horner algorithm ar
Horner algorithm with double-double.

We say thatHorner (pr @ ps,z) is a correcting term for
Horner (p, z). The compensated resuitis expected to be more
accurate thanHorner (p,z) as proved in next section. The
next Algorithm 6 implements the compensated Horner algorithm

within only one loop inlining the computation of the HornerA. Implementation of the Compensated Horner Algorithm

EFT (Algorithm 5), the computation of the correcting term Since every loop oHorner (Algorithm 1) includes a multipli-

Horner (pr © po, ») and the final correction. cation byz, every loop ofCompHorner (Algorithm 6) introduces
: _ one TwoProd applied to the same. Hence the split ofz is
Algorithm 6 Compensated Horner algorithm only performed once (out of the loop) to reduce the flop count
function 7 = CompHorner(P, z) The following C code implements this simplification. Algorithm
n=a;, cn =0 CompHorner now requires22n + 5 flops.
fori=n-1:-1:0 double CompHorner(double *P, unsigned int n, double x) {
[aiﬂfi] = TWOPrOd(Ti+1,x) FiouPIe p, 1, ¢, pi, sig, x_hi, x_lo, hi, lo, t
[ri 3] = TwoSum(p;, a;) e
¢ =Cit1 Q@ ® (m ®oy) /* (x_hi, x_lo) = Split(x) */
end t = x*splitter; x_hi = t-(t-x); x_lo = x-x_hi;
% Herery = Horner (p, z), r = P[n]; ¢ = 0.0;
— for(i=n-1; i>=0; i--) {
% andco = Homer (pr & po, z) ’ (p, pi) = TwoProd(r, x); */
T=1r0®co p =X
t = r*_splitter_; hi = t-(t-r); lo = r-hij;
pi = (((hi*x_hi-p)+hi*x_lo)+lo*x_hi)+lo*x_lo;
/* (s, sigma) = TwoSum(p, P[i]); */
. r = p+P[i;
E. Accuracy of the Compensated Horner Algorithm t = rp;

Next result proves that the result of a polynomial evaluation “° (e--0) = (P
computed with the compensated Horner algorithm (Algorithm 6) /* Computation of the correcting term */
is as accurate as if computed by the Horner algorithm using twicg © = °© x+(pr+sig);
the working precision and then rounded to the working precision.return(r+c);
Theorem 2 ( [8]): Consider a polynomiap of degreen with
floating point coefficients, and a floating point value. If no
underflow occurs, B. Horner Algorithm with Double-Double Computation

|CompHorner (p, z) — p(z)| < ulp(z)| + 73, B(z).  (6) In Algorithm 7, we implement the Horner algorithm performed
It is interesting to interpret the previous theorem in terms dfith double-double arithmetic.
the condition number of the polynomial evaluation fat x. - - _
Combining the error bound (6) with the condition number (4) gi90rithm 7 Homer algorithm with double-doubles
polynomial evaluation gives the precise writing of our introdudunction r = DDHorner (P, x)
tory inequality (2), shn = a;; slp =0
fori=n—-1:-1:0
% double-double = double-double double:
% (phi, pli) = (shiy1,slit1) ® @
[th,tl] = TwoProd(sh;41, )
tl = 317’,-&-1 Rrdtl
[phi, pl;] = FastTwoSum(th, tl)

|CompHorner (p, z) — p(x)|
p(z)]

Since~3,, = O(u?) relation (7) essentially tells us that the
compensated result is as accurate as if computed by the classic
Horner algorithm in twice the working precision, with a final
rounding back to the working precision [8].

Fig. 1 illustrates the accuracy behaviortdérner and Com-
pHorner w.r.t. the condition number. More detailed experiments
may be found in [8]. We generate polynomials of degre@g/hose
condition numbers vary from aboui? to 10%°. We see that
even for small condition numbers we already lose some accuracy
with the Horner evaluation. We also observe that the compensated
algorithm exhibits the expected behavior : as long as the conditiorend
number is smaller than ™", the relative error is of the order of r = shg
the working precisionu. Then, for condition numbers between

<u-+ 'Y%n cond(p, :r) (7)

% double-double = double-double double:
% (shy, sl;) = (phq, pli) © a;

[th,tl] = TwoSum(ph;, a;)

tl = tl & pl;

[sh;, sl;] = FastTwoSum(th, tl)
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Fig. 1.

Measured accuracy and theoretical bounds of Horner and Compensated Horner algorithms.

Double-doubles are managed as proposed by the authors of [5], r_I = (t_h-r_h)+t_I;

[17]. For our purpose, it suffices to know that a double-double?
numbera is the pair(ah, al) of IEEE-754 floating point numbers ;
with a = ah + al and |al|] < ulah|. As we will see in the

sequel, this property requires a renormalization step after evety
arithmetic operation with double-double values. To implement the

Horner algorithm using the double-double format, we only needAll our experiments are performed using IEEE-754 double
two basic operations: i) the product of a double-double numb@fecision, and the algorithms are implemented in C code. Th

return(r_h);

Experimental results

by a double number, and ii) the addition of a double numb&XPerimental environments are listed in Table II.
to a double-double number. These operations are represented

in boxes in Algorithm 7. We notice that every double-double
operation performs a final renormalization step using algorithm
FastTwoSum (Algorithm 4). This renormalization is compulsory

to ensure that the computed result of the corresponding double-
double operation is still a valid double-double number. For
example, the lingsh;, sl;] = FastTwoSum(th, tl) in Algorithm 4
ensures that the floating point paish;, si;) actually satisfies
|sl;] < u|sh;| and so is a valid double-double number.

We also provide hereafter a C code implementation of algo-
rithm DDHorner. We count that algorithnDDHorner requires
28n + 4 flops.

double DDHorner(double *P, unsigned int n, double x) {
double r_h, r_I, t h, t I, x_hi, x_lo, hi, lo, t
int i
/% (x_hi, x_lo) = Split(x) */

t = x*splitter; x_hi = t-(t-x); x_lo = x-x_hi;

r_h = P[n}; r_| = 0.0;
for(i=n-1; i>=0; i--) {
[ (r_h, r_ ) = (r_h, r_) * x ¥

t = r_h*splitter; hi = t-(t-r_h); lo = (r_h-hi);
t_h = r_h*x;

t_I = ((((hi*x_hi-t_h)+hi*x_lo)+lo*x_hi)+lo*x_lo);
] += r_I*;

r_h =t h+t_|;

r_| = (t_h-r_h)+t_|;

[* (r_h, r_l) = (r_h, r_l) + P[i] %

t_h = r_h+P[i;

t = t_hr_h;

t 1 = ((r_h-(t_h-t))+(P[i]-t))+r_I;

rh =th+t|;

TABLE Il
EXPERIMENTAL ENVIRONMENTS

[ env.

description

0]

Intel Pentium 4, 3 GHz, GCC 4.1.2
-std=c99 -march=pentium4
-mfpmath=387 -0O3 -funroll-all-loops

(n

Intel Pentium 4, 3 GHz, ICC 9.1
-c99 -mtune=pentium4 -O3
-funroll-loops -mp1l

)

Intel Pentium 4, 3 GHz, GCC 4.1.2
-std=c99 -march=pentium4
-mfpmath=sse -O3 -funroll-all-loops

(v)

Intel Pentium 4, 3 GHz, ICC 9.1
-c99 -mtune=pentium4 -msse2 -O3
-funroll-loops -fp-model source

W)

AMD Athlon 64 3200+, 2 GHz, GCC 4.1.2
-std=c99 -march=athlon64 -m3dnow
-O3 -funroll-all-loops

v

Itanium 2, 1.5 GHz, GCC 4.1.1
-std=c99 -mtune=itanium2 -O3
-funroll-all-loops

V)

Itanium 2, 1.5 GHz, ICC 9.1
-c99 -O3 -mp -IPF _fma

In this table, GCC denotes the GNU Compiler Collection anc
ICC the Intel C Compiler. In environments (1) to (V), A in-
struction is available, so we use the C codes presented in tt
previous subsections to implement algorith@smpHorner and
DDHorner. In environments (VI) and (VII), that is on the Intel
Itanium architecture which provides EMA instruction, we use



the improvements of these algorithms presented in [9]. Anywaxecuted in parallel. Real programs are usually written in a seri
we use the same programming techniques for the implementatidashion, using high-level languages such as C and Fortran. 1
of the routinesCompHorner and DDHorner. All timings are exploit the implicit parallelism available among the instructions
done with the cache warmed to minimize the memory traffic ovesf a given program, many hardware (processor) and softwal
cost. (compiler) techniques have been developed.

Our measures are performed with 39 polynomials whose de-In the sequel, we first underline the main algorithmic differ-
grees vary from 10 to 200 by step of 5. The coefficients arghce betwee€ompHorner and DDHorner: CompHorner and
the argument of these polynomials are randomly generated. BiDHorner perform essentially the same floating point opera-
every algorithm and every degree, we measure the ratio of tiiens, but the renormalization steps required for double-doubl
computing time over the computing time of the Horner algorithntomputations are avoided i@dompHorner. Next, we will prove

We display the average value of these ratios f©om- that CompHorner presents as a consequence more ILP, whicl
pHorner and DDHorner in Table IIl. All detailed results for certainly explains its better practical performance on moder
considered environments are presented in the Appendix. superscalar processors. We perform our analysis assuming that

FMA is available, that is considering only the implementations o

TABLE I CompHorner and DDHorner described in Section Il

AVERAGE MEASURED OVERHEAD INCompHorner AND DDHorner w.R.T.
Horner .
A. Comparison betwee@ompHorner and DDHorner

[ env. ]| CompHorner/Horner [ DDHorner/Horner

0) 58 85 Let us now compare algorithn@ompHorner andDDHorner.

an 27 9.0 For this purpose, we consider below a slightly modified versior
D) 3.0 8.9 of the compensated Horner algorithm. Compared to Algorithm 6
(V) 3.2 9.7 we only reorder the floating point operations involved in the
(V) 3.2 8.7 computation ofc; with respect toc; 41, z , m; ando;.

(V1) 2.9 7.0 )

D) 15 59 function » = CompHorner’ (P, x)

rm =a; cp =0
First we notice that the measured slowdown factors are alwaydor i =n —1:-1:0
significantly smaller than expected if the flop count is only

considered. We have indeed from previous flop counts, [ai, m;] = TwoProd(r;y1,z)

CompHorner — 22n+5 t=cin@rom

Horner 2n
whereas the compensated algorit@@mpHorner is only about3

11,
[ri, 0;] = TwoSum(p;, a;)

times slower than the classic Horner algorithm. The same remark =~ *
applies to algorithhrDDHorner for which end
DDHorner 28n—|—4~14 r =19 co
Homer = an = 7 Comparing the previous algorithm with Algorithm 7, it is
and that appears to be only abautimes slower than the Horner parnng P 9 9 X

clear thatCompHorner and DDHorner perform all the same

algorithm. floating point operations but the renormalization steps needed

Thesg results also show that the comp_ensate_d algorithm is mﬁf&orithm DDHorner. The lines[ph;, pl;] = FastTwoSum(th, t])
than twice faster than the Horner algorithm with double-doubaend [shy, sli] = FastTwoSum(th, #l) in DDHornerare avoided

computation while, as already noticed, previous comparison Stillg'CompHorner and so this saven flops. Savingén flop

gests DDHorner 281 + 4 is clearly not sufficient to explain the practical performance of
= ~ 1.3. CompHorner compared toDDHorner. Nevertheless, we will

A i theref t sufficient t lai h behavi see in the next subsections that thanks to the suppression
Op counts are theretore not suthicient to explain Such beNaVIOfRy ranormalization steps, the compensated evaluation algorith

introduces more ILP thaBDHorner.

CompHorner ~ 22n+5

IV. MOREILP IN CompHorner EXPLAINS ITS ACTUAL
PERFORMANCE

It is well know that most modern processors are capable Bf IPC and the ideal processor

executing several instructions concurrently. Quoting HennessyA way to evaluate the ILP available in a given program is to

and Patterson [10, p.172]: compute its ICP (instruction per clock) on an ideal processor [1C
All processors since about 1985, including those in the  p.240]. The IPC of a program, running on a given processor, is th
embedded space, use pipelining to overlap the execution average number of instructions of this program executed per cloc
of instructions and improve performances. This poten- cycle. An ideal processor is one where all artificial constraints
tial overlap among instructions is called instruction- on ILP are removed. The only limits in such a processor ar
level parallelism since the instructions can be evaluated those imposed by the actual data flows through either register ¢
in parallel. memory. More precisely, we assume that:

As explained in Section |, the term instruction-level parallelism « the processor can execute an unlimited number of indepel
refers to the degree to which the instructions of a program can be dent instructions in the same clock cycle;



(a) (b) (c)

Fig. 2. Data-flow graphs for algoritht@ompHorner.

« all but true data dependencies are removed: any instructiors one frome;; to ¢; containing 2 instructions.

in the program execution can be scheduled on the cyaince the critical path from;., to ¢; has length 10, the whole
immediately following the execution of the predecessor ongration can be executed within 10 cycles with the ideal processc

on which it depends; From these remarks, we represent on Fig. 2.b the execution
« branches are perfectly predicted: all conditional branches aggration: as a box of length 10 cycles, where:

predicted exactly; e ;41 IS consumed at the first cycle of the iteration,
e Mmemory accesses are also perfect: all loads and stores always

lete i lock | e 7; is produced at cycle 2,
compiete In one clock cycle. e ¢;4+1 IS consumed at cycle 8,

These assumptions mean that this ideal processor can execufe anq., is produced at cycle 10.
arbitrarily many op_eratlons in parallel, and that any sequence F] Fig. 2.c, we represent the execution of thiéerations on the
dependent instructions can execute on successive cycles. In.fe

; . eal processor. We can see that one iteration starts every tv
sequel, we will refer to the IPC of a program running on such an L . .
: o cycles, and that two successive iteration executions overlap by
ideal processor as its ideal IPC.

. . . cycles. We deduce that the latency of the whole loop of algorithn
Now, let us study algorithrfCompHorner running on this ideal . . .
. . . . CompHorner is 2n+8 cycles. Since the whole loop requirgz.
processor when evaluating a polynomial of degtee iterations

(numbered from: — 1 down t00) of the inner loop of algorithm floating point instructions, the ideal IPC for the loop of algorithm

CompHorner are then executed. We want to find the total latenc%/:ompHorner 1S

of the execution of the inner loop, which is the number of clock |pc. . 22" 1 jnstryctions per cycle
cycles elapsed when executingiterations. P 2n+38

C. Ideal IPC ofCompHorner D. Ideal IPC of DDHorner

We consider on Fig. 2.a the data-flow graph iteratiasf the On Fig. 3, we perform the same analysis to determine the tot:
main loop of algorithmCompHorner. This data-flow graph is latency ofDDHorner execution. We represent the data-flow graph
based on the C code implementation@dmpHorner provided for iteration ¢ of algorithm DDHorner on Fig. 3.a. From the
in Section Ill. The inputs in square boxes are critical inputgnalysis of this data-flow graph, we represent on Fig. 3.b th
since they are the outputs of the previous iteration 1. We execution of iteration:
can distinguish three critical paths of interest (represented withe s, is consumed at the first cycle of the iteration,
dashed edges) in this data-flow graph: e sh; is produced at cycle 17,

« one fromr;; to r; containing 2 instructions, e sl;41 is consumed at cycle 3,

« one fromr;;; to ¢; containing 10 instructions, e andsi; is produced at cycle 19.



Fig. 3. Data-flow graphs for algorithf@DHorner.

From these remarks, we represent on Fig. 3.c the executionEof Analysis

n iterations on the ideal processor. One iteration starts every The ideal IPC ofCompHorner is therefore much greater than
cycles, and two successive iteration executions only overlap {% one ofDDHorner:

2 cycles. Therefore the latency of the whole loop of algorithm

DDHorner is 17n + 2 clock cycles on the ideal processor. Since IPCcompHorner = 6.66 x IPCppHormner-

the loop execution requirez8n floating point instructions, the

IPC of DDHorner running on the ideal processor is Clearly this means that more ILP is available @om-

pHorner than in DDHorner. We stress that this theoretical
analysis cannot explain in a quantitative manner the actual ratic
reported in Table Ill. Indeed measured ratios are from rea
processors with limited resources while ideal IPC is compute

28n

———— ~1.65 instructions per cycle
1Tn 4+ 2 P y

II:)CDDHorner =



assuming a processor which exploits all the ILP available in APPENDIX

the algorithms. However this certainly explains in a qualitative COMPLETE EXPERIMENTSRESULTS
manner the better efficiency of the compensated algorithm on
modern processors designed for exploiting ILP. Environment (1)
: H Execution time Normalized

The consequence of the renormalization steps needed for in dlock cycles | execution time

double-double computations also appears clearly if we compare deg| H] CH[ DDH | H|CH]DDH

Fig. 3 to Fig. 2. They act has “bottlenecks” during the execution of MRS R AR

DDHorner. The three floating point operations involved in every ;g :gg 192’%2 gggg 18 gg 32

renormalization steps are represented in boxes on Fig. 3. If we 30| 570 1418| 4163| 10| 25| 7.3

i i i i 35| 638| 1627 | 4838 | 1.0| 2.6 7.6

compare one |ter_at|on of the loop BDHorner to one iteration g ipsed Iyoit Rised Bwd eud IS4

of CompHorner, it appears that: 45| 780 | 2070| 6203| 10| 27| 80

. . . 50| 818 | 2287 | 6870| 1.0 | 2.8 8.4

« the latency of every iteration @DHorner is larger because 55| 923| 2400| 7537| 10| 27| 82

of the first renormalization step —cycles 10 to 12 on 60| 983 2708| 8213 10 28| 84

Fig. 3.(a) %| 1133 3t28| o847 | 10| 25| o4

H H 75| 1200 | 3330 | 10223 | 1.0 | 2.8 8.5

. dye to the second renormalization step —cycle; 17_ to 1_9 on g0 | 1968 | 3540 | 10800 | 10| 28| 8o

Fig. 3.(a)— the overlap between two consecutive iterations 85| 1335| 3750 | 11558| 1.0 | 2.8| 87

. 90 | 1380 | 3961 | 12233| 1.0 | 2.9 8.9

of DDHorner is smaller. 95 | 1485 | 4170| 12900| 1.0 | 28| 8.7

H i i i 100 | 1545 | 4388 | 13568 | 1.0 | 2.8 8.8

The fact thatCompHorner' av0|qls_ any renormalization step is 108 | 1200 | 4200 | 1o9aa 10l 39| o0

therefore the reason why it exhibits more ILP. 110| 1688 | 4808 | 14910| 1.0 | 28| 88

115 | 1763 | 5010 | 15578 | 1.0 | 2.8 8.8

V. CONCLUSION 120 | 1830 | 5220 | 16253 | 1.0 | 2.9 8.9

. 125| 1876 | 5429 | 16920 | 1.0 | 2.9 9.0

. . 130 | 1934 | 5648 | 17588 | 1.0 | 2.9 9.1

Compensated Horner algorithm yields more accurate polyno- 135 | 2040 | 5850 | 18263| 10| 29| 90

mial evaluation than the classic Horner iteration. Its accuracy is 140 | 2086 | 6060 | 18930| 1.0 | 29| 9.1

. . . . . 145 | 2152 | 6270 | 19605| 1.0 | 2.9 9.1

similar to a Horner iteration performed in a doubled working 150 | 2250 | 6480 | 20273| 1.0 | 29| 9.0

i H i P 155 | 2318 | 6690 | 20939 | 1.0 | 2.9 9.0
precision. Compensated_ Horner evaluation is also very efficient, 100 | 2393 | o908 | 21608| 10| 25| 90
since it runs at least twice as fast as the double-double Horner 165 | 2491 | 7110| 22283| 1.0 | 29| 89
counterpart still providing the same output accuracy. AR EACEcstrd Bud Iud IS

We summarize our analysis as follows. Avoiding the renormal- 180 | 2603 | 7741| 24292| 1.0 | 29| 9.0
. . . 185 | 2745| 7950 | 24960 | 1.0 | 2.9 9.1
ization steps needed for double-double computations, the com- 190 | 2828 | 8167 | 25628 | 1.0| 29| 91
pensated Horner algorithm presents more ILP than its counterpart 195 2910 8370 26303| 1.0} 291 9.0

. : X . . . . 200 | 2985 | 8588 | 26970| 1.0 | 2.9| 9.0
using double-double arithmetic. In our point of view, this gives a average overheal 2.8 | 85
qualitative explanation of its practical efficiency.

The same conclusion certainly holds for other compensated Environment (I)

: H . : [P Execution time Normalized
algorithms, that also avoids the renormalization steps. This is the in clock cycles | execution time
case for: deg H] CH| DDH | H] CH ][ DDH

. . 10 143 | 480 | 1357| 1.0| 34 9.5

« the improvements of the compensated Horner algorithm 15| 195| 683| 2033| 1.0 35| 10.4

H H 20| 367 | 901 | 2782| 1.0| 25 7.6

When aFMA is gvallable [9]’ i 25| 435| 1126| 3458 | 1.0| 2.6 7.9

« compensated triangular system solver presented in [18], 30| 518 1298| 4140| 10| 25| 80

« compensated summation and dot product in [7]. prg e Bpved Mo B o o
Let us also emphasis that ILP analysis, as described in this paper, 451 735) 1859| 6150| 10| 25] 84
. .. 50| 796 | 2063 | 6848 | 1.0 | 2.6 8.6

may also be very useful to explain and compare the efficiency of 55| 870 | 2243| 7515| 10| 26| 86
H H 60 | 929 | 2445| 8144 | 10| 26 8.8

many other numerical algorithms. 65 | 1008 | 2611 | 8820| 10| 26| a8
The error-free transformationsvoSum and TwoProd are the 70 | 1080 | 2828| 9502| 1.0 | 26| 838
k . h . f ﬂ . . . 75| 1140 | 3007 | 10163 | 1.0 | 2.6 8.9
eys to improve the precision of floating point computation, 80 | 1215| 3203 | 10845| 10| 26| 89
either with double-double arithmetic or compensated algorithms. 85| 1283 3301| 11497| 10| 26| 9.0

. . . . . 90 | 1358 | 3578 | 12166| 1.0 | 2.6 9.0

Solutions to facilitate their portable implementation have been o5 | 1418 | 3780| 12856| 1.0 | 27| 9.1

i i _ Qi 100 | 1492 | 3960 | 13516 | 1.0 | 2.7 9.1
dlscgssed (‘J‘Iur_mg the _curr’(,ant IEEE-754 revision work [19]. Let 105 | 1561 | 4148 | 14300 | 10| 39| o1
us cite the “tail operations” or th&DD3 operator —fora, b, ¢ € 110 | 1635 | 4343| 14888| 1.0 | 27| 9.1
F, ADD3 = fl(a + b + ¢). Unfortunately these new operators 15| 1702|430 S 1o 2T
are not anymore in the draft. Nevertheless the current revision 125 1845| 4904 | 16875| 1.0 | 27| 9.1
. . . 130 | 1920 | 5100 | 17543 | 1.0 | 2.7 9.1

draft proposes the standardization of fldA and of operations 135 | 1980 | 5288 | 18202 | 10| 27| 92
minNumMag and maxNumMag —for a,b € F, if |a| < |b| 1a0| 2055 a0 | weeTr Mol 2Tl 32
then minNumMag(a,b) = a, or b otherwise. These additional 150 | 2198 | 5850 | 20221| 1.0 | 27| 9.2
H H P 155 | 2265 | 6038 | 20888 | 1.0 | 2.7 9.2

features will be useful to implement more efficiently the EFT 160 | 2240 | 6248 | 21548 | 10| 27| 92
for the multiplication and the addition within tiBvoProd with 165 | 2400 | 6435 | 22222| 1.0 | 27| 9.3
FMA d heF T I ith 170 | 2476 | 6607 | 22891 | 1.0 | 2.7 9.2
and theFastTwoSum algorithms. 175| 2543 | 6802 | 23550 | 1.0 | 27| 93

180 | 2610 | 6989 | 24225| 1.0 | 2.7 9.3

185 | 2686 | 7178 | 24915| 1.0 | 2.7 9.3

ACKNOWLEDGMENT 190 | 2760 | 7373 | 25576 | 1.0 | 2.7 9.3

1 1 195 | 2828 | 7568 | 26243 | 1.0 | 2.7 9.3

.The a_luthors thank B. Goossens anq D. Parello for stimulating poad Isad Iksad vcord pd I b
discussions about performance analysis. average overheal 2.8 | 8.5




Environment (111)

Execution time
in clock cycles

Normalized
execution time

Environment (V)

Execution time
in clock cycles

Normalized
execution time

deg H CH | DDH H | CH | DDH
10| 255| 578 | 1373|1.0| 23 5.4
15| 323| 780 | 1980 | 1.0| 2.4 6.1
20| 383| 975| 2588| 1.0| 25 6.8
25| 428| 1170| 3203| 1.0| 2.7 75
30| 503 | 1373| 3810| 1.0| 2.7 7.6
35| 563 | 1568 | 4418 | 1.0| 2.8 7.8
40 | 622 | 1808 | 5033| 1.0| 2.9 8.1
45| 683 | 1988 | 5678| 1.0| 2.9 8.3
50| 735| 2183 | 6285| 1.0 | 3.0 8.6
55| 803 | 2378 | 6893| 1.0 | 3.0 8.6
60 | 863| 2588 | 7508 | 1.0 | 3.0 8.7
65| 908 | 2776 | 8115| 1.0| 3.1 8.9
70| 983| 2978 | 8723| 10| 3.0 8.9
75| 1034| 3173 | 9338| 1.0| 3.1 9.0
80| 1103 | 3375| 9945| 1.0| 3.1 9.0
85| 1163 | 3570 | 10560| 1.0 | 3.1 9.1
90 | 1215| 3765 | 11167 | 1.0 | 3.1 9.2
95| 1283 | 3960 | 11775| 1.0| 3.1 9.2
100 | 1343 | 4163 | 12383 | 1.0 | 3.1 9.2
105 | 1388 | 4358 | 12998 | 1.0 | 3.1 9.4
110 | 1463 | 4560 | 13605| 1.0 | 3.1 9.3
115 | 1523 | 4748 | 14220| 1.0 | 3.1 9.3
120 | 1583 | 4950 | 14828 | 1.0 | 3.1 9.4
125| 1643 | 5153 | 15435| 1.0 | 3.1 9.4
130 | 1695 | 5348 | 16043 | 1.0 | 3.2 9.5
135| 1763 | 5543 | 16658 | 1.0 | 3.1 9.4
140 | 1823 | 5745 | 17265| 1.0 | 3.2 9.5
145| 1890 | 5939 | 17880 | 1.0 | 3.1 9.5
150 | 1943 | 6134 | 18488 | 1.0 | 3.2 9.5
155 | 2003 | 6329 | 19095| 1.0 | 3.2 9.5
160 | 2078 | 6533 | 19703 | 1.0 | 3.1 9.5
165 | 2138 | 6728 | 20318 | 1.0 | 3.1 9.5
170 | 2190 | 6923 | 20925| 1.0 | 3.2 9.6
175| 2258 | 7118 | 21540| 1.0 | 3.2 9.5
180 | 2318 | 7327 | 22148 | 1.0 | 3.2 9.6
185| 2370 | 7515 | 22755| 1.0 | 3.2 9.6
190 | 2438 | 7718 | 23363 | 1.0 | 3.2 9.6
195 | 2498 | 7913 | 23978 | 1.0 | 3.2 9.6
200 | 2565 | 8115 | 24585| 1.0 | 3.2 9.6
average overhead 2.8 8.5
Environment (1V)
Execution time Normalized
in clock cycles execution time
deg H CH | DDH H | CH | DDH
10 135| 480 | 1298| 1.0| 3.6 9.6
15| 188| 690 | 1928 | 1.0| 3.7| 10.3
20| 338| 945| 2670| 10| 2.8 7.9
25| 406 | 1147 | 3292| 10| 2.8 8.1
30| 465| 1380| 3953| 1.0 3.0 8.5
35| 510| 1560 | 4568| 1.0| 3.1 9.0
40| 570| 1755| 5206| 1.0| 3.1 9.1
45| 638| 1973 | 5835| 1.0| 3.1 9.1
50| 697| 2175| 6465| 1.0 | 3.1 9.3
55| 758| 2378 | 7110| 1.0| 3.1 9.4
60 | 826| 2588 | 7740| 1.0| 3.1 9.4
65| 870| 2797 | 8392| 1.0| 3.2 9.6
70| 938| 3000| 9015| 1.0| 3.2 9.6
75| 997 | 3203 | 9645| 1.0| 3.2 9.7
80 | 1088 | 3405 | 10283 | 1.0 | 3.1 9.5
85| 1118 | 3615 | 10920| 1.0 | 3.2 9.8
90 | 1170 | 3818 | 11549| 1.0 | 3.3 9.9
95| 1238 | 4028 | 12180| 1.0 | 3.3 9.8
100 | 1298 | 4222 | 12818 | 1.0 | 3.3 9.9
105 | 1380 | 4441 | 13455| 1.0 | 3.2 9.8
110 | 1417 | 4634 | 14093 | 1.0 | 3.3 9.9
115 | 1499 | 4845 | 14729 | 1.0 | 3.2 9.8
120 | 1537 | 5040 | 15361| 1.0| 3.3 | 10.0
125| 1590 | 5258 | 15990| 1.0 | 3.3 | 10.1
130 | 1650 | 5453 | 16634 | 1.0 | 3.3 | 10.1
135| 1718 | 5663 | 17265| 1.0 | 3.3 | 10.0
140 | 1770 | 5865 | 17903 | 1.0 | 3.3 | 10.1
145 | 1838 | 6068 | 18532| 1.0 | 3.3 | 10.1
150 | 1898 | 6270 | 19170| 1.0| 3.3 | 10.1
155 | 1949 | 6488 | 19808 | 1.0 | 3.3 | 10.2
160 | 2018 | 6682 | 20445| 1.0 | 3.3 | 10.1
165 | 2070 | 6893 | 21068 | 1.0 | 3.3 | 10.2
170 | 2137 | 7103 | 21713| 1.0 | 3.3 | 10.2
175 | 2183 | 7297 | 22342| 1.0 | 3.3 | 10.2
180 | 2258 | 7515 | 22979| 1.0 | 3.3 | 10.2
185 | 2318 | 7702 | 23626 | 1.0 | 3.3 | 10.2
190 | 2370 | 7919 | 24254 | 1.0| 3.3 | 10.2
195 | 2430 | 8115| 24893| 1.0| 3.3 | 10.2
200 | 2498 | 8317 | 25538 | 1.0 | 3.3| 10.2
average overhead 2.8 8.5

deg H CH | DDH H | CH | DDH
10 138 | 347 832 1.0 25 6.0
15 181 | 479 | 1216| 1.0| 2.6 6.7
20| 220| 635| 1599| 1.0| 2.9 7.3
25| 262 | 767 | 1996| 1.0| 2.9 7.6
30| 300| 901| 2380|1.0| 3.0 7.9
35| 338| 1033| 2764| 1.0| 3.1 8.2
40| 380 | 1180| 3147|1.0| 3.1 8.3
45| 420 1312| 3531| 1.0| 3.1 8.4
50| 459 | 1446| 3915| 1.0| 3.2 8.5
55| 499 | 1578 | 4299| 1.0| 3.2 8.6
60| 542 | 1725| 4682| 1.0| 3.2 8.6
65| 592 | 1857 | 5066| 1.0| 3.1 8.6
70| 619 1991 | 5450| 1.0| 3.2 8.8
75| 672 | 2123 | 5834| 1.0| 3.2 8.7
80| 699 | 2279| 6217| 1.0| 3.3 8.9
85| 749 | 2402| 6601| 1.0| 3.2 8.8
90| 792| 2536| 6985| 1.0| 3.2 8.8
95| 835|2668| 7369| 1.0| 3.2 8.8
100 | 872 | 2815| 7752|1.0| 3.2 8.9
105| 913 | 2947| 8136| 1.0 | 3.2 8.9
110 | 955| 3081| 8520| 1.0| 3.2 8.9
115| 992 | 3213| 8904 | 1.0| 3.2 9.0
120 | 1035| 3360 | 9287 | 1.0| 3.2 9.0
125| 1075| 3492 | 9671 | 1.0| 3.2 9.0
130 | 1112 | 3626 | 10055| 1.0 | 3.3 9.0
135| 1152 | 3758 | 10439 | 1.0 | 3.3 9.1
140 | 1193 | 3905| 10822 | 1.0 | 3.3 9.1
145 | 1235 | 4037 | 11206 | 1.0 | 3.3 9.1
150 | 1272 | 4171| 11590| 1.0 | 3.3 9.1
155 | 1313 | 4303 | 11974| 1.0 | 3.3 9.1
160 | 1352 | 4450 | 12357 | 1.0 | 3.3 9.1
165 | 1392 | 4582 | 12741| 1.0| 3.3 9.2
170 | 1432 | 4716 | 13125| 1.0 | 3.3 9.2
175 | 1473 | 4848 | 13509 | 1.0 | 3.3 9.2
180 | 1515 | 4995| 13892 | 1.0 | 3.3 9.2
185 | 1552 | 5127 | 14276 | 1.0 | 3.3 9.2
190 | 1592 | 5261 | 14660| 1.0 | 3.3 9.2
195 | 1635 | 5393 | 15044 | 1.0 | 3.3 9.2
200 | 1672 | 5540 | 15427| 1.0 | 3.3 9.2
average overhead 2.8 8.5
Environment (VI)
Execution time Normalized

in clock cycles execution time

deg H CH | DDH H | CH | DDH
10 167 | 321 583 | 1.0| 1.9 35
15| 200 | 425 816 | 1.0| 2.1 4.1
20| 232| 528 | 1053| 10| 2.3 4.5
25| 245| 581 | 1286| 1.0| 24 5.2
30| 279| 686| 1523| 1.0| 2.5 55
35| 303| 790 | 1756 | 1.0 | 2.6 5.8
40 | 335| 893 | 1993| 1.0 2.7 5.9
45| 359 | 946 | 2226 | 1.0 | 2.6 6.2
50 | 382| 1051 | 2463 | 1.0 | 2.8 6.4
55| 415| 1155| 2696 | 1.0 | 2.8 6.5
60 | 439| 1258 | 2933 | 1.0 | 2.9 6.7
65| 460| 1311 | 3166 | 1.0 | 2.9 6.9
70| 494 1416 | 3403 | 1.0| 2.9 6.9
75| 518 1520 | 3636 | 1.0 | 2.9 7.0
80| 550| 1623 | 3873 | 1.0 | 3.0 7.0
85| 574| 1676 | 4106 | 1.0 | 2.9 7.2
90| 597 | 1781 | 4343| 1.0| 3.0 7.3
95| 630| 1885 | 4576 | 1.0 | 3.0 7.3
100 | 654 | 1988 | 4813 | 1.0 | 3.0 7.4
105| 675| 2041 | 5046 | 1.0 | 3.0 7.5
110 | 709 | 2146 | 5283 | 1.0 | 3.0 75
115| 733 | 2250| 5516 | 1.0| 3.1 7.5
120 | 765| 2353 | 5753 | 1.0| 3.1 75
125| 789 | 2406 | 5986 | 1.0 | 3.0 7.6
130 | 812 2511 | 6223 | 1.0 3.1 7.7
135| 845 2615| 6456 | 1.0 | 3.1 7.6
140 | 869 | 2718 | 6693 | 1.0 | 3.1 7.7
145| 890 | 2771 | 6926 | 1.0 | 3.1 7.8
150 | 924 | 2876 | 7163 | 1.0| 3.1 7.8
155| 948 | 2980 | 7396 | 1.0| 3.1 7.8
160 | 980 | 3083 | 7633 | 1.0 | 3.1 7.8
165 | 1004 | 3136 | 7866 | 1.0 | 3.1 7.8
170 | 1027 | 3241 | 8103 | 1.0 | 3.2 7.9
175| 1060 | 3345 | 8336 | 1.0 | 3.2 7.9
180 | 1084 | 3448 | 8573 | 1.0 | 3.2 7.9
185 | 1105| 3501 | 8806 | 1.0 | 3.2 8.0
190 | 1139 | 3606 | 9043 | 1.0 | 3.2 7.9
195| 1163 | 3710 | 9276 | 1.0 | 3.2 8.0
200 | 1195| 3813 | 9513 | 1.0 | 3.2 8.0
average overhead 2.8 8.5
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(1]
(2]

(3]

(4]
(5]

(6]

(7]
(8]

Environment (VII)

Execution time Normalized [15]
in clock cycles execution time

deg H] CH|DDH | H]| CH| DDH [16]
10 | 386 | 448 793 | 10| 1.2 2.1
15| 406 | 488 | 1013| 1.0| 1.2 2.5

20| 434| 528 | 1233| 10| 1.2 2.8 [17]
25| 457 | 568 | 1453 | 1.0 | 1.2 3.2
30| 474| 608| 1673| 1.0| 1.3 35

35| 506| 648 | 1893 | 1.0 | 1.3 3.7 [18]
40 | 514 | 688 | 2113| 1.0| 1.3 4.1
45| 537 | 728| 2333| 10| 14 43
50| 554 | 768 | 2553 | 1.0| 1.4 4.6

55| 577 | 808 | 2773 | 1.0 | 14| 4.8 [19]
60 | 594 | 848 | 2993| 1.0 1.4 5.0
65| 617 | 888 | 3213| 1.0| 1.4 5.2
70| 634| 928 | 3433| 10| 15 5.4
75| 666| 968 | 3653 | 1.0 | 1.5 55
80 | 674|1008| 3873 | 1.0| 15 5.7
85| 697 | 1048 | 4093 | 1.0| 15 5.9
90 | 7141|1089 | 4315| 10| 15 6.0
95| 737|1128| 4533 | 1.0 | 15 6.2
100 | 754 | 1168 | 4753 | 1.0| 1.5 6.3
105 | 777 | 1208 | 4973 | 1.0| 1.6 6.4
110 | 794 | 1248 | 5193 | 1.0| 1.6 6.5
115| 826 | 1288 | 5413 | 1.0| 1.6 6.6
120 | 834 | 1328 | 5633 | 1.0| 1.6 6.8
125 | 857 | 1368 | 5853 | 1.0 | 1.6 6.8
130 | 874 | 1408 | 6073 | 1.0| 1.6 6.9
135| 897 | 1448 | 6293 | 1.0| 1.6 7.0
140 | 914 | 1488 | 6513 | 1.0| 1.6 7.1
145 | 937 | 1528 | 6733 | 1.0| 1.6 7.2
150 | 954 | 1568 | 6953 | 1.0 | 1.6 7.3
155| 986 | 1609 | 7175| 1.0 | 1.6 7.3
160 | 994 | 1648 | 7393 | 1.0| 1.7 7.4
165 | 1017 | 1688 | 7613 | 1.0 | 1.7 75
170 | 1034 | 1728 | 7833 | 1.0 | 1.7 7.6
175 | 1057 | 1768 | 8053 | 1.0 | 1.7 7.6
180 | 1074 | 1808 | 8273 | 1.0| 1.7 7.7
185 | 1097 | 1848 | 8493 | 1.0 | 1.7 7.7
190 | 1114 | 1888 | 8713 | 1.0 | 1.7 7.8
195 | 1146 | 1928 | 8933 | 1.0| 1.7 7.8
200 | 1154 | 1968 | 9153 | 1.0 | 1.7 79
average overhead 2.8 8.5
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