
HAL Id: hal-00165020
https://hal.science/hal-00165020

Preprint submitted on 24 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

More Instruction Level Parallelism Explains the Actual
Efficiency of Compensated Algorithms

Philippe Langlois, Nicolas Louvet

To cite this version:
Philippe Langlois, Nicolas Louvet. More Instruction Level Parallelism Explains the Actual Efficiency
of Compensated Algorithms. 2007. �hal-00165020�

https://hal.science/hal-00165020
https://hal.archives-ouvertes.fr

1

More Instruction Level Parallelism
Explains the Actual Efficiency
of Compensated Algorithms

Philippe Langlois and Nicolas Louvet
langlois@univ-perp.fr,nicolas.louvet@univ-perp.fr

Abstract— The compensated Horner algorithm and the Horner
algorithm with double-double arithmetic improve the accuracy
of polynomial evaluation in IEEE-754 floating point arithmetic.
Both yield a polynomial evaluation as accurate as if it was com-
puted with the classic Horner algorithm in twice the working pre-
cision. Both algorithms also share the same low-level computation
of the floating point rounding errors and cost a similar number
of floating point operations. We report numerical experiments
to exhibit that the compensated algorithm runs at least twice as
fast as the double-double one on modern processors. We propose
to explain such efficiency by identifying more instruction level
parallelism in the compensated implementation. Such property
also applies to other compensated algorithms for summation, dot
product and triangular linear system solving. More generally this
paper illustrates how this kind of performance analysis may be
useful to highlight the actual efficiency of numerical algorithms.

Index Terms— Accurate polynomial evaluation, Horner algo-
rithm, compensated Horner algorithm, floating point arithmetic,
IEEE-754 standard, instruction level parallelism, performance
evaluation.

I. I NTRODUCTION

I N this paper, we consider polynomial evaluation in floating
point arithmetic restricted to entries and polynomial coeffi-

cients being floating point values. Such cases appear for example
when evaluating elementary functions [1] and in geometric com-
putations where accurate polynomial evaluation is crucial [2], [3].

A. Accurate Polynomial Evaluation

The following inequality bounds the accuracy of the floating
point result bp(x) of the polynomial evaluationp(x), for example
with the classic Horner algorithm. We have

|p(x)− bp(x)|
|p(x)| ≤ cond(p, x)×O(u), (1)

where u is the computing precision and the condition number
cond(p, x) is a scalar larger than1 that only depends on the entry
x and onp coefficients —its expression will be given further.
Hence the computed valuebp(x) suffers from less exact digits than
what the computing precision provides. This loss of accuracy may
be arbitrarily large as evaluating the polynomialp at thex entry
is more ill-conditioned, as for example in the neighborhood of a
multiple root.

When the computing precisionu is not sufficient (compared to
cond(p, x)) to guarantee a desired accuracy inbp(x), several solu-
tions implementing a computation with more bits exist. Double-
double algorithms are well-known and well-used solutions to

Ph. Langlois and N. Louvet are members of DALI Research Team, ELIAUS
Laboratory at Universit́e de Perpignan, France.

simulate twice the IEEE-754 double precision [4], [5]. The com-
pensated Horner algorithm introduced in [6] is an alternative to
the Horner algorithm implemented with double-double arithmetic.
In both cases the accuracy of computedbp(x) is improved and now
verifies

|p(x)− bp(x)|
|p(x)| ≤ u + cond(p, x)×O(u2). (2)

Comparing to Relation (1), this relation means that the computed
value is now as accurate as the result of the Horner algorithm
performed in twice the working precision with a final rounding
back to this working precision —the same behavior is mentioned
in [7] for compensated summation and dot product.

As for Relation (1) the accuracy of the compensated result still
depends on the condition number and may be arbitrarily bad for
ill-conditioned polynomial evaluations. Nevertheless, this bound
tells us that the compensated Horner algorithm may yield a full
precision accuracy for not too ill-conditioned polynomials, that
is for p and x such that the second termcond(p, x) × O(u2) is
small compared to the working precisionu. In [8] we prove that
the compensated evaluation is faithfully rounded for condition
numbers up toO(u−1). By faithful rounding we mean that the
computed result is one of the two floating point neighbors of the
exact resultp(x). We also provide a dynamical test to answer
to the question “is the computed compensated result a faithful
rounding of the exact evaluation?” thanks to a computable and
validated bound for the final absolute error inbp(x).

B. Previous Results and Motivation for Efficiency Analysis

Compensated Horner evaluation is fast. By fast we mean that it
runs at least twice as fast as the double-double Horner counterpart
still providing the same output accuracy. The implementation
core of these “double-like” algorithms is the computation of the
rounding errors generated by the floating point operators. For
compensated implementations, these rounding errors are used
to correct the result of the original algorithm. Such low-level
computation depends on the arithmetic attributes. In [9] we
present experimental results to exhibit how to benefit from the
fused multiply and add operator. It appears thatFMA should be
avoided in the evaluation part of the compensated algorithm but
preferred when computing the rounding errors. Measures showing
the efficiency of the compensated Horner algorithm also when
FMA is not available are briefly presented in [8].

In both cases these experiments illustrate the practical
efficiency of the compensated algorithm we announced before.
Nevertheless we were not able to explain why the measured
overhead factor introduced by the compensated evaluation

2

TABLE I

HOW TO EXPLAIN THE OVERHEAD DIFFERENCES BETWEEN FLOP COUNTS AND MEASURED TIMES?

Compensated Horner with
Horner Horner double-double

Number of flop 2n 22n + 5 28n + 4

Overhead w.r.t. Horner: number of flop 1 ≈ 11 ≈ 14

Overhead w.r.t. Horner: range of measured times 1 2.7− 3.2 8.5− 9.7

algorithm is significantly better than the one introduced by its
double-double counterpart. Counting of floating point operations
is still commonly used in the field of numerical analysis to
compare the performances of different numerical algorithms. But
this classic technique is clearly not sufficient to answer to the
open question we address here, as this is summarized in Table I.
How to explain that computed Horner actually runs twice as fast
as the double-double Horner whereas their flop counts are very
similar? Let us remark that the same property is identified but
still unexplained for summation and dot product in [7].

In this paper we propose to answer to this open question
presenting how the actual efficiency of the compensated Horner
algorithm can be explained thanks to itsinstruction level par-
allelism (ILP). Quoting Hennessy and Patterson [10, p.172],
“all processors since about 1985 . . . use pipelining to overlap
the execution of instructions and improve performances. This
potential overlap among instructions is called instruction-level
parallelism since the instructions can be evaluated in parallel.”

We propose a detailed analysis of the ILP of compensated
Horner and Horner with double-double algorithms. We quantify
the average number of instructions that can be theoretically
executed in one clock cycle on an ideal processor. This ideal
processor is one where all the artificial constraints on ILP are
removed [10, p.240]. In this context, the theoretical IPC (instruc-
tions per clock) is about six times better for the compensated
Horner algorithm than for its double-double counterpart. Every
double-double arithmetic operation ends with a renormalization
step [4], [5]. We also show that avoiding these renormalization
steps the compensated Horner algorithm presents more ILP than
the Horner algorithm with double-double arithmetic. We conclude
that the compensated algorithm exhibits more potential to benefit
from the superscalar facilities of modern processors. In our
point of view, this gives a qualitative explanation of its practical
efficiency.

C. Outline

The paper is organized as follows. In Section II we describe the
main steps from the classic Horner algorithm to the compensated
Horner algorithm. This Section summarizes some results already
presented in [8]: error free transformations of arithmetic oper-
ations, extension to an error free transformation of the Horner
polynomial evaluation, final correction and the corresponding
theoretical accuracy bound. We present experimental measures of
the running times for the compensated Horner algorithm and the
challenging Horner with double-double arithmetic in Section III.
Since the classic flop count fails to explain these observed results
we devote the last Section IV to a detailed comparison of these
two algorithms. We introduce the notions of ILP and IPC on
an ideal processor. Then we highlight the common parts within

the compensated and the double-double Horner algorithms and
prove that the compensated implementation benefits for more ILP
than the double-double one. Appendix contains all the measures
previously analyzed in Section III.

D. Notations and Hypothesis

Throughout the paper, we assume a floating point arithmetic
compliant with the IEEE-754 floating point standard [11]. We
constraint all the computations to be performed in one working
precision, with the “round to the nearest” rounding mode. We
also assume that no overflow nor underflow occurs during the
computations. Next notations are standard (see [12, chap. 2] for
example).F is the set of all normalized floating point numbers and
u denotes the unit roundoff, that is half the spacing between1 and
the next representable floating point value. For IEEE-754 double
precision with rounding to the nearest, we haveu = 2−53 ≈
1.11 · 10−16.

The symbols⊕, 	, ⊗ and� represent respectively the floating
point addition, subtraction, multiplication and division. For more
complicated arithmetic expressions,fl(·) denotes the result of
a floating point computation where every operation inside the
parenthesis is performed in the working precision. So we have
for example,a⊕ b = fl(a + b).

When no underflow nor overflow occurs, the following standard
model describes the accuracy of every considered floating point
computation. For two floating point numbersa and b and for ◦
in {+,−,×, /}, the floating point evaluationfl(a ◦ b) of a ◦ b is
such that

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), with |ε1|, |ε2| ≤ u.

(3)
It is classic to keep track of the(1 + ε) factors when nesting

k arithmetic operations usingγk := ku/(1 − ku). We haveQk
i=1(1 + εi)

±1 ≤ 1 + γk [12, chap. 3]. When using these
notations, we always implicitly assumeku < 1 andk > 0.

II. FROM HORNER TOCOMPENSATEDHORNER ALGORITHM

The compensated Horner algorithm improves the classic Horner
iteration by computing a correcting term to compensate the
rounding errors the Horner iteration generates in floating point
arithmetic. Main results about compensated Horner algorithm are
summarized in this section and may be skipped if [8] is already
known.

A. Polynomial evaluation and Horner algorithm

The classic condition number of the evaluation ofp(x) =Pn
i=0 aix

i at a given entryx is [13]

cond(p, x) =

Pn
i=0 |ai||x|i

|
Pn

i=0 aixi|
:=

ep(x)

|p(x)| . (4)

3

For any floating point valuex we denote byHorner (p, x) the
result of the floating point evaluation of the polynomialp at x

using the classic Horner algorithm recalled below.

Algorithm 1 Horner algorithm

function r0 = Horner (p, x)

rn = an

for i = n− 1 : −1 : 0

ri = ri+1 ⊗ x⊕ ai

end

The accuracy of Algorithm 1 verifies introductory inequality (1)
with O(u) = γ2n and previous condition number (4). Clearly,
the condition numbercond(p, x) can be arbitrarily large. In
particular, whencond(p, x) > γ−1

2n , we cannot guarantee that the
computed resultHorner (p, x) contains any correct digit.

More accuracy can be reached at the same computing preci-
sion thanks to error free transformation (EFT). We review well
known results concerning the EFT of the elementary floating
point operations+, − and ×. Then we introduce an EFT for
polynomial evaluation proving that the error generated by the
Horner algorithm is exactly the sum of two polynomials with
floating point coefficients.

B. EFT for the elementary operations

Let ◦ be an operator in{+,−,×}, a and b be two floating
point numbers, andbx = fl(a ◦ b). Then there exists a floating
point valuey such thata ◦ b = bx + y. The differencey between
the exact result and the computed result is the rounding error
generated by the computation ofbx. Let us emphasize that
this relation between four floating point values relies on real
operators and exact equality,i.e., not on approximate floating
point counterparts. Ogitaet al. [7] name such a transformation
an error free transformation. The practical interest of the EFT
comes from next Algorithms 2 and 3 that compute the exact
error termy for ◦ = + and◦ = ×.

For the EFT of the addition we use the well knownTwoSum
algorithm by Knuth [14, p.236] that requires 6 flop (floating point
operations).TwoProd by Veltkamp and Dekker [15] performs
the EFT of the product and requires 17 flop. We also describe
Dekker’sFastTwoSum version of the EFT for the addition that
will be used further for double-double computation.

Algorithm 2 EFT of the sum of two floating point numbers

function [x, y] = TwoSum (a, b)

x = a⊕ b

z = x	 a

y = (a	 (x	 z))⊕ (b	 z)

We notice that algorithmsTwoSum andTwoProd only require
well optimizable floating point operations. They apply for the
IEEE rounding to the nearest rounding mode. They do not use
branches, nor access to the mantissa that can be time-consuming.
FastTwoSum costs less flop thanTwoSum but only applies to
sorted entries. When this condition is nota priori satisfied, it is
well known that a dynamic sorting ruins the actual performances

Algorithm 3 EFT of the product of two floating point numbers

function [x, y] = TwoProd (a, b)

x = a⊗ b

% splitting of a and b to high and low parts
% splitter = (1 + 2btc) is a predefined constant,
% with t the mantissa length
as = splitter ⊗ a; bs = splitter ⊗ b

ah = as 	 (as 	 a); bh = bs 	 (bs 	 b)

al = a− ah; bl = b− bh

% rounding error ina⊗ b

y = al ⊗ bl 	 (((x	 ah ⊗ bh)	 al ⊗ bh)	 ah ⊗ bl)

Algorithm 4 EFT of the sum of twosortedfloating point numbers

function [x, y] = FastTwoSum (a, b)

% Assume |a| ≥ |b|
x = a⊕ b

y = (a	 x)⊕ b

of FastTwoSum on superscalar processors [7]. We also mention
that a significant improvement ofTwoProd is defined when a
Fused-Multiply-and-Add operator is available as Intel Itanium
or IBM PowerPC [16]. We detailed how to benefit from such
instruction in [9].

C. An EFT for the Horner algorithm

The next EFT for the polynomial evaluation with the Horner
algorithm exhibits the exact rounding error generated by the
Horner algorithm together with an algorithm to compute it.

Algorithm 5 EFT for the Horner algorithm

function [r0, pπ, pσ] = EFTHorner(p, x)

rn = an

for i = n− 1 : −1 : 0

[pi, πi] = TwoProd (ri+1, x)

[ri, σi] = TwoSum (pi, ai)

Let πi be the coefficient of degreei in pπ

Let σi be the coefficient of degreei in pσ

end

Theorem 1 ([8]): Let p(x) =
Pn

i=0 aix
i be a polynomial of

degreen with floating point coefficients, and letx be a floating
point value. Then Algorithm 5 computes bothHorner (p, x) and
two polynomialspπ andpσ of degreen−1 with floating point co-
efficients, such that[Horner (p, x) , pπ, pσ] = EFTHorner (p, x) .

If no underflow occurs, the polynomial evaluation verifies

p(x) = Horner (p, x) + (pπ + pσ)(x). (5)

Relation (5) means that algorithmEFTHorner is an EFT for
polynomial evaluation with the Horner algorithm.

D. Compensated Horner algorithm

From Theorem 1 the forward error in the floating point evalu-
ation of p(x) with the Horner algorithm is

c = p(x)− Horner (p, x) = (pπ + pσ)(x),

4

where both polynomialspπ and pσ are exactly identified
by EFTHorner (Algorithm 5) —this latter also computes
Horner (p, x). Therefore, the key of the compensated algo-
rithm is to compute, in the working precision, the approximate
Horner (pπ ⊕ pσ, x) of the final errorc and then a corrected result

r = Horner (p, x)⊕ Horner (pπ ⊕ pσ, x) .

We say that Horner (pπ ⊕ pσ, x) is a correcting term for
Horner (p, x). The compensated resultr̄ is expected to be more
accurate thanHorner (p, x) as proved in next section. The
next Algorithm 6 implements the compensated Horner algorithm
within only one loop inlining the computation of the Horner
EFT (Algorithm 5), the computation of the correcting term
Horner (pπ ⊕ pσ, x) and the final correction.

Algorithm 6 Compensated Horner algorithm

function r = CompHorner(P, x)

rn = ai; cn = 0

for i = n− 1 : −1 : 0

[ai, πi] = TwoProd(ri+1, x)

[ri, σi] = TwoSum(pi, ai)

ci = ci+1 ⊗ x⊕ (πi ⊕ σi)

end
% Herer0 = Horner (p, x),
% andc0 = Horner (pπ ⊕ pσ, x)

r = r0 ⊕ c0

E. Accuracy of the Compensated Horner Algorithm

Next result proves that the result of a polynomial evaluation
computed with the compensated Horner algorithm (Algorithm 6)
is as accurate as if computed by the Horner algorithm using twice
the working precision and then rounded to the working precision.

Theorem 2 ([8]): Consider a polynomialp of degreen with
floating point coefficients, andx a floating point value. If no
underflow occurs,

|CompHorner (p, x)− p(x)| ≤ u|p(x)|+ γ2
2n ep(x). (6)

It is interesting to interpret the previous theorem in terms of
the condition number of the polynomial evaluation ofp at x.
Combining the error bound (6) with the condition number (4) of
polynomial evaluation gives the precise writing of our introduc-
tory inequality (2),

|CompHorner (p, x)− p(x)|
|p(x)| ≤ u + γ2

2n cond(p, x). (7)

Since γ2
2n = O(u2) relation (7) essentially tells us that the

compensated result is as accurate as if computed by the classic
Horner algorithm in twice the working precision, with a final
rounding back to the working precision [8].

Fig. 1 illustrates the accuracy behavior ofHorner andCom-
pHorner w.r.t. the condition number. More detailed experiments
may be found in [8]. We generate polynomials of degree50 whose
condition numbers vary from about102 to 1035. We see that
even for small condition numbers we already lose some accuracy
with the Horner evaluation. We also observe that the compensated
algorithm exhibits the expected behavior : as long as the condition
number is smaller thanu−1, the relative error is of the order of
the working precisionu. Then, for condition numbers between

u−1 andu−2, this relative error degrades to no accuracy at all.
As usual, thea priori error bound (7) appears to be pessimistic
by many orders of magnitude.

III. E XPERIMENTAL RESULTS FORPERFORMANCEANALYSIS

Now we start to focus the open question that motivates this
paper presenting our implementations and the corresponding
measured running-times for Compensated Horner algorithm and
Horner algorithm with double-double.

A. Implementation of the Compensated Horner Algorithm

Since every loop ofHorner (Algorithm 1) includes a multipli-
cation byx, every loop ofCompHorner (Algorithm 6) introduces
one TwoProd applied to the samex. Hence the split ofx is
only performed once (out of the loop) to reduce the flop count.
The following C code implements this simplification. Algorithm
CompHorner now requires22n + 5 flops.

double CompHorner(double *P, unsigned int n, double x) {
double p, r, c, pi, sig, x_hi, x_lo, hi, lo, t;
int i;

/* (x_hi, x_lo) = Split(x) */
t = x*splitter; x_hi = t-(t-x); x_lo = x-x_hi;

r = P[n]; c = 0.0;
for(i=n-1; i>=0; i--) {

/* (p, pi) = TwoProd(r, x); */
p = r*x;
t = r*_splitter_; hi = t-(t-r); lo = r-hi;
pi = (((hi*x_hi-p)+hi*x_lo)+lo*x_hi)+lo*x_lo;

/* (s, sigma) = TwoSum(p, P[i]); */
r = p+P[i];
t = r-p;
sig = (p-(r-t)) + (P[i]-t);

/* Computation of the correcting term */
c = c*x+(pi+sig);

}
return(r+c);

}

B. Horner Algorithm with Double-Double Computation

In Algorithm 7, we implement the Horner algorithm performed
with double-double arithmetic.

Algorithm 7 Horner algorithm with double-doubles

function r = DDHorner(P, x)

shn = ai; sln = 0

for i = n− 1 : −1 : 0

% double-double = double-double× double:
% (phi, pli) = (shi+1, sli+1)⊗ x

[th, tl] = TwoProd(shi+1, x)

tl = sli+1 ⊗ x⊕ tl

[phi, pli] = FastTwoSum(th, tl)

% double-double = double-double+ double:
% (shi, sli) = (phi, pli)⊕ ai

[th, tl] = TwoSum(phi, ai)

tl = tl ⊕ pli
[shi, sli] = FastTwoSum(th, tl)

end
r = sh0

5

1

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

10-18

103510301025102010151010105

condition number

re
la

tiv
e

fo
rw

ar
d

er
ro

r

u

u
-1

u
-2

γ 2n
 c

on
d(

p,
 x

)

u
 +

 γ 2n
2 c

on
d(

p,
 x

)

Horner
CompHorner

Fig. 1. Measured accuracy and theoretical bounds of Horner and Compensated Horner algorithms.

Double-doubles are managed as proposed by the authors of [5],
[17]. For our purpose, it suffices to know that a double-double
numbera is the pair(ah, al) of IEEE-754 floating point numbers
with a = ah + al and |al| ≤ u|ah|. As we will see in the
sequel, this property requires a renormalization step after every
arithmetic operation with double-double values. To implement the
Horner algorithm using the double-double format, we only need
two basic operations: i) the product of a double-double number
by a double number, and ii) the addition of a double number
to a double-double number. These operations are represented
in boxes in Algorithm 7. We notice that every double-double
operation performs a final renormalization step using algorithm
FastTwoSum (Algorithm 4). This renormalization is compulsory
to ensure that the computed result of the corresponding double-
double operation is still a valid double-double number. For
example, the line[shi, sli] = FastTwoSum(th, tl) in Algorithm 4
ensures that the floating point pair(shi, sli) actually satisfies
|sli| ≤ u|shi| and so is a valid double-double number.

We also provide hereafter a C code implementation of algo-
rithm DDHorner. We count that algorithmDDHorner requires
28n + 4 flops.

double DDHorner(double *P, unsigned int n, double x) {
double r_h, r_l, t_h, t_l, x_hi, x_lo, hi, lo, t;
int i;

/* (x_hi, x_lo) = Split(x) */
t = x*splitter; x_hi = t-(t-x); x_lo = x-x_hi;

r_h = P[n]; r_l = 0.0;
for(i=n-1; i>=0; i--) {

/* (r_h, r_l) = (r_h, r_l) * x */
t = r_h*splitter; hi = t-(t-r_h); lo = (r_h-hi);
t_h = r_h*x;
t_l = ((((hi*x_hi-t_h)+hi*x_lo)+lo*x_hi)+lo*x_lo);
t_l += r_l*x;
r_h = t_h+t_l;
r_l = (t_h-r_h)+t_l;

/* (r_h, r_l) = (r_h, r_l) + P[i] */
t_h = r_h+P[i];
t = t_h-r_h;
t_l = ((r_h-(t_h-t))+(P[i]-t))+r_l;
r_h = t_h+t_l;

r_l = (t_h-r_h)+t_l;
}
return(r_h);

}

C. Experimental results

All our experiments are performed using IEEE-754 double
precision, and the algorithms are implemented in C code. The
experimental environments are listed in Table II.

TABLE II

EXPERIMENTAL ENVIRONMENTS

env. description

(I) Intel Pentium 4, 3 GHz, GCC 4.1.2
-std=c99 -march=pentium4
-mfpmath=387 -O3 -funroll-all-loops

(II) Intel Pentium 4, 3 GHz, ICC 9.1
-c99 -mtune=pentium4 -O3
-funroll-loops -mp1

(III) Intel Pentium 4, 3 GHz, GCC 4.1.2
-std=c99 -march=pentium4
-mfpmath=sse -O3 -funroll-all-loops

(IV) Intel Pentium 4, 3 GHz, ICC 9.1
-c99 -mtune=pentium4 -msse2 -O3
-funroll-loops -fp-model source

(V) AMD Athlon 64 3200+, 2 GHz, GCC 4.1.2
-std=c99 -march=athlon64 -m3dnow
-O3 -funroll-all-loops

(VI) Itanium 2, 1.5 GHz, GCC 4.1.1
-std=c99 -mtune=itanium2 -O3
-funroll-all-loops

(VII) Itanium 2, 1.5 GHz, ICC 9.1
-c99 -O3 -mp -IPF fma

In this table, GCC denotes the GNU Compiler Collection and
ICC the Intel C Compiler. In environments (I) to (V), noFMA in-
struction is available, so we use the C codes presented in the
previous subsections to implement algorithmsCompHorner and
DDHorner. In environments (VI) and (VII), that is on the Intel
Itanium architecture which provides aFMA instruction, we use

6

the improvements of these algorithms presented in [9]. Anyway
we use the same programming techniques for the implementations
of the routinesCompHorner and DDHorner. All timings are
done with the cache warmed to minimize the memory traffic over-
cost.

Our measures are performed with 39 polynomials whose de-
grees vary from 10 to 200 by step of 5. The coefficients and
the argument of these polynomials are randomly generated. For
every algorithm and every degree, we measure the ratio of the
computing time over the computing time of the Horner algorithm.

We display the average value of these ratios forCom-
pHorner and DDHorner in Table III. All detailed results for
considered environments are presented in the Appendix.

TABLE III

AVERAGE MEASURED OVERHEAD INCompHorner AND DDHorner W.R.T.

Horner .

env. CompHorner/Horner DDHorner/Horner

(I) 2.8 8.5
(II) 2.7 9.0
(III) 3.0 8.9
(IV) 3.2 9.7
(V) 3.2 8.7
(VI) 2.9 7.0
(VII) 1.5 5.9

First we notice that the measured slowdown factors are always
significantly smaller than expected if the flop count is only
considered. We have indeed from previous flop counts,

CompHorner

Horner
=

22n + 5

2n
≈ 11,

whereas the compensated algorithmCompHorner is only about3
times slower than the classic Horner algorithm. The same remark
applies to algorithmDDHorner for which

DDHorner

Horner
=

28n + 4

2n
≈ 14,

and that appears to be only about8 times slower than the Horner
algorithm.

These results also show that the compensated algorithm is more
than twice faster than the Horner algorithm with double-double
computation while, as already noticed, previous comparison sug-
gests

DDHorner

CompHorner
=

28n + 4

22n + 5
≈ 1.3.

Flop counts are therefore not sufficient to explain such behaviors.

IV. M ORE ILP IN CompHorner EXPLAINS ITS ACTUAL

PERFORMANCE

It is well know that most modern processors are capable of
executing several instructions concurrently. Quoting Hennessy
and Patterson [10, p.172]:

All processors since about 1985, including those in the
embedded space, use pipelining to overlap the execution
of instructions and improve performances. This poten-
tial overlap among instructions is called instruction-
level parallelism since the instructions can be evaluated
in parallel.

As explained in Section I, the term instruction-level parallelism
refers to the degree to which the instructions of a program can be

executed in parallel. Real programs are usually written in a serial
fashion, using high-level languages such as C and Fortran. To
exploit the implicit parallelism available among the instructions
of a given program, many hardware (processor) and software
(compiler) techniques have been developed.

In the sequel, we first underline the main algorithmic differ-
ence betweenCompHorner andDDHorner: CompHorner and
DDHorner perform essentially the same floating point opera-
tions, but the renormalization steps required for double-double
computations are avoided inCompHorner. Next, we will prove
that CompHorner presents as a consequence more ILP, which
certainly explains its better practical performance on modern
superscalar processors. We perform our analysis assuming that no
FMA is available, that is considering only the implementations of
CompHorner andDDHorner described in Section III.

A. Comparison betweenCompHorner and DDHorner

Let us now compare algorithmsCompHorner andDDHorner.
For this purpose, we consider below a slightly modified version
of the compensated Horner algorithm. Compared to Algorithm 6,
we only reorder the floating point operations involved in the
computation ofci with respect toci+1, x , πi andσi.

function r = CompHorner′(P, x)

rn = ai; cn = 0

for i = n− 1 : −1 : 0

[ai, πi] = TwoProd(ri+1, x)

t = ci+1 ⊗ x⊕ πi

[ri, σi] = TwoSum(pi, ai)

ci = ti ⊕ σi

end
r = r0 ⊕ c0

Comparing the previous algorithm with Algorithm 7, it is
clear thatCompHorner and DDHorner perform all the same
floating point operations but the renormalization steps needed in
algorithm DDHorner. The lines[phi, pli] = FastTwoSum(th, tl)

and [shi, sli] = FastTwoSum(th, tl) in DDHornerare avoided
in CompHorner and so this save6n flops. Saving6n flop
is clearly not sufficient to explain the practical performance of
CompHorner compared toDDHorner. Nevertheless, we will
see in the next subsections that thanks to the suppression of
the renormalization steps, the compensated evaluation algorithm
introduces more ILP thanDDHorner.

B. IPC and the ideal processor

A way to evaluate the ILP available in a given program is to
compute its ICP (instruction per clock) on an ideal processor [10,
p.240]. The IPC of a program, running on a given processor, is the
average number of instructions of this program executed per clock
cycle. An ideal processor is one where all artificial constraints
on ILP are removed. The only limits in such a processor are
those imposed by the actual data flows through either register or
memory. More precisely, we assume that:

• the processor can execute an unlimited number of indepen-
dent instructions in the same clock cycle;

7

*

* *

*

*

+

+

−

−

−

− −

−

−

−

+

+

+

+

+

x_lo

x_hi

x

P[i]

P[i]

r

c

c

(i)

(i+1)

(i)

* *

x_lo

x_hi

x

(i+1)
r

splitter

1

2

3

4

5

6

7

8

9

10

c

c

r

(i+1)

(i)

(i)

(i+1)

r

(n−1)

(n−2)

(n−3)

(n−4)

(n−5)

(0)

(1)

(2)

(3)

(4)

(a) (b) (c)

Fig. 2. Data-flow graphs for algorithmCompHorner.

• all but true data dependencies are removed: any instruction
in the program execution can be scheduled on the cycle
immediately following the execution of the predecessor one
on which it depends;

• branches are perfectly predicted: all conditional branches are
predicted exactly;

• memory accesses are also perfect: all loads and stores always
complete in one clock cycle.

These assumptions mean that this ideal processor can execute
arbitrarily many operations in parallel, and that any sequence of
dependent instructions can execute on successive cycles. In the
sequel, we will refer to the IPC of a program running on such an
ideal processor as its ideal IPC.

Now, let us study algorithmCompHorner running on this ideal
processor when evaluating a polynomial of degreen: n iterations
(numbered fromn− 1 down to0) of the inner loop of algorithm
CompHorner are then executed. We want to find the total latency
of the execution of the inner loop, which is the number of clock
cycles elapsed when executingn iterations.

C. Ideal IPC ofCompHorner

We consider on Fig. 2.a the data-flow graph iterationi of the
main loop of algorithmCompHorner. This data-flow graph is
based on the C code implementation ofCompHorner provided
in Section III. The inputs in square boxes are critical inputs
since they are the outputs of the previous iterationi + 1. We
can distinguish three critical paths of interest (represented with
dashed edges) in this data-flow graph:

• one fromri+1 to ri containing 2 instructions,
• one fromri+1 to ci containing 10 instructions,

• one fromci+1 to ci containing 2 instructions.

Since the critical path fromri+1 to ci has length 10, the whole
iteration can be executed within 10 cycles with the ideal processor.
From these remarks, we represent on Fig. 2.b the execution of
iteration i as a box of length 10 cycles, where:

• ri+1 is consumed at the first cycle of the iteration,
• ri is produced at cycle 2,
• ci+1 is consumed at cycle 8,
• andci is produced at cycle 10.

On Fig. 2.c, we represent the execution of then iterations on the
ideal processor. We can see that one iteration starts every two
cycles, and that two successive iteration executions overlap by 8
cycles. We deduce that the latency of the whole loop of algorithm
CompHorner is 2n+8 cycles. Since the whole loop requires22n

floating point instructions, the ideal IPC for the loop of algorithm
CompHorner is

IPCCompHorner =
22n

2n + 8
≈ 11 instructions per cycle.

D. Ideal IPC ofDDHorner

On Fig. 3, we perform the same analysis to determine the total
latency ofDDHorner execution. We represent the data-flow graph
for iteration i of algorithm DDHorner on Fig. 3.a. From the
analysis of this data-flow graph, we represent on Fig. 3.b the
execution of iterationi:

• shi+1 is consumed at the first cycle of the iteration,
• shi is produced at cycle 17,
• sli+1 is consumed at cycle 3,
• andsli is produced at cycle 19.

8

+

−

−

−

+

−

−

+

+

+

−

+

+

x_lox_hi

x_hix_lo

x

P[i]

sh

sh

sl

(i+1)

(i)

(i)

x

(i+1)
sl

**

+

−

−

−

−* *

* *−

+

+

splitter

sh

sl

sh

sl

(i+1)

(i+1)

(i)

(i)

10

12

19

2

1

3

4

5

6

7

8

9

11

13

14

15

16

17

18

(n−1)

(n−2)

(n−3)

(n−4)

(a) (b) (c)

Fig. 3. Data-flow graphs for algorithmDDHorner.

From these remarks, we represent on Fig. 3.c the execution of
n iterations on the ideal processor. One iteration starts every17

cycles, and two successive iteration executions only overlap by
2 cycles. Therefore the latency of the whole loop of algorithm
DDHorner is 17n + 2 clock cycles on the ideal processor. Since
the loop execution requires28n floating point instructions, the
IPC of DDHorner running on the ideal processor is

IPCDDHorner =
28n

17n + 2
≈ 1.65 instructions per cycle.

E. Analysis

The ideal IPC ofCompHorner is therefore much greater than
the one ofDDHorner:

IPCCompHorner ≈ 6.66× IPCDDHorner.

Clearly this means that more ILP is available inCom-
pHorner than in DDHorner. We stress that this theoretical
analysis cannot explain in a quantitative manner the actual ratios
reported in Table III. Indeed measured ratios are from real
processors with limited resources while ideal IPC is computed

9

assuming a processor which exploits all the ILP available in
the algorithms. However this certainly explains in a qualitative
manner the better efficiency of the compensated algorithm on
modern processors designed for exploiting ILP.

The consequence of the renormalization steps needed for
double-double computations also appears clearly if we compare
Fig. 3 to Fig. 2. They act has “bottlenecks” during the execution of
DDHorner. The three floating point operations involved in every
renormalization steps are represented in boxes on Fig. 3. If we
compare one iteration of the loop ofDDHorner to one iteration
of CompHorner, it appears that:

• the latency of every iteration ofDDHorner is larger because
of the first renormalization step —cycles 10 to 12 on
Fig. 3.(a),

• due to the second renormalization step —cycles 17 to 19 on
Fig. 3.(a)— the overlap between two consecutive iterations
of DDHorner is smaller.

The fact thatCompHorner avoids any renormalization step is
therefore the reason why it exhibits more ILP.

V. CONCLUSION

Compensated Horner algorithm yields more accurate polyno-
mial evaluation than the classic Horner iteration. Its accuracy is
similar to a Horner iteration performed in a doubled working
precision. Compensated Horner evaluation is also very efficient,
since it runs at least twice as fast as the double-double Horner
counterpart still providing the same output accuracy.

We summarize our analysis as follows. Avoiding the renormal-
ization steps needed for double-double computations, the com-
pensated Horner algorithm presents more ILP than its counterpart
using double-double arithmetic. In our point of view, this gives a
qualitative explanation of its practical efficiency.

The same conclusion certainly holds for other compensated
algorithms, that also avoids the renormalization steps. This is the
case for:

• the improvements of the compensated Horner algorithm
when aFMA is available [9],

• compensated triangular system solver presented in [18],
• compensated summation and dot product in [7].

Let us also emphasis that ILP analysis, as described in this paper,
may also be very useful to explain and compare the efficiency of
many other numerical algorithms.

The error-free transformationsTwoSum andTwoProd are the
keys to improve the precision of floating point computation,
either with double-double arithmetic or compensated algorithms.
Solutions to facilitate their portable implementation have been
discussed during the current IEEE-754 revision work [19]. Let
us cite the “tail operations” or theADD3 operator —fora, b, c ∈
F, ADD3 = fl(a + b + c). Unfortunately these new operators
are not anymore in the draft. Nevertheless the current revision
draft proposes the standardization of theFMA and of operations
minNumMag and maxNumMag —for a, b ∈ F, if |a| ≤ |b|
then minNumMag(a, b) = a, or b otherwise. These additional
features will be useful to implement more efficiently the EFT
for the multiplication and the addition within theTwoProd with
FMA and theFastTwoSum algorithms.

ACKNOWLEDGMENT

The authors thank B. Goossens and D. Parello for stimulating
discussions about performance analysis.

APPENDIX

COMPLETE EXPERIMENTSRESULTS

Environment (I)
Execution time Normalized
in clock cycles execution time

deg H CH DDH H CH DDH
10 263 578 1485 1.0 2.2 5.6
15 331 788 2160 1.0 2.4 6.5
20 428 998 2828 1.0 2.3 6.6
25 473 1208 3495 1.0 2.6 7.4
30 570 1418 4163 1.0 2.5 7.3
35 638 1627 4838 1.0 2.6 7.6
40 683 1868 5528 1.0 2.7 8.1
45 780 2070 6203 1.0 2.7 8.0
50 818 2287 6870 1.0 2.8 8.4
55 923 2490 7537 1.0 2.7 8.2
60 983 2708 8213 1.0 2.8 8.4
65 1028 2910 8880 1.0 2.8 8.6
70 1133 3128 9547 1.0 2.8 8.4
75 1200 3330 10223 1.0 2.8 8.5
80 1268 3540 10890 1.0 2.8 8.6
85 1335 3750 11558 1.0 2.8 8.7
90 1380 3961 12233 1.0 2.9 8.9
95 1485 4170 12900 1.0 2.8 8.7

100 1545 4388 13568 1.0 2.8 8.8
105 1590 4590 14243 1.0 2.9 9.0
110 1688 4808 14910 1.0 2.8 8.8
115 1763 5010 15578 1.0 2.8 8.8
120 1830 5220 16253 1.0 2.9 8.9
125 1876 5429 16920 1.0 2.9 9.0
130 1934 5648 17588 1.0 2.9 9.1
135 2040 5850 18263 1.0 2.9 9.0
140 2086 6060 18930 1.0 2.9 9.1
145 2152 6270 19605 1.0 2.9 9.1
150 2250 6480 20273 1.0 2.9 9.0
155 2318 6690 20939 1.0 2.9 9.0
160 2393 6908 21608 1.0 2.9 9.0
165 2491 7110 22283 1.0 2.9 8.9
170 2535 7321 22950 1.0 2.9 9.1
175 2640 7530 23618 1.0 2.9 8.9
180 2693 7741 24292 1.0 2.9 9.0
185 2745 7950 24960 1.0 2.9 9.1
190 2828 8167 25628 1.0 2.9 9.1
195 2910 8370 26303 1.0 2.9 9.0
200 2985 8588 26970 1.0 2.9 9.0

average overhead 2.8 8.5

Environment (II)
Execution time Normalized
in clock cycles execution time

deg H CH DDH H CH DDH
10 143 480 1357 1.0 3.4 9.5
15 195 683 2033 1.0 3.5 10.4
20 367 901 2782 1.0 2.5 7.6
25 435 1126 3458 1.0 2.6 7.9
30 518 1298 4140 1.0 2.5 8.0
35 592 1484 4815 1.0 2.5 8.1
40 652 1680 5460 1.0 2.6 8.4
45 735 1859 6150 1.0 2.5 8.4
50 796 2063 6848 1.0 2.6 8.6
55 870 2243 7515 1.0 2.6 8.6
60 929 2445 8144 1.0 2.6 8.8
65 1005 2611 8820 1.0 2.6 8.8
70 1080 2828 9502 1.0 2.6 8.8
75 1140 3007 10163 1.0 2.6 8.9
80 1215 3203 10845 1.0 2.6 8.9
85 1283 3391 11497 1.0 2.6 9.0
90 1358 3578 12166 1.0 2.6 9.0
95 1418 3780 12856 1.0 2.7 9.1

100 1492 3960 13516 1.0 2.7 9.1
105 1561 4148 14206 1.0 2.7 9.1
110 1635 4343 14888 1.0 2.7 9.1
115 1702 4530 15518 1.0 2.7 9.1
120 1778 4717 16185 1.0 2.7 9.1
125 1845 4904 16875 1.0 2.7 9.1
130 1920 5100 17543 1.0 2.7 9.1
135 1980 5288 18202 1.0 2.7 9.2
140 2055 5460 18877 1.0 2.7 9.2
145 2122 5663 19561 1.0 2.7 9.2
150 2198 5850 20221 1.0 2.7 9.2
155 2265 6038 20888 1.0 2.7 9.2
160 2340 6248 21548 1.0 2.7 9.2
165 2400 6435 22222 1.0 2.7 9.3
170 2476 6607 22891 1.0 2.7 9.2
175 2543 6802 23550 1.0 2.7 9.3
180 2610 6989 24225 1.0 2.7 9.3
185 2686 7178 24915 1.0 2.7 9.3
190 2760 7373 25576 1.0 2.7 9.3
195 2828 7568 26243 1.0 2.7 9.3
200 2896 7755 26918 1.0 2.7 9.3

average overhead 2.8 8.5

10

Environment (III)
Execution time Normalized
in clock cycles execution time

deg H CH DDH H CH DDH
10 255 578 1373 1.0 2.3 5.4
15 323 780 1980 1.0 2.4 6.1
20 383 975 2588 1.0 2.5 6.8
25 428 1170 3203 1.0 2.7 7.5
30 503 1373 3810 1.0 2.7 7.6
35 563 1568 4418 1.0 2.8 7.8
40 622 1808 5033 1.0 2.9 8.1
45 683 1988 5678 1.0 2.9 8.3
50 735 2183 6285 1.0 3.0 8.6
55 803 2378 6893 1.0 3.0 8.6
60 863 2588 7508 1.0 3.0 8.7
65 908 2776 8115 1.0 3.1 8.9
70 983 2978 8723 1.0 3.0 8.9
75 1034 3173 9338 1.0 3.1 9.0
80 1103 3375 9945 1.0 3.1 9.0
85 1163 3570 10560 1.0 3.1 9.1
90 1215 3765 11167 1.0 3.1 9.2
95 1283 3960 11775 1.0 3.1 9.2

100 1343 4163 12383 1.0 3.1 9.2
105 1388 4358 12998 1.0 3.1 9.4
110 1463 4560 13605 1.0 3.1 9.3
115 1523 4748 14220 1.0 3.1 9.3
120 1583 4950 14828 1.0 3.1 9.4
125 1643 5153 15435 1.0 3.1 9.4
130 1695 5348 16043 1.0 3.2 9.5
135 1763 5543 16658 1.0 3.1 9.4
140 1823 5745 17265 1.0 3.2 9.5
145 1890 5939 17880 1.0 3.1 9.5
150 1943 6134 18488 1.0 3.2 9.5
155 2003 6329 19095 1.0 3.2 9.5
160 2078 6533 19703 1.0 3.1 9.5
165 2138 6728 20318 1.0 3.1 9.5
170 2190 6923 20925 1.0 3.2 9.6
175 2258 7118 21540 1.0 3.2 9.5
180 2318 7327 22148 1.0 3.2 9.6
185 2370 7515 22755 1.0 3.2 9.6
190 2438 7718 23363 1.0 3.2 9.6
195 2498 7913 23978 1.0 3.2 9.6
200 2565 8115 24585 1.0 3.2 9.6

average overhead 2.8 8.5

Environment (IV)
Execution time Normalized
in clock cycles execution time

deg H CH DDH H CH DDH
10 135 480 1298 1.0 3.6 9.6
15 188 690 1928 1.0 3.7 10.3
20 338 945 2670 1.0 2.8 7.9
25 406 1147 3292 1.0 2.8 8.1
30 465 1380 3953 1.0 3.0 8.5
35 510 1560 4568 1.0 3.1 9.0
40 570 1755 5206 1.0 3.1 9.1
45 638 1973 5835 1.0 3.1 9.1
50 697 2175 6465 1.0 3.1 9.3
55 758 2378 7110 1.0 3.1 9.4
60 826 2588 7740 1.0 3.1 9.4
65 870 2797 8392 1.0 3.2 9.6
70 938 3000 9015 1.0 3.2 9.6
75 997 3203 9645 1.0 3.2 9.7
80 1088 3405 10283 1.0 3.1 9.5
85 1118 3615 10920 1.0 3.2 9.8
90 1170 3818 11549 1.0 3.3 9.9
95 1238 4028 12180 1.0 3.3 9.8

100 1298 4222 12818 1.0 3.3 9.9
105 1380 4441 13455 1.0 3.2 9.8
110 1417 4634 14093 1.0 3.3 9.9
115 1499 4845 14729 1.0 3.2 9.8
120 1537 5040 15361 1.0 3.3 10.0
125 1590 5258 15990 1.0 3.3 10.1
130 1650 5453 16634 1.0 3.3 10.1
135 1718 5663 17265 1.0 3.3 10.0
140 1770 5865 17903 1.0 3.3 10.1
145 1838 6068 18532 1.0 3.3 10.1
150 1898 6270 19170 1.0 3.3 10.1
155 1949 6488 19808 1.0 3.3 10.2
160 2018 6682 20445 1.0 3.3 10.1
165 2070 6893 21068 1.0 3.3 10.2
170 2137 7103 21713 1.0 3.3 10.2
175 2183 7297 22342 1.0 3.3 10.2
180 2258 7515 22979 1.0 3.3 10.2
185 2318 7702 23626 1.0 3.3 10.2
190 2370 7919 24254 1.0 3.3 10.2
195 2430 8115 24893 1.0 3.3 10.2
200 2498 8317 25538 1.0 3.3 10.2

average overhead 2.8 8.5

Environment (V)
Execution time Normalized
in clock cycles execution time

deg H CH DDH H CH DDH
10 138 347 832 1.0 2.5 6.0
15 181 479 1216 1.0 2.6 6.7
20 220 635 1599 1.0 2.9 7.3
25 262 767 1996 1.0 2.9 7.6
30 300 901 2380 1.0 3.0 7.9
35 338 1033 2764 1.0 3.1 8.2
40 380 1180 3147 1.0 3.1 8.3
45 420 1312 3531 1.0 3.1 8.4
50 459 1446 3915 1.0 3.2 8.5
55 499 1578 4299 1.0 3.2 8.6
60 542 1725 4682 1.0 3.2 8.6
65 592 1857 5066 1.0 3.1 8.6
70 619 1991 5450 1.0 3.2 8.8
75 672 2123 5834 1.0 3.2 8.7
80 699 2279 6217 1.0 3.3 8.9
85 749 2402 6601 1.0 3.2 8.8
90 792 2536 6985 1.0 3.2 8.8
95 835 2668 7369 1.0 3.2 8.8

100 872 2815 7752 1.0 3.2 8.9
105 913 2947 8136 1.0 3.2 8.9
110 955 3081 8520 1.0 3.2 8.9
115 992 3213 8904 1.0 3.2 9.0
120 1035 3360 9287 1.0 3.2 9.0
125 1075 3492 9671 1.0 3.2 9.0
130 1112 3626 10055 1.0 3.3 9.0
135 1152 3758 10439 1.0 3.3 9.1
140 1193 3905 10822 1.0 3.3 9.1
145 1235 4037 11206 1.0 3.3 9.1
150 1272 4171 11590 1.0 3.3 9.1
155 1313 4303 11974 1.0 3.3 9.1
160 1352 4450 12357 1.0 3.3 9.1
165 1392 4582 12741 1.0 3.3 9.2
170 1432 4716 13125 1.0 3.3 9.2
175 1473 4848 13509 1.0 3.3 9.2
180 1515 4995 13892 1.0 3.3 9.2
185 1552 5127 14276 1.0 3.3 9.2
190 1592 5261 14660 1.0 3.3 9.2
195 1635 5393 15044 1.0 3.3 9.2
200 1672 5540 15427 1.0 3.3 9.2

average overhead 2.8 8.5

Environment (VI)
Execution time Normalized
in clock cycles execution time

deg H CH DDH H CH DDH
10 167 321 583 1.0 1.9 3.5
15 200 425 816 1.0 2.1 4.1
20 232 528 1053 1.0 2.3 4.5
25 245 581 1286 1.0 2.4 5.2
30 279 686 1523 1.0 2.5 5.5
35 303 790 1756 1.0 2.6 5.8
40 335 893 1993 1.0 2.7 5.9
45 359 946 2226 1.0 2.6 6.2
50 382 1051 2463 1.0 2.8 6.4
55 415 1155 2696 1.0 2.8 6.5
60 439 1258 2933 1.0 2.9 6.7
65 460 1311 3166 1.0 2.9 6.9
70 494 1416 3403 1.0 2.9 6.9
75 518 1520 3636 1.0 2.9 7.0
80 550 1623 3873 1.0 3.0 7.0
85 574 1676 4106 1.0 2.9 7.2
90 597 1781 4343 1.0 3.0 7.3
95 630 1885 4576 1.0 3.0 7.3

100 654 1988 4813 1.0 3.0 7.4
105 675 2041 5046 1.0 3.0 7.5
110 709 2146 5283 1.0 3.0 7.5
115 733 2250 5516 1.0 3.1 7.5
120 765 2353 5753 1.0 3.1 7.5
125 789 2406 5986 1.0 3.0 7.6
130 812 2511 6223 1.0 3.1 7.7
135 845 2615 6456 1.0 3.1 7.6
140 869 2718 6693 1.0 3.1 7.7
145 890 2771 6926 1.0 3.1 7.8
150 924 2876 7163 1.0 3.1 7.8
155 948 2980 7396 1.0 3.1 7.8
160 980 3083 7633 1.0 3.1 7.8
165 1004 3136 7866 1.0 3.1 7.8
170 1027 3241 8103 1.0 3.2 7.9
175 1060 3345 8336 1.0 3.2 7.9
180 1084 3448 8573 1.0 3.2 7.9
185 1105 3501 8806 1.0 3.2 8.0
190 1139 3606 9043 1.0 3.2 7.9
195 1163 3710 9276 1.0 3.2 8.0
200 1195 3813 9513 1.0 3.2 8.0

average overhead 2.8 8.5

11

Environment (VII)
Execution time Normalized
in clock cycles execution time

deg H CH DDH H CH DDH
10 386 448 793 1.0 1.2 2.1
15 406 488 1013 1.0 1.2 2.5
20 434 528 1233 1.0 1.2 2.8
25 457 568 1453 1.0 1.2 3.2
30 474 608 1673 1.0 1.3 3.5
35 506 648 1893 1.0 1.3 3.7
40 514 688 2113 1.0 1.3 4.1
45 537 728 2333 1.0 1.4 4.3
50 554 768 2553 1.0 1.4 4.6
55 577 808 2773 1.0 1.4 4.8
60 594 848 2993 1.0 1.4 5.0
65 617 888 3213 1.0 1.4 5.2
70 634 928 3433 1.0 1.5 5.4
75 666 968 3653 1.0 1.5 5.5
80 674 1008 3873 1.0 1.5 5.7
85 697 1048 4093 1.0 1.5 5.9
90 714 1089 4315 1.0 1.5 6.0
95 737 1128 4533 1.0 1.5 6.2

100 754 1168 4753 1.0 1.5 6.3
105 777 1208 4973 1.0 1.6 6.4
110 794 1248 5193 1.0 1.6 6.5
115 826 1288 5413 1.0 1.6 6.6
120 834 1328 5633 1.0 1.6 6.8
125 857 1368 5853 1.0 1.6 6.8
130 874 1408 6073 1.0 1.6 6.9
135 897 1448 6293 1.0 1.6 7.0
140 914 1488 6513 1.0 1.6 7.1
145 937 1528 6733 1.0 1.6 7.2
150 954 1568 6953 1.0 1.6 7.3
155 986 1609 7175 1.0 1.6 7.3
160 994 1648 7393 1.0 1.7 7.4
165 1017 1688 7613 1.0 1.7 7.5
170 1034 1728 7833 1.0 1.7 7.6
175 1057 1768 8053 1.0 1.7 7.6
180 1074 1808 8273 1.0 1.7 7.7
185 1097 1848 8493 1.0 1.7 7.7
190 1114 1888 8713 1.0 1.7 7.8
195 1146 1928 8933 1.0 1.7 7.8
200 1154 1968 9153 1.0 1.7 7.9

average overhead 2.8 8.5

REFERENCES

[1] J.-M. Muller, Elementary functions: algorithms and implementation,
2nd ed. Birkḧauser, 2006.

[2] C. Li, S. Pion, and C.-K. Yap, “Recent progress in exact geometric
computation,”Journal of Logic and Algebraic Programming, vol. 64,
no. 1, pp. 85–111, 2005.

[3] C. M. Hoffmann, G. Park, J.-R. Simard, and N. F. Stewart, “Residual
iteration and accurate polynomial evaluation for shape-interrogation
applications,” inSM ’04: Proceedings of the ninth ACM symposium on
Solid modeling and applications. Aire-la-Ville, Switzerland, Switzer-
land: Eurographics Association, 2004, pp. 9–14.

[4] D. M. Priest, “Algorithms for arbitrary precision floating point arith-
metic,” in Proceedings of IEEE ARITH-10, 1991, pp. 132–144.

[5] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar,
W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson, T. Tung,
and D. J. Yoo, “Design, implementation and testing of extended and
mixed precision BLAS,”ACM Trans. Math. Software, vol. 28, no. 2,
pp. 152–205, 2002.

[6] S. Graillat, P. Langlois, and N. Louvet, “Compensated Horner scheme,”
Univ. of Perpignan, France, Tech. Rep., 2005. [Online]. Available:
http://webdali.univ-perp.fr/RR/

[7] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot product,”
SIAM J. Sci. Comput., vol. 26, no. 6, pp. 1955–1988, 2005.

[8] P. Langlois and N. Louvet, “How to ensure a faithful polynomial
evaluation with the compensated Horner algorithm?” in18th IEEE
International Symposium on Computer Arithmetic, P. Kornerup and J.-
M. Muller, Eds., no. ISBN 0-7695-2854-6. IEEE Computer Society,
Jun. 2007, pp. 141–149.

[9] ——, “Operator dependant compensated algorithms,” inProceedings of
the 12th GAMM - IMACS - SCAN, Duisburg, Germany, 2007.

[10] J. L. Hennessy and D. A. Patterson,Computer Architecture – A Quan-
titative Approach, 2nd ed. Morgan Kaufmann, 2003.

[11] IEEE Standard for binary floating-point arithmetic, ANSI/IEEE Standard
754-1985, 1985.

[12] N. J. Higham,Accuracy and Stability of Numerical Algorithms, 2nd ed.
SIAM, 2002.

[13] J. W. Demmel,Applied Numerical Linear Algebra. SIAM, 1997.
[14] D. E. Knuth,The Art of Computer Programming: Seminumerical Algo-

rithms, 3rd ed. Addison-Wesley, 1998.

[15] T. J. Dekker, “A floating-point technique for extending the available
precision,”Numer. Math., vol. 18, pp. 224–242, 1971.

[16] P. Markstein, IA-64 and elementary functions: speed and precision.
Prentice-Hall, 2000.

[17] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating point arithmetic,” inProceedings of the IEEE ARITH-
15, 2001, pp. 155–162.

[18] P. Langlois and N. Louvet, “Solving triangular systems more accurately
and efficiently,” in Proceedings of the 17th IMACS World Congress,
Paris, Jul. 2005, (Also available as DALI Research Report RR2005-02).

[19] “Draft standard for floating-point arithmetic P754,” Oct. 2006, available
at http://www.validlab.com/754R/.

