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HODGE METRICS AND THE CURVATURE OF

HIGHER DIRECT IMAGES

CHRISTOPHE MOUROUGANE AND SHIGEHARU TAKAYAMA

Abstract. Using the harmonic theory developed by Takegoshi for representation of
relative cohomology and the framework of computation of curvature of direct image
bundles by Berndtsson, we prove that the higher direct images by a smooth morphism
of the relative canonical bundle twisted by a semi-positive vector bundle are locally free
and semi-positively curved, when endowed with a suitable Hodge type metric.

Résumé. Nous utilisons la théorie de représentation par formes harmoniques des classes
de cohomologie relative développée par Takegoshi et la structure des calculs de courbure
de fibrés images directes développée par Berndtsson, pour étudier les images directes
supérieures par un morphisme lisse du fibré canonique relatif tensorisé par un fibré vec-
toriel holomorphe hermitien semi-positif. Nous montrons qu’elles sont localement libres
et que, munies de métriques convenables de type Hodge, elles sont à courbure semi-
positive.

1. Introduction

This is a continuation of our works [M] [MT] on the metric positivity of direct image

sheaves of adjoint bundles. The goal of this paper is to prove the following

Theorem 1.1. Let f : X −→ Y be a holomorphic map of complex manifolds, which is

smooth, proper, Kähler, surjective, and with connected fibers. Let (E, h) be a holomorphic

vector bundle on X with a Hermitian metric h of semi-positive curvature in the sense

of Nakano. Then for any q ≥ 0, the direct image sheaf Rqf∗Ω
n
X/Y (E) is locally free and

Nakano semi-positive, where n is the dimension of fibers.

A real (1, 1)-form ω on X is said to be a relative Kähler form for f : X −→ Y , if for

every point y ∈ Y , there exists a local coordinate (W ; (t1, . . . , tm)) around y such that

ω + cf ∗(
√
−1

∑
j dtj ∧ dtj) is a Kähler form on f−1(W ) for a constant c. A morphism f

is said to be Kähler, if there exists a relative Kähler form ωf for f (see [Tk, 6.1]).

In case when E is a semi-positive line bundle and q = 0, Theorem 1.1 is a theorem of

Berndtsson [B, 1.2]. In our previous paper [MT], we obtained independently from [B], a

weaker semi-positivity: the Griffiths semi-positivity of f∗Ω
n
X/Y (E) for a semi-ample line

bundle E. Right after two papers [B] [MT], especially [B] have appeared, the analogous

statement for higher direct images has been considered as a next problem among others.

Theorem 1.1 solves this problem for Nakano semi-positive vector bundles E.
1
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For a Nakano semi-positive vector bundle E, the local freeness Rqf∗Ω
n
X/Y (E) is a con-

sequence of Takegoshi’s injectivity theorem [Tk]. Here is one point where we use the

smoothness of f . We can only expect the torsion freeness in general, by Kollár [Ko1]

([Tk] in analytic setting). Another theorem in [Tk] shows that Rqf∗Ω
n
X/Y (E) can be

embedded into f∗Ω
n−q
X/Y (E) at least locally on Y , and that Rqf∗Ω

n
X/Y (E) = 0 for q > n.

The sheaf f∗Ω
n−q
X/Y (E) has a natural Hermitian metric induced from a relative Kähler

form ωf and h (at least on which it is locally free) the so-called Hodge metric. For lo-

cal sections σ, τ ∈ H0(W, f∗Ω
n−q
X/Y (E)), the inner product at y ∈ W ⊂ Y is given by∫

Xy
(σ|Xy

)∧∗hy
(τ |Xy

), where Xy = f−1(y) is the fiber, and ∗hy
is the “star”-operator with

respect to ωy = ωf |Xy
and hy = h|Xy

. By pulling back this Hodge metric via the injection,

say Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E), we have a Hermitian metric on Rqf∗Ω

n
X/Y (E) in

the usual sense. Our original contribution is the right definition of this “Hodge metric”

on Rqf∗Ω
n
X/Y (E), and our main theorem is that its curvature is Nakano semi-positive.

The space Hq(Xy,Ω
n
Xy

(Ey)) has another natural inner product with respect to ωy and

hy. For cohomology classes uy, vy ∈ Hq(Xy,Ω
n
Xy

(Ey)), it is given by
∫

Xy
u′y ∧∗hy

v′y, where

u′y and v′y are the harmonic representatives of uy and vy respectively. These fiberwise inner

products also define a Hermitian metric on Rqf∗Ω
n
X/Y (E). We first tried to compute its

curvature, but we did not succeed it.

We follow [B], not [MT], for the method of computation of the curvature. Since one can

directly see the original method in [B], let us explain how different from [B], i.e., the differ-

ences in cases q = 0 and q > 0. In case q = 0, the map S0
f : f∗Ω

n
X/Y (E) −→ f∗Ω

n
X/Y (E) is

an isomorphism, in fact the multiplication by a constant. Moreover f∗Ω
n
X/Y (E) is locally

free thanks to Ohsawa-Takegoshi type L2-extension theorem [OT] [O] [Ma], and the (1, 0)-

derivative of σ ∈ H0(Y, f∗Ω
n
X/Y (E)) = H0(X,Ωn

X/Y (E)) vanishes on each fiber Xy by

simply a bidegree reason. However in case q > 0, we have no local freeness of f∗Ω
n−q
X/Y (E),

nor the vanishing of the (1, 0)-derivative of σ ∈ H0(Y, f∗Ω
n−q
X/Y (E)) = H0(X,Ωn−q

X/Y (E)) on

Xy. To overcome these difficulties, we need to restrict ourselves to consider the image

of Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E). Then we have a local freeness as we mentioned

above, and the vanishing of the (1, 0)-derivative thanks to an estimate by Takegoshi [Tk].

This is a key fact, and which is like the d-closedness of holomorphic p-forms on a compact

Kähler manifold. After getting those key observations: the local freeness, the right Hodge

metric to be considered, and the closedness of holomorphic sections, the computation of

the curvature is a straight forward generalization of [B].

There are many positivity results of direct image sheaves of relative canonical bundles

and of adjoint bundles, which are mostly about the positivity in algebraic geometry. We

will recall only a few here. The origin is due to Griffiths in his theory on the variation
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of Hodge structures [Gr]. Griffiths’ work has been generalized by Fujita [Ft], Kawamata

[Ka1], Viehweg [Vi1], Kollár [Ko1], and so on, in more algebro-geometric setting. There

are also positivity results on higher direct images by Moriwaki [Mw], Fujino [Fn] and

so on. We refer to [Mr] [EV] [Vi2] [Ko2] for further remarks on related results. On the

analytic side, it can be understood as the plurisubharmonic variation of related functions

to the Robin constant [Y] [LY], or of the Bergman kernels [MY]. There is also a series

of works by Yamaguchi. As he mentioned in [B], his method is inspired by those works.

There are also related recent works by Berndtsson-Păun [BP] and Tsuji [Ts].

Acknowledgments. We would like to thank Professor Berndtsson for his correspondences

in many occasions, for answering questions, and showing us a revised version of his paper

[B]. A part of this work was done during the second named author’s stay in Rennes. He

would like to thank the mathematical department of Rennes for a support to stay there.

2. Preliminaries

2.1. Hermitian vector bundles. Let X be a complex manifold of dimension n with

a Hermitian metric ω, and let E be a holomorphic vector bundle of rank r on X with

a Hermitian metric h. Let (E∗, h∗) be the dual vector bundle. Let Ap,q(X,E) be the

space of E-valued smooth (p, q)-forms, and Ap,q
0 (X,E) be the space of E-valued smooth

(p, q)-forms with compact support. Let ∗ : Ap,q(X,E) −→ An−q,n−p(X,E) be the Hodge

star-operator with respect to ω. For any u ∈ Ap,q(X,E) and v ∈ As,t(X,E), we define

u ∧ hv ∈ Ap+s,q+t(X,C) as follows. We take a local trivialization of E on an open subset

U ⊂ X, and we regard u = t(u1, . . . , ur) as a row vector with (p, q)-forms uj on U , and

similarly for v = t(v1, . . . , vr). The Hermitian metric h is then a matrix valued function

h = (hjk) on U . We define u ∧ hv locally on U by

u ∧ hv =
∑

j,k

uj ∧ hjkvk ∈ Ap+s,q+t(U,C).

We should write tu ∧ hv, but if there is no risk of confusions, we will write in this way.

In this manner, we can define anti-linear isomorphisms ♯h : Ap,q(X,E) −→ Aq,p(X,E∗)

by ♯hu = hu, and ∗h = ♯h ◦ ∗ : Ap,q(X,E) −→ An−p,n−q(X,E∗) by ∗hu = h∗u. The inner

product on Ap,q
0 (X,E) is defined by (u, v)h =

∫
X
u ∧ ∗hv. Denote by Dh = ∂h + ∂ the

metric connection, and by Θh = D2
h the curvature of (E, h). The Hermitian vector bundle

(E, h) is said to be Nakano semi-positive (resp. Nakano positive), if the End (E)-valued

real (1, 1)-from
√
−1Θh is positive semi-definite (resp. positive definite) quadratic form

on each fiber of the vector bundle TX ⊗ E.

We define ϑh : Ap,q(X,E) −→ Ap,q−1(X,E) by ϑh = − ∗ ∂h∗ = −∗h∗∂∗h, which is

the formal adjoint operator of ∂ : Ap,q(X,E) −→ Ap,q+1(X,E) with respect to the inner
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product ( , )h. We also define ϑ : Ap,q(X,E) −→ Ap−1,q(X,E) by ϑ = − ∗ ∂∗, which is

the formal adjoint operator of ∂h : Ap,q(X,E) −→ Ap+1,q(X,E) with respect to the inner

product ( , )h. We denote by e(θ) the left exterior product acting on Ap,q(X,E) by a

form θ ∈ As,t(X,C). Then the adjoint operator e(θ)∗ with respect to the inner product

( , )h is defined by e(θ)∗ = (−1)(p+q)(s+t+1) ∗ e(θ)∗. For instance we set Λω = e(ω)∗. We

recall the following very useful relation ([Huy, 1.2.31] [Vo, 6.29]):

Lemma 2.1. For a primitive element u ∈ Ap,q(X,E), i.e., p + q = k ≤ n and Λωu = 0,

the Hodge ∗-operator reads

∗(ωj ∧ u) =
√
−1

p−q
(−1)

k(k+1)
2

j!

(n− k − j)!
ωn−k−j ∧ u

for every 0 ≤ j ≤ n− k.

As immediate consequences, we have

Corollary 2.2. Denote by cn−q =
√
−1

(n−q)2

=
√
−1

n−q
(−1)(n−q)(n−q−1)/2.

(1) Let a, b ∈ An−q,0(X,E). Then ∗a = (cn−q/q!)ω
q ∧ a, ∗ha = (cn−q/q!)ω

q ∧ ha,

a = (cn−q/q!) ∗ (ωq ∧ a), and a ∧ ∗hb = (cn−q/q!)ω
q ∧ a ∧ hb.

(2) Let u ∈ An,q(X,E). Then u = (cn−q/q!)ω
q ∧ ∗u.

Notation 2.3. We use the following conventions often. Denote by cd =
√
−1

d2

=√
−1

d
(−1)d(d−1)/2 for any non-negative integer d. Let t = (t1, . . . , tm) be the coordinates

of Cm.

(1) dt = dt1 ∧ . . . ∧ dtm, dt = dt, and dVt := cmdt ∧ dt =
∧m

j=1

√
−1dtj ∧ dtj > 0.

(2) Let d̂tj be a smooth (m − 1, 0)-form without dtj such that dtj ∧ d̂tj = dt, and

d̂tj = d̂tj.

(3) Let ̂dtj ∧ dtk be a smooth (m − 1, m − 1)-form without dtj and dtk such that
√
−1dtj ∧ dtk ∧ ̂dtj ∧ dtk = cmdt ∧ dt.

2.2. Set up. In the rest of this paper, we will use the following set up.

Let X and Y be complex manifolds of dimX = n+m and dimY = m. Let f : X −→ Y

be a holomorphic map, which is smooth, proper, Kähler, surjective, and with connected

fibers. Let (E, h) be a holomorphic vector bundle on X of rank r, with a Hermitian metric

h whose curvature Θh is semi-positive in the sense of Nakano.

(I) a general setting: f : (X,ωf) −→ Y . We take a relative Kähler form ωf for f , and

let κf = {ωf} be the de Rham cohomology class. On each fiber Xy, we have a Kähler

form ωy = ωf |Xy
, and a Nakano semi-positive vector bundle (Ey, hy) = (E, h)|Xy

.

(II) a localized setting of (I): f : (X,ω) −→ Y ⊂ Cm. We further assume that the base

Y is a unit ball in Cm with coordinates t = (t1, . . . , tm) and with admissible charts over
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Y (see below). We take a global Kähler form ω = ωf + cf ∗(
√
−1

∑
dtj ∧ dtj) on X for

large c > 0, without changing the class κf nor the fiberwise Kähler forms ωy.

Since f : X −→ Y is smooth, for every point y ∈ Y , we can take a local coordinate

(W ; t = (t1, . . . , tm)) centered at y, so that (W ; t) is a unit ball in Cm, and a system

of local coordinates U = {(Uα; zα, t); α = 1, 2, 3, . . .} of f−1(W ) which is locally finite,

and every Uα is biholomorphic to a product Dα × W for a domain Dα in Cn; x 7→
(z1

α(x), . . . , zn
α(x), t1, . . . , tm), namely the projection from Dα × W to W is compatible

with the map f |Uα
. We can write zj

α = f j
αβ(z1

β, . . . , z
n
β , t1, . . . , tm) for 1 ≤ j ≤ n on

Uα ∩ Uβ . All f j
αβ(zβ , t) are holomorphic in zβ and t. We call it admissible charts U over

W (cf. [Kd, §2.3]).

Since our assertions are basically local on Y , we will mostly use the set up (II). The set

up (I) will be used in subsections 3.1, 3.3, 4.3 and 5.1.

3. Generalities of relative differential forms

Let f : (X,ωf) −→ Y and (E, h) be as in §2.2.I. We recall the complex analytic

properties of the relative cotangent bundle ΩX/Y = ΩX/f
∗ΩY and the bundle of relative

holomorphic p-forms Ωp
X/Y =

∧p ΩX/Y . We will not distinguish a vector bundle and the

corresponding locally free sheaf. For a subset S ⊂ Y , we denote by XS = f−1(S) and

ES = E|XS
.

3.1. Definition of relative differential forms. Let U ⊂ X be an open subset.

(1) For a form u ∈ Ap,q(U,E), we have the restriction u|Xy∩U ∈ Ap,q(Xy ∩U,E) on each

fiber over y ∈ Y , which is the pull-back as a form via the inclusion Xy −→ X. Two forms

u, v ∈ Ap,q(U,E) are said to be f -equivalent “u ∼ v”, if u|Xy∩U = v|Xy∩U for any t ∈ Y .

We denote the set of equivalence classes by

Ap,q(U/Y,E) = Ap,q(U,E)/ ∼ .

The set Ap,q(U/Y,E) will be called the space of relative differential forms on U . We

denote by [u] ∈ Ap,q(U/Y,E) the equivalence class of u ∈ Ap,q(U,E).

(2) A form u ∈ Ap,0(U,E) is said to be holomorphic on each fiber, if the restriction u|Xy

is holomorphic, i.e., u|Xy
∈ H0(Xy,Ω

p
Xy

(Ey)) for every y ∈ Y . A form u ∈ Ap,0(U,E)

is said to be relatively holomorphic, if for any local chart (W ; t = (t1, . . . , tm)) of Y , the

form u ∧ f ∗dt is holomorphic on XW ∩ U , i.e., u ∧ f ∗dt ∈ H0(XW ∩ U,Ωp+m
X (E)).

(3) For a function α ∈ A0(Y,C) and [u] ∈ Ap,0(U/Y,E), we can define α[u] :=

[(f ∗α)u] ∈ Ap,0(U/Y,E). For each open subset W ⊂ Y , we set

A0(W, f∗Ω
p
X/Y (E)) := {[u] ∈ Ap,0(XW/W,E); u is holomorphic on each fiber},

H0(W, f∗Ω
p
X/Y (E)) := {[u] ∈ Ap,0(XW/W,E); u is relatively holomorphic}.
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We can see that A0(W, f∗Ω
p
X/Y (E)) becomes an A0(W,C)-module, andH0(W, f∗Ω

p
X/Y (E))

becomes an H0(W,OW )-module.

(4) It is some times convenient to use local coordinates to look at those properties

above. Let u ∈ Ap,q(X,E). On an admissible chart (Uα; zα, t) as above, we can write

u =
∑

I∈Ip,J∈Iq

uIJαdz
I
α ∧ dzJ

α +R,

where uIJα = uIJα(zα, t) ∈ A0(Uα,C
r), andR ∈

∑
j A

p−1,q(Uα,C
r)∧dtj+

∑
j A

p,q−1(Uα,C
r)∧

dtj . Here we use a standard convention. We set Ip = {{i1, i2, . . . , ip}; 1 ≤ i1 < i2 < . . . <

ip ≤ n}, and I0 is empty. For I = {i1, i2, . . . , ip} ∈ Ip, we denote by dzI
α = dzi1

α ∧ . . .∧dzip
α .

Similar for J ∈ Iq and dzJ
α. The restriction on a fiber is locally given by

u|Xy
=

∑

I∈Ip,J∈Iq

uIJα|Xy
dzI

α ∧ dzJ
α.

In particular, for two forms u, v ∈ Ap,q(X,E), they are f -equivalent u ∼ v if and only if

uIJα = vIJα for any (I, J) ∈ Ip × Iq on any admissible chart (Uα; zα, t).

(5) Let u ∈ Ap,0(X,E). On an admissible chart (Uα; zα, t), we have

u =
∑

I∈Ip

uIαdz
I
α +R

as above. Therefore u is holomorphic on each fiber (resp. relatively holomorphic) if and

only if every uIα is holomorphic in zα (resp. holomorphic in zα and t) for any I ∈ Ip on

any admissible chart (Uα; zα, t).

3.2. Holomorphic structure of f∗Ω
p
X/Y (E). We also give the holomorphic structure

on f∗Ω
p
X/Y (E) by an action of the ∂-operator. Let (W ; (t1, . . . , tm)) ⊂ Y be a local chart,

over which we have admissible charts. Let [σ] ∈ A0(W, f∗Ω
p
X/Y (E)), which can be seen as

a differentiable family of holomorphic forms. Since (∂σ)|Xy
= ∂(σ|Xy

) = 0, we can write

as

∂σ =
∑

j

ηj ∧ dtj +
∑

j

νj ∧ dtj

with some ηj ∈ Ap−1,1(XW , E) and some νj ∈ Ap,0(XW , E). In particular ∂(σ ∧ dt) =
∑

j ν
j∧dtj∧dt. On an admissible chart (U ; z, t) = (Uα; zα, t), we write σ =

∑
I∈Ip

σIdz
I+R

with R ∈
∑

j A
p−1,0(Uα,C

r)∧dtj . Then we have νj |Xy∩U = (−1)p
∑

I∈Ip
(∂σI/∂tj)|Xy∩Udz

I

∈ H0(Xy ∩ U,Ωp
Xy

(Ey)) for every j. In particular, the class [νj ] ∈ A0(W, f∗Ω
p
X/Y (E)) is

well-defined for [σ]. For [σ] ∈ A0(W, f∗Ω
p
X/Y (E)), we define

∂[σ] =
∑

j

[νj ]dtj ∈ A0,1(W, f∗Ω
p
X/Y (E)).
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Here A0,1(W, f∗Ω
p
X/Y (E)) = A0(W, f∗Ω

p
X/Y (E)) ⊗ A0,1(W,C) as A0(W,C)-module, but it

has only a formal meaning. Then, [σ] ∈ H0(W, f∗Ω
p
X/Y (E)) if and only if ∂[σ] ≡ 0. In

fact both of them are characterized by the holomorphicity of all σI in z and t locally.

Lemma 3.1. Let (W ; (t1, . . . , tm)) ⊂ Y be a local chart as above in §2.2. Let σ ∈
Ap,0(XW , E) such that [σ] ∈ H0(W, f∗Ω

p
X/Y (E)). Then (1)

∂σ =
∑

j

ηj ∧ dtj

with some ηj ∈ Ap−1,1(XW , E),

(2) these ηj are not unique, but [ηj] ∈ Ap−1,1(XW/W,E) are well-defined for σ,

(3) all ηj|Xy
are ∂-closed on any Xy, and

(4) [B, Lemma 4.3] all ηj |Xy
∧ ωq+1

y are ∂-exact on any Xy.

Proof. (1) is now clear. We show (2) and (3). For each j, σ ∧ d̂tj ∈ Ap+m−1,0(XW , E)

is well-defined for σ, and so is ∂(σ ∧ d̂tj) = ηj ∧ dt. Hence [ηj ] are well-defined for

σ, by Remark 3.2 below. Moreover (∂ηj) ∧ dt = ∂ ∂(σ ∧ d̂tj) = 0. Hence we obtain

∂(ηj|Xy
) = (∂ηj)|Xy

= 0 by Remark 3.2 again.

(4) We fix j. By a bidegree reason, we can write as σ ∧ d̂tj ∧ ωq+1 = aj ∧ dt with

some aj ∈ An,q+1(X,E). We note that the class [aj ] ∈ An,q+1(X/Y,E) is well-defined by

Remark 3.2. By taking ∂, we have ηj ∧ dt ∧ ωq+1 = (∂aj) ∧ dt. Then [ηj ∧ ωq+1] = [∂aj ]

in An,q+2(X/Y,E) by Remark 3.2, and hence ηj |Xy
∧ ωq+1

y = ∂(aj |Xy
) on any Xy. �

Remark 3.2. For u, v ∈ Ap,q(XW , E), a relation u ∧ dt = v ∧ dt implies [u] = [v] in

Ap,q(XW/W,E), and the converse holds true in case q = 0.

Remark 3.3. Each cohomology class {ηj|Xy
} ∈ Hp−1,1(Xy, Ey) is well-defined for [σ] ∈

H0(W, f∗Ω
p
X/Y (E)). As it is well-known, {ηj|Xy

} is obtained by the cup-product (up to a

sign) with the Kodaira-Spencer class of f : X −→ Y at y ∈ Y for tj-direction. However

we will not use these remarks.

3.3. Canonical pairing. There is a canonical pairing on each stalk f∗Ω
p
X/Y (E)y with

respect to ωy and hy, via the natural inclusion f∗Ω
p
X/Y (E)y ⊂ H0(Xy,Ω

p
Xy

(Ey)). At each

point y ∈ Y , we have the fiberwise inner product

gy(σy, τy) := (σy, τy)hy
=

∫

Xy

(cp/(n− p)!)ωn−p
y ∧ σy ∧ hτy

for σy, τy ∈ Ap,0(Xy, Ey). As germs σy, τy ∈ f∗Ω
p
X/Y (E)y, we will denote by gy(σy, τy). On

the other hand, as forms σy, τy ∈ H0(Xy,Ω
p
Xy

(Ey)), we will denote by (σy, τy)hy
. These

two are the same, but our standing points are different, i.e., at a point y ∈ Y , or on the

fiber Xy.
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For relative forms [σ], [τ ] ∈ Ap,0(XW/W,E) (orH0(W, f∗Ω
p
X/Y (E))) over an open subset

W ⊂ Y , the above fiberwise inner product gives

g([σ], [τ ]) := f∗((cp/(n− p)!)ωn−p
f ∧ σ ∧ hτ ),

where the right hand side is a push-forward as a current. For a test (m,m)-form ϕ on W

(i.e., a smooth form with compact support), we have f∗((cp/(n−p)!)ωn−p
f ∧σ∧hτ )(ϕ) :=∫

X
(cp/(n − p)!)ωn−p

f ∧ σ ∧ hτ ∧ f ∗ϕ. Hence the right hand side does not depend on

representatives σ nor τ (see Remark 3.2). Since the map f is smooth, g([σ], [τ ]) is in fact

a smooth function on W .

We remark that the definition of the pairing g depends only on the fiberwise Kähler

forms {ωy}y∈Y . For example, over a local chart (W ; t) ⊂ Y , we can replace ωf by ωf +

cf ∗(
√
−1

∑
dtj ∧ dtj) for any c ∈ R in the definition of g([σ], [τ ]). The pairing g defines

a Hermitian metric on every locally free subsheaf of f∗Ω
p
X/Y (E) in the usual sense, which

we call the Hodge metric. As a matter of fact, g itself is called the Hodge metric on

f∗Ω
p
X/Y (E) commonly, although it may not be locally free.

4. Harmonic theory for Nakano semi-positive vector bundles

We collect some fundamental results of Takegoshi [Tk], and immediate consequences

from them.

4.1. Absolute setting. Let (X0, ω0) be an n-dimensional compact Kähler manifold and

let (E0, h0) be a holomorphic Hermitian vector bundle on X0. We have an inner product

( , )h0 and the associated norm ‖ ‖h0 on each Ap,q(X0, E0). Let Hp,q(X0, E0) be the space

of harmonic (p, q)-forms. From Bochner-Kodaira-Nakano formula, it then follows that

if (E0, h0) is furthermore Nakano semi-positive and Nakano positive at one point, then

Hq(X0,Ω
n
X0

(E0)) vanish for all q > 0.

Enoki [E] and Takegoshi [Tk] (a special case of Theorem 4.1 below) show that if

(E0, h0) is Nakano semi-positive, then the Hodge ∗-operator yields injective homomor-

phism ∗0 : Hn,q(X0, E0) −→ H0(X0,Ω
n−q
X0

(E0)). Recalling that (cn−q/q!)ω
q
0 ∧ ∗0u = u for

u ∈ An,q(X0, E0), it then follows that the Lefschetz operator Lq
0 : H0(X0,Ω

n−q
X0

(E0)) −→
Hq(X0,Ω

n
X0

(E0)) is surjective. Hence we haveH0(X0,Ω
n−q
X0

(E0)) = KerLq
0⊕∗0Hn,q(X0, E0).

4.2. Localized relative setting. Let f : (X,ω) −→ Y ⊂ Cm and (E, h) be as in §2.2.II.

We take a C∞ plurisubharmonic exhaustion function Φ = f ∗
∑m

j=1 |tj|2 on X. We take

any 0 ≤ q ≤ n. Following [Tk, 4.3], we set the following subspace of E-valued harmonic

(n +m, q)-forms with respect to ω and h:

Hn+m,q(X,E,Φ) = {u ∈ An+m,q(X,E); ∂u = ϑhu = 0 and e(∂Φ)∗u = 0 on X}.
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By [Tk, 4.3.i], u ∈ Hn+m,q(X,E,Φ) if and only if ϑu = 0, (
√
−1e(Θh +∂∂Φ)Λωu)∧hu = 0

and e(∂Φ)∗u = 0 on X. One can check easily that (f ∗α)u satisfies those latter three

conditions, if α ∈ H0(Y,OY ) and if u ∈ Hn+m,q(X,E,Φ).

Theorem 4.1. [Tk, 4.3]. (1) The space Hn+m,q(X,E,Φ) does not depend on C∞ plurisub-

harmonic exhaustion functions Φ, and has a natural structure of H0(Y,OY )-module.

(2) For u ∈ Hn+m,q(X,E,Φ), one has ∂ ∗ u = 0 and ∂h ∗ u = 0. In particu-

lar, the Hodge ∗-operator yields an injective homomorphism ∗ : Hn+m,q(X,E,Φ) −→
H0(X,Ωn+m−q

X (E)), and Hn+m,q(X,E,Φ) becomes a torsion free H0(Y,OY )-module.

Let ι′ : Zn+m,q

∂
(X,E) −→ Hq(X,Ωn+m

X (E)) be the quotient map which induces the

Dolbeault’s isomorphism.

Theorem 4.2. [Tk, 5.2]. (1) The space Hn+m,q(X,E,Φ) represents Hq(X,Ωn+m
X (E)) as a

torsion free H0(Y,OY )-module, in particular the quotient map ι′ induces an isomorphism

ι : Hn+m,q(X,E,Φ) −→ Hq(X,Ωn+m
X (E)).

(2) The injective homomorphism ∗ : Hn+m,q(X,E,Φ) −→ H0(X,Ωn+m−q
X (E)) induces

a splitting homomorphism (up to a constant)

∗ ◦ ι−1 : Hq(X,Ωn+m
X (E)) −→ H0(X,Ωn+m−q

X (E))

for the Lefschetz homomorphism

Lq : H0(X,Ωn+m−q
X (E)) −→ Hq(X,Ωn+m

X (E)).

such that (cn+m−q/q!)L
q ◦ ∗ ◦ ι−1 = id.

(3) Let u ∈ Hn+m,q(X,E,Φ). Then the form ∗u ∈ H0(X,Ωn+m−q
X (E)) is saturated in

base variables, i.e., ∗u = σu ∧ dt for some [σu] ∈ H0(X,Ωn−q
X/Y (E)) (see the proof of [Tk,

5.2.ii]). In particular, u = (cn+m−q/q!)ω
q ∧ σu ∧ dt and the map u 7→ [σu] is well-defined.

Thus the Hodge ∗-operator induces an injective homomorphism

Sq : Hn+m,q(X,E,Φ) −→ H0(X,Ωn−q
X/Y (E)).

In Theorem 4.2 (3), we used our assumption that f is smooth.

We take a trivialization OY −̃→Ωm
Y given by 1 7→ dt, which induces isomorphisms of

sheaves Ωn
X/Y

∼= Ωn
X/Y ⊗ f ∗Ωm

Y
∼= Ωn+m

X by [u] 7→ u ∧ dt, and hence of cohomology groups

αq : Hq(X,Ωn
X/Y (E)) −̃→Hq(X,Ωn+m

X (E)). We also have an injection Ωn−q
X/Y −→ Ωn+m−q

X

by [σ] 7→ σ ∧ dt, and hence an injection β0 : H0(X,Ωn−q
X/Y (E)) −→ H0(X,Ωn+m−q

X (E)).

Combining with Theorem 4.2, we have

ι−1 ◦ αq : Hq(X,Ωn
X/Y (E)) −̃→Hq(X,Ωn+m

X (E)) −̃→Hn+m,q(X,E,Φ),

∗ = β0 ◦ Sq : Hn+m,q(X,E,Φ) −→ H0(X,Ωn−q
X/Y (E)) −→ H0(X,Ωn+m−q

X (E)),

(αq)−1 ◦ Lq : H0(X,Ωn+m−q
X (E)) −→ Hq(X,Ωn+m

X (E)) −̃→Hq(X,Ωn
X/Y (E)).
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Then Theorem 4.2 (2) reads the following relative version:

Corollary 4.3. Let

Sq
f = Sq ◦ ι−1 ◦ αq : Hq(X,Ωn

X/Y (E)) −→ H0(X,Ωn−q
X/Y (E)),

Lq
f = (αq)−1 ◦ Lq ◦ β0 : H0(X,Ωn−q

X/Y (E)) −→ Hq(X,Ωn
X/Y (E)).

Then (cn+m−q/q!)L
q
f ◦ Sq

f = id on Hq(X,Ωn
X/Y (E)).

We can also see, thanks to [Tk, 5.2.iv] (see also [Tk, 6.5.i]) that those constructions can

be localized on Y , and induce homomorphisms of direct image sheaves.

Corollary 4.4. There exist homomorphisms induced from the Hodge ∗-operator and the

Lefschetz homomorphism:

Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E), Lq

f : f∗Ω
n−q
X/Y (E) −→ Rqf∗Ω

n
X/Y (E)

so that (cn+m−q/q!)L
q
f ◦ Sq

f = id on Rqf∗Ω
n
X/Y (E). In particular

f∗Ω
n−q
X/Y (E) = F n−q ⊕Kn−q, with F n−q = ImSq

f and Kn−q = KerLq
f .

We translate some results above into explicite forms.

Lemma 4.5. Let σ ∈ An−q,0(X,E) such that [σ] ∈ H0(Y, F n−q). Then (1)

∂hσ =
∑

j

µj ∧ dtj

for some µj ∈ An−q,0(X,E),

(2) these µj are not unique, but [µj] ∈ An−q,0(X/Y,E) are well-defined for σ, and

(3) ∂hy
(µj|Xy

) = 0 on any Xy and all j.

Proof. There exists u ∈ Hn+m,q(X,E,Φ) such that ∗u = σ ∧ dt ∈ H0(X,Ωn+m−q
X (E)). By

Takegoshi: Theorem 4.1, we have ∂h ∗ u = 0. Hence (∂hσ) ∧ dt = ∂h ∗ u = 0, and we have

(1). We can show (2) and (3) by the same method in Lemma 3.1. �

Remark 4.6. Unlike in the case q = 0 that is treated by degree considerations [B, §4], we

used the semi-positivity here. In general, for [σ] ∈ H0(Y, f∗Ω
n−q
X/Y (E)) with q > 0, we can

not have ∂hσ =
∑
µj ∧ dtj for some µj ∈ An−q,0(X,E). This is in fact a key property,

and it makes various computations possible. We also note that ηj in Lemma 3.1 and µj

are not well-defined for a class [σ] ∈ H0(Y, F n−q), and that means, we have some freedom

of choices in a class.

Stalks or fibers at a point y ∈ Y will be denoted by f∗Ω
n−q
X/Y (E)y, F

n−q
y ,Kn−q

y respec-

tively. Those stalks can be seen as subspaces of H0(Xy,Ω
n−q
Xy

(Ey)), i.e., F n−q
y ⊕ Kn−q

y =

f∗Ω
n−q
X/Y (E)y ⊂ H0(Xy,Ω

n−q
Xy

(Ey)).
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Lemma 4.7. Let σy ∈ F n−q
y and τy ∈ Kn−q

y , and regard them as elements ofH0(Xy,Ω
n−q
Xy

(Ey)).

Then, (1) ∂hy
σy = 0 in An−q+1,0(Xy, Ey),

(2) ωq
y ∧ τy ∈ An,q(Xy, Ey) is ∂-exact, and

(3) (σy, τy)hy
=

∫
Xy

(cn−q/q!)ω
q
y ∧ σy ∧ hyτy = 0.

Proof. We will argue at y = 0.

(1) Since Y is a unit ball in Cm, there exists [σ] ∈ H0(Y, F n−q) such that σ|X0 = σ0.

By Lemma 4.5, we have ∂h0(σ|X0) = 0.

(2) We take [τ ] ∈ H0(Y,Kn−q) such that τ |X0 = τ0. We have Lq
f ([τ ]) = 0. Recall the

definition of Lq
f = (αq)−1 ◦Lq ◦ β0, where β0([τ ]) = τ ∧ dt, and (αq)−1 is an isomorphism.

Then we have Lq ◦ β0([τ ]) = 0 in Hq(X,Ωn+m
X (E)), namely ωq ∧ τ ∧ dt = ∂a for some

a ∈ An+m,q−1(X,E). By a bidegree reason, a can be written as a = b ∧ dt for some b ∈
An,q−1(X,E). Then (ωq∧τ−∂b)∧dt = 0. By restricting on X0, we have ωq

0∧τ0−∂b0 = 0,

where b0 = b|X0 .

(3) By (2), we have
∫

X0
ωq

0 ∧ σ0 ∧ h0τ0 =
∫

X0
σ0 ∧ h0∂b0. Since ∂(σ0 ∧ h0b0) =

(∂h0σ0) ∧ h0b0 + (−1)n−qσ0 ∧ h0∂b0, and since ∂h0σ0 = 0 by (1), we have
∫

X0
σ0 ∧ h0∂b0 =

(−1)n−q
∫

X0
∂(σ0 ∧ h0∂b0) = 0. �

4.3. Local freeness. We shall show that the direct image sheaves Rqf∗Ω
n
X/Y (E) are

locally free. This is an immediate consequence of a result of Takegoshi [Tk]. We start

with recalling a general remark.

Lemma 4.8. Let X and Y be varieties (reduced and irreducible), f : X −→ Y be a proper

surjective morphism, and let E be a coherent sheaf on X which is flat over Y . Assume

that the natural map ϕq(y) : Rqf∗E ⊗ C(y) −→ Hq(Xy, Ey) is surjective for any y ∈ Y

and any q ≥ 0, where Xy is the fiber over y, and Ey is the induced sheaf ([Ha, III.9.4]).

Then Rqf∗E is locally free for any q ≥ 0, and ϕq(y) : Rqf∗E ⊗ C(y) −→ Hq(Xy, Ey) is an

isomorphism for any y ∈ Y and any q ≥ 0.

Proof. By [Ha, III.12.11(a)] (cohomology and base change), the surjectivity of ϕq(y) im-

plies that it is an isomorphism. By [Ha, III.12.11(b)], the local freeness of Rqf∗E in a

neighborhood of y ∈ Y follows from the surjectivities of ϕq(y) and of ϕq−1(y).

We can find the corresponding results in the category of complex spaces, for example

[BS, III.3.4, III.3.7]. �

Lemma 4.9. (cf. [Tk, 6.8]) Let f : (X,ωf) −→ Y and (E, h) be as in §2.2.I. Then

(1) the natural restriction map Rqf∗Ω
n
X/Y (E) −→ Hq(Xy,Ω

n
Xy

(Ey)) is surjective for

any y ∈ Y and any q ≥ 0, and
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(2) Rqf∗Ω
n
X/Y (E) is locally free for any q ≥ 0, and ϕq(y) : Rqf∗Ω

n
X/Y (E) ⊗ C(y) −→

Hq(Xy,Ω
n
Xy

(Ey)) is an isomorphism for any y ∈ Y and any q ≥ 0.

Proof. (1) Fix y ∈ Y . Since our assertion is local on Y , we may assume that Y is a

unit ball in Cm with coordinates t = (t1, . . . , tm) centered at y = {t = 0}. We take a

trivialization OY
∼= Ωm

Y given by 1 7→ dt = dt1 ∧ . . . ∧ dtm. For every i with 1 ≤ i ≤ m,

we let Yi = {t1 = . . . = ti = 0} be a complex sub-manifold of Y , Xi = f−1(Yi), and

let fi : Xi −→ Yi be the induced morphism. We denote by X0 = X, Y0 = Y and

f0 = f . By the injectivity theorem of Takegoshi with F = OX in [Tk, 6.8.i], the sheaf

homomorphism Rqf0∗(f
∗
0 t1) : Rqf∗Ω

n
X/Y (E) ⊗ Ωm

Y −→ Rqf∗Ω
n
X/Y (E) ⊗ Ωm

Y induced by

the product with the holomorphic function f ∗t1 is injective for any q ≥ 0. Hence the

restriction map Rqf0∗Ω
n
X/Y (E) −→ Rqf1∗(Ω

n
X/Y (E)⊗OX1) is surjective for any q ≥ 0. By

the adjunction formula, we have Ωn
X/Y ⊗ OX1 = Ωn

X1/Y1
. Hence inductively, we obtain a

surjection Rqf∗Ω
n
X/Y (E) −→ Hq(Xy,Ω

n
Xy

(Ey)).

(2) This follows from (1) and Lemma 4.8 �

5. The Hodge metric

We shall define a canonical Hermitian metric on Rqf∗Ω
n
X/Y (E), and compute the metric

connection and the curvature. §5.1 will be discussed in the global setting §2.2.I, and the

rest of this section will be discussed in the localized setting §2.2.II.

5.1. Definition of Hodge metrics. We define a canonical Hermitian metric on a vector

bundle Rqf∗Ω
n
X/Y (E), which we call the Hodge metric.

Definition 5.1. Let f : (X,ωf) −→ Y and (E, h) be as in §2.2.I, and let 0 ≤ q ≤ n. For

every point y ∈ Y , we take a local coordinate W ∼= {t ∈ Cm; ‖t‖ < 1} centered at y,

and a Kähler form ω = ωf + cf ∗(
√
−1

∑
dtj ∧ dtj) on XW for a real number c. A choice

of a Kähler form ω gives an injection Sω := Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) over W

(Corollary 4.4). Then for every pair of vectors uy, vy ∈ Rqf∗Ω
n
X/Y (E)y, we define

g(uy, vy) =

∫

Xy

(cn−q/q!)(ω
q
f ∧ Sω(uy) ∧ hSω(vy))|Xy

.

Here the right hand side is the restriction on the image of Sω of the canonical pairing, say

g again, on f∗Ω
n−q
X/Y (E)y in §3.3.

The injection Sω = Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) over W may depend on the

choices of Kähler forms in the relative Kähler class {ωf}, however

Lemma 5.2. In the situation in Definition 5.1, the induced metric g on Rqf∗Ω
n
X/Y (E)|W

via Sω = Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) over W does not depend on the choice of a
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Kähler form ω in the relative Kähler class {ωf |XW
} ∈ H2(XW ,R) so that ω|Xy

= ωf |Xy

for any y ∈ W , and hence g defines a global Hermitian metric on Rqf∗Ω
n
X/Y (E) over Y

by varying y ∈ Y .

Proof. It is enough to check it in case uy = vy. We may also assume that Y = W ⊂ Cm.

We take two Kähler forms ω1 and ω2 on X, which relate ω1 − ω2 = f ∗
√
−1∂∂ψ for some

ψ ∈ A0(Y,R).

(i) We need to recall the definition of Sq
f . Let u ∈ H0(Y,Rqf∗Ω

n
X/Y (E)) ∼= Hq(X,Ωn

X/Y (E))

be an extension of uy. With respect to ωi, we denote by ∗i the Hodge ∗-operator, by

Hn+m,q(X,ωi, E,Φ) the space of harmonic forms in Theorem 4.1 with Φ = f ∗‖t‖2, by

ιi : Hn+m,q(X,ωi, E,Φ) −̃→Hq(X,Ωn+m
X (E)) the isomorphism in Theorem 4.2 (1), and by

Si the injection Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E). We have isomorphisms

Hi = ι−1
i ◦ αq : Hq(X,Ωn

X/Y (E)) −̃→Hn+m,q(X,ωi, E,Φ)

(see the argument before Corollary 4.3). Then we have ∗iHi(u) ∈ H0(X,Ωn+m−q
X (E)),

and ∗iHi(u) = σi ∧ dt for some [σi] ∈ H0(X,Ωn−q
X/Y (E)). Namely Si(u) = [σi]. In this

setting, our lemma is reduced to show that

f∗(ω
q
1 ∧ σ1 ∧ hσ1) = f∗(ω

q
2 ∧ σ2 ∧ hσ2).

This is reduced to show
∫

X
(f ∗β)ωq

1 ∧ σ1 ∧ dt∧ hσ1 ∧ dt =
∫

X
(f ∗β)ωq

2 ∧ σ2 ∧ dt ∧ hσ2 ∧ dt
for any β ∈ A0(Y,C) with compact support. We take such a β ∈ A0(Y,C).

(ii) Since the Dolbeault cohomology classes of H1(u) and H2(u) are the same, there

exists a ∈ An+m,q−1(X,E) such that H1(u)−H2(u) = (cn+m−q/q!)∂a. Recalling Corollary

2.2 (2) that Hi(u) = (cn+m−q/q!)ω
q
i ∧∗iHi(u), we have ωq

1 ∧∗1H1(u)−ωq
2 ∧∗2H2(u) = ∂a,

and hence ωq
1 ∧ σ1 ∧ dt− ωq

2 ∧ σ2 ∧ dt = ∂a.

By a degree reason in the base variables, we have f ∗(∂β) ∧ dt = 0. Hence ∂((f ∗β)a ∧
hσ1 ∧ dt) = (f ∗β)∂a∧hσ1 ∧ dt+(−1)n+m+q−1(f ∗β)a∧h∂h(σ1 ∧ dt). We also have ∂h(σ1∧
dt) = ∂h ∗1 H1(u) = 0 by Theorem 4.1 (2). Hence

∫
X

(f ∗β)∂a ∧ hσ1 ∧ dt =
∫

X
∂((f ∗β)a ∧

hσ1 ∧ dt) = 0 by the Stokes theorem. Then the relation ωq
1 ∧ σ1 ∧ dt = ωq

2 ∧ σ2 ∧ dt+ ∂a

implies that
∫

X
(f ∗β)ωq

1 ∧ σ1 ∧ dt ∧ hσ1 ∧ dt =
∫

X
(f ∗β)ωq

2 ∧ σ2 ∧ dt ∧ hσ1 ∧ dt.
(iii) Now we use ω1 − ω2 = f ∗

√
−1∂∂ψ. This leads

∫
X

(f ∗β)ωq
2 ∧ σ2 ∧ dt ∧ hσ1 ∧ dt =∫

X
(f ∗β)ωq

1∧σ2∧dt∧hσ1 ∧ dt. The last integral equals to
∫

X
(f ∗β)σ2∧dt∧hωq

1 ∧ σ1 ∧ dt =∫
X

(f ∗β)σ2 ∧ dt ∧ hωq
2 ∧ σ2 ∧ dt +

∫
X

(f ∗β)σ2 ∧ dt ∧ h∂a. By a similar manner as above,

mainly because of ∂h(σ2 ∧ dt) = ∂h ∗2 H2(u) = 0, we can see
∫

X
(f ∗β)σ2 ∧ dt ∧ h∂a = 0.

We finally obtain
∫

X
(f ∗β)ωq

1 ∧ σ1 ∧ dt ∧ hσ1 ∧ dt =
∫

X
(f ∗β)ωq

2 ∧ σ2 ∧ dt ∧ hσ2 ∧ dt. �

At this point, we have the so-called the metric connection (or the Chern connection)

Dg of the Hermitian vector bundle (Rqf∗Ω
n
X/Y (E), g), and the curvature Θg = D2

g . Since
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the curvature property in Theorem 1.1 is a local question on the base Y , it is enough to

consider in the following setting:

Let f : (X,ω) −→ Y ⊂ Cm and (E, h) be as in §2.2.II, and let 0 ≤ q ≤ n. We denote

by F = F n−q the image of Sq
f : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) with respect to ω. Since,

by definition, the canonical pairing g on f∗Ω
n−q
X/Y (E) gives our (Rqf∗Ω

n
X/Y (E), g), we say

a sub-bundle

(F, g) ⊂ (f∗Ω
n−q
X/Y (E), g).

5.2. The metric connection. We shall construct the metric connection Dg of (F, g).

Recall Lemma 4.5 that ∂hσ =
∑

j µ
j∧dtj with some µj ∈ An−q,0(X,E) for [σ] ∈ H0(Y, F ).

Since A0(Y, F ) = A0(Y,C) ⊗ H0(Y, F ) as A0(Y,C)-module, this formula holds for [σ] ∈
A0(Y, F ), too. We consider the fiberwise orthogonal projection Py : An−q,0(Xy, Ey) −→ Fy

given by uy 7→
∑ℓ

j=1 gy(uy, σjy)σjy, where σ1y, . . . , σℓy ∈ Fy is a basis of Fy. Since F is

locally free, the family {Py}y∈Y induces a map

P : An−q,0(X,E) −→ {u ∈ An−q,0(X,E); u|Xy
∈ Fy for any y ∈ Y }

Then for [σ] ∈ A0(Y, F ) with ∂hσ =
∑

j µ
j ∧ dtj , we define

∂g[σ] =
∑

[P (µj)]dtj ∈ A1,0(Y, F ).

Lemma 5.3. The class [P (µj)] is well-defined for [σ] ∈ A0(Y, F ).

Proof. (1) We shall show that µj|Xy
are perpendicular to H0(Xy,Ω

n−q
Xy

(Ey)) under the

condition [σ] = [0], namely σ|Xy
= 0 for any y ∈ Y . We write as σ =

∑
σj ∧ dtj

with some σj ∈ An−q−1,0(X,E). We note that we can take µj = ∂hσj . We take any

s ∈ H0(Xy,Ω
n−q
Xy

(Ey)). Then ∂(ωq
y ∧ σj |Xy

∧ hys) = ωq
y ∧ ∂hy

(σj |Xy
) ∧ hys + (−1)n−qωq

y ∧
σj |Xy

∧hy∂s. Because of ∂s = 0, we have gy((∂hσj)|Xy
, s) = (cn−q/q!)

∫
Xy
ωq

y ∧∂hy
(σj |Xy

)∧
hys = (cn−q/q!)

∫
Xy
∂(ωq

y ∧ σj |Xy
∧ hys) = 0.

(2) The above (1) is enough to show that [P (µj)] is well-defined. But in fact, (1) said

slightly more. �

Lemma 5.4. The sum Dg := ∂g + ∂ is the metric connection of the Hermitian vector

bundle (F, g).

Proof. It is not difficult to see that it is a connection. Let us check the compatibility

with the metric g. Let [σ], [τ ] ∈ H0(Y, F ), and write ∂hτ =
∑

j µ
j(τ) ∧ dtj. Then

∂g([σ], [τ ]) = (−1)n−qf∗((cn−q/q!)ω
q ∧ σ ∧ h∂hτ ) =

∑
j f∗((cn−q/q!)ω

q ∧ σ ∧ hµj(τ))dtj .

Since σ|Xy
∈ Fy, the last term becomes

∑
j f∗((cn−q/q!)ω

q ∧ σ ∧ hP (µj(τ)))dtj, and it is∑
j g([σ], [P (µj(τ))])dtj . In the notation of §2.1, we can write as g([σ], [τ ]) = [σ] ∧ g[τ ]

and ∂g([σ], [τ ]) = [σ] ∧ g∂g[τ ]. �
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5.3. Curvature formula. We describe the Nakano semi-positivity of a Hermitian holo-

morphic vector bundle. Since it is a local property, we will discuss on a local chart.

Let Y ⊂ Cm be a unit ball centered at 0 with coordinates t = (t1, . . . , tm), and let

F = Y × Cℓ be a trivial vector bundle with a non-trivial Hermitian metric g. (This

(F, g) may not necessarily be our original bundle.) We write Θg =
∑

Θjkdtj ∧ dtk with

Θjk ∈ End (Y, F ). Then (F, g) is Nakano semi-positive at t = 0, if and only if for any ten-

sor s =
∑m

j=1 ∂/∂tj ⊗ σ0
j ∈ (TY ⊗F )0, we have Θg(s) =

∑
j,k g0(Θjkσ

0
j , σ

0
k) ≥ 0. Moreover

the last quantity can be obtained another way from local sections. If σ, τ ∈ H0(Y, F ), we

have ∂2

∂tj∂tk
g(σ, τ) = g((∂gσ)j, (∂gτ)

k)− g(Θjkσ, τ), where ∂gσ =
∑

j(∂gσ)jdtj ∈ A1,0(Y, F )

and so on. Hence if σ and τ are normal at 0 with respect to g (i.e., ∂gσ = ∂gτ = 0 at 0),

we have ( ∂2

∂tj∂tk
g(σ, τ))|t=0 = −g0(Θjkσ|t=0, τ |t=0).

Notation 5.5. (1) Let V be a continuous (m,m)-form on Y ⊂ Cm. Then we can write

V = v(t)dVt with a unique continuous function v on Y , and we define Vt=0 := v(0).

(2) Associated to m-ple σ1, . . . , σm ∈ H0(Y, F ), we let

T (σ) =
∑

j,k

g(σj , σk)
̂dtj ∧ dtk ∈ Am−1,m−1(Y,C).

In case all σj are normal at t = 0, we have
√
−1∂∂T (σ)t=0 = −

∑
j,k g0(Θjkσj |x0, σk|x0).

Hence we have

Lemma 5.6. [B, §2] A Hermitian vector bundle (F, g) on an open subset Y ⊂ Cm is

Nakano semi-positive at t = 0, if for any m-ple vectors σ0
1 , . . . , σ

0
m ∈ F0, there exist exten-

sions σj ∈ H0(Y, F ) of σ0
j , all of which are normal at t = 0 and satisfy

√
−1∂∂T (σ)t=0 ≤

0.

We go back to our original situation. We prepair the following notations.

Notation 5.7. Let f : (X,ω) −→ Y ⊂ Cm and (E, h) be as in §2.2.II. Let σ1, . . . , σm ∈
An−q,0(X,E) such that [σj ] ∈ H0(Y, F ) for all j.

(1) We set

σ̂ =
∑

σj ∧ d̂tj ∈ An−q+m−1,0(X,E).

Then

T ([σ]) =
∑

j,k

g([σj], [σk])
̂dtj ∧ dtk = f∗((cN/q!)ω

q ∧ σ̂ ∧ hσ̂).

Here N = n− q +m− 1.

(2) We write ∂hσj =
∑

k µ
k
j ∧ dtk. Then

∂hσ̂ =
∑

j

µj
j ∧ dt =: µ ∧ dt
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with µ ∈ An−q,0(X,E), or rather [µ] ∈ An−q,0(X/Y,E).

(3) We write ∂σj =
∑

k η
k
j ∧ dtk. Then

∂σ̂ =
∑

j

ηj
j ∧ dt =: η ∧ dt

with η ∈ An−q−1,1(X,E), or rather [η] ∈ An−q−1,1(X/Y,E). �

Lemma 5.8. (cf. [B, (4.4)]) In Notation 5.7, one has

−
√
−1∂∂T ([σ])t=0 = f∗((cN/q!)ω

q ∧
√
−1Θh ∧ σ̂ ∧ hσ̂)t=0

−
∫

X0

(cn−q/q!)(ω
q ∧ µ ∧ hµ)|X0 −

∫

X0

(cn−q/q!)(ω
q ∧ η ∧ hη)|X0.

Remark 5.9. The first term comes from the curvature of E, and contributes positively.

The second term is −‖µ|X0‖2
h0

, and it can be seen as the “second fundamental form”

of F ⊂ ⋃
t∈Y A

n−q,0(Xy, Ey) at t = 0. This negative contribution will be eliminated by a

careful choice of forms σj , in §6.2.

The third term is not a definite form. In general one can write η|X0 as a sum η|X0 =

η′0 +ω0∧η′′0 for primitive forms η′0 and η′′0 on X0, and then −
∫

X0
(cn−q/q!)(ω

q∧η∧hη)|X0 =

‖η′0‖2
h0

− ‖η′′0‖2
h0

. In §6.2, we will show that we can take σj so that all ηk
j |X0 and hence

η|X0 are primitive on X0. In that case, the third term is −
∫

X0
(cn−q/q!)(ω

q ∧ η ∧ hη)|X0 =

‖η|X0‖2
h0

≥ 0. We should read the Kodaira-Spencer class contributes positively.

Proof of Lemma 5.8. The proof will be done by direct computations. We first note that

f∗(ω
q ∧ ∂σ̂ ∧ hσ̂) = f∗(ω

q ∧ η ∧ dt ∧ hσ̂) = 0 as an (m − 1, m)-current on Y , because

it contains dt. By the same reason, we have f∗(ω
q ∧ σ̂ ∧ h∂σ̂) = 0, and hence, by

taking ∂, we have f∗(ω
q ∧ σ̂ ∧ h∂h∂σ̂) = −(−1)Nf∗(ω

q ∧ ∂σ̂ ∧ h∂σ̂). Then we have

∂f∗(ω
q ∧ σ̂ ∧ hσ̂) = (−1)Nf∗(ω

q ∧ σ̂ ∧ h∂hσ̂), and then

∂∂f∗(ω
q ∧ σ̂ ∧ hσ̂) = (−1)Nf∗(ω

q ∧ ∂hσ̂ ∧ h∂hσ̂) + f∗(ω
q ∧ σ̂ ∧ h∂∂hσ̂).

Since ∂h∂ + ∂∂h = e(Θh), we have f∗(ω
q ∧ σ̂ ∧ h∂∂hσ̂) = f∗(ω

q ∧ σ̂ ∧ hΘh ∧ σ̂) − f∗(ω
q ∧

σ̂ ∧ h∂h∂σ̂). Using f∗(ω
q ∧ σ̂ ∧ h∂h∂σ̂) = −(−1)Nf∗(ω

q ∧ ∂σ̂ ∧ h∂σ̂), we can write

∂∂f∗(ω
q ∧ σ̂ ∧ hσ̂) = −f∗(ωq ∧ Θh ∧ σ̂ ∧ hσ̂) + (−1)N+(n−q)mf∗(ω

q ∧ µ ∧ hµ ∧ dt ∧ dt)
+ (−1)N+(n−q)mf∗(ω

q ∧ η ∧ hη ∧ dt ∧ dt).

Here we mind that
√
−1Θh is real. Hence −

√
−1∂∂f∗((cN/q!)ω

q ∧ σ̂ ∧ hσ̂) is

f∗((cN/q!)ω
q ∧

√
−1Θh ∧ σ̂ ∧ hσ̂) − f∗((cn−q/q!)ω

q ∧ µ ∧ hµ ∧ cmdt ∧ dt)
− f∗((cn−q/q!)ω

q ∧ η ∧ hη ∧ cmdt ∧ dt).
By taking their values at t = 0, we have our assertion. �
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6. Normal and “primitive” sections, and the proof of Theorem 1.1

Let f : (X,ω) −→ Y ⊂ Cm and (E, h) as in §2.2.II, and keep the notations in §5.

6.1. Effect of normality. We control ∂hσ at one point for [σ] ∈ H0(Y, F ), when it

is normal at t = 0. Recall ∂hσ =
∑
µj ∧ dtj with some µj ∈ An−q,0(X,E). To go

further, we need a genericity condition over the base Y . We will assume that the function

y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around t = 0. This assumption implies that

f∗Ω
n−q
X/Y (E) is locally free around t = 0, and that the fiber f∗Ω

n−q
X/Y (E)y coincides with

H0(Xy,Ω
n−q
Xy

(Ey)) around t = 0 ([GR, 10.5.5], [Ha, III §12]). In case q = 0, i.e., the case in

[B, §4], this assumption holds true thanks to Ohsawa-Takegoshi type L2-extension theorem

[OT] [O] [Ma]. Recall Corollary 4.4 that f∗Ω
n−q
X/Y (E) = F ⊕K, where K = Kn−q = KerLq

f .

Lemma 6.1. Assume that the function y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around

t = 0. Let [σ] ∈ H0(Y, F ) with ∂hσ =
∑
µj ∧ dtj, and suppose ∂g[σ] = 0 at t = 0. Then

all µj|X0 are perpendicular to H0(X0,Ω
n−q
X0

(E0)).

Proof. We will use notations in §4.1 for (X0, ω0) and (E0, h0). Let ( , )h0 be the in-

ner product of An−q,0(X0, E0) in terms of the metrics ω0 and h0 on X0. We have

H0(X0,Ω
n−q
X0

(E0)) = F0 ⊕ K0, which is an orthogonal direct sum by our assumption

and by Lemma 4.7 (3). We fix j. Let µj |X0 = τ0 + a0 ∈ An−q,0(X0, E0) be the Hodge

decomposition of forms so that τ0 ∈ H0(X0,Ω
n−q
X0

(E0)) and a0 ∈ ϑh0A
n−q,1(X0, E0). We

would like to show that τ0 = 0.

Since ∂g[σ] = 0 at t = 0, namely all µk|X0 are perpendicular to F0, it follows that τ0 ∈ K0

by Lemma 4.7 (3). Then ωq
0 ∧ τ0 = ∂b0 for some b0 ∈ An,q−1(X0, E0) by Lemma 4.7 (2).

Combining with Lemma 4.5 that ∂h0(µ
j|X0) = 0, we have

∫
X0
ωq

0 ∧ µj|X0 ∧ h0τ0 = 0 by

integration by parts as in Lemma 4.7 (3). Then ‖τ0‖2
h0

= (τ0 +a0, τ0)h0 =
∫

X0
(cn−q/q!)ω

q
0∧

µj |X0 ∧ h0τ0 = 0, and hence τ0 = 0. �

Lemma 6.2. Let [σ] ∈ H0(Y, F ) with ∂hσ =
∑
µj ∧ dtj, and suppose that µj|X0 is

perpendicular to H0(X0,Ω
n−q
X0

(E0)) for some j. Then there exists ξj
0 ∈ An−q−1,0(X0, E0)

such that ∂h0ξ
j
0 = µj|X0 and that ∂ξj

0 is primitive.

Proof. We will use notations in §4.1 for (X0, ω0) and (E0, h0). Recall Theorem 4.1

with dimY = 0 that the Hodge ∗-operator yields an injective homomorphism ∗0 :

Hn,q(X0, E0) −→ H0(X0,Ω
n−q
X0

(E0)).

We consider u := ωq
0 ∧ µj|X0 ∈ An,q(X0, E0), and recall (cn−q/q!) ∗0 u = µj|X0 . Let

u = a + ∂b + ϑh0c be the Hodge decomposition of forms so that a ∈ Hn,q(X0, E0), b is

ϑh0-exact, and that c is ∂-exact.
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We first show that ∂b = 0. Using integration by parts and by Lemma 4.5 (3), we have∫
X0
∂b ∧ h0µj|X0 = 0. Since ‖∂b‖2

h0
= (∂b, u)h0 =

∫
X0
∂b ∧ ∗h0u, and since the last term is

cn−qq!
∫

X0
∂b ∧ h0µj|X0 = 0, we have ∂b = 0.

We next show that a = 0. Recall in general, (v, w)h0 = (∗0v, ∗0w)h0 holds for v, w ∈
Ap,q(X0, E0) ([Huy, 1.2.20]). Since ϑh0c ∈ (Hn,q(X0, E0))

⊥ the orthogonal complement in

An,q(X0, E0), we have ∗0(ϑh0c) ∈ (∗0Hn,q(X0, E0))
⊥. We also have ∗0u = c−1

n−qq!µ
j|X0 ∈

H0(X0,Ω
n−q
X0

(E0))
⊥ ⊂ (∗0Hn,q(X0, E0))

⊥. On the other hand ∗0a ∈ ∗0Hn,q(X0, E0), hence

the both sides of ∗0a = ∗0u− ∗0(ϑh0c) have to be 0.

Now we had u = ϑh0c for a ∂-exact form c ∈ An,q+1(X0, E0). By the Lefschetz isomor-

phism on forms ([Huy, 1.2.30]), there exists ξ ∈ An−q−1,0(X0, E0) such that ωq+1
0 ∧ ξ = c.

We have ωq+1
0 ∧ ∂ξ = ∂c = 0, namely ∂ξ is primitive. We also have ∗0c = ∗0(ω

q+1
0 ∧ ξ) =

c−1
n−q−1(q + 1)!ξ by Lemma 2.1. Then µj|X0 = (cn−q/q!) ∗0 u = (cn−q/q!)(− ∗0 ◦ ∗0

∂h0(∗0c)) = −(−1)n−q(cn−q/q!)∂h0(c
−1
n−q−1(q + 1)!ξ) = −

√
−1(q + 1)∂h0ξ. We finally take

ξ0 = −
√
−1(q + 1)ξ. �

6.2. Existence of strongly normal and “primitive” sections. Here we state a key

result for the curvature estimate of our Hodge metric, as a consequence of Lemma 3.1 and

Lemma 6.2. The part (I) of Proposition 6.3 below in fact holds not only for F , but also

for any locally free subsheaf of f∗Ω
n−q
X/Y (E). The property (3) (respectively, (4)) below will

be referred as “primitive” (respectively, strongly normal) at t = 0.

Proposition 6.3. (cf. [B, Proposition 4.2]) Let σ0 ∈ F0 be a vector at t = 0.

(I) Then, there exists σ ∈ An−q,0(X,E) such that [σ] ∈ H0(Y, F ) with the following

three properties: (1) σ|X0 = σ0,

(2) ∂g[σ] = 0 at t = 0,

(3) ηj |X0 ∧ ωq+1
0 = 0 for any j, where ∂σ =

∑
ηj ∧ dtj.

(II) If the function y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around t = 0, one can take

σ in (I) with the following additional fourth property:

(4) µj |X0 = 0 for any j, where ∂hσ =
∑
µj ∧ dtj.

Proof. (I) A local extension as in (1) and (2) is possible for any Hermitian vector bundle.

Hence we start with a local extension [σ] ∈ H0(Y, F ) satisfying (1) and (2). We write ∂σ =
∑
ηj ∧dtj . By Lemma 3.1 (4), we have (ηj ∧ωq+1)|X0 = ∂aj

0 for some aj
0 ∈ An,q+1(X0, E0).

By the Lefschetz isomorphism on forms ([Huy, 1.2.30]), we can write aj
0 = bj0 ∧ ωq+1

0 for

some bj0 ∈ An−q−1,0(X0, E0). We take smooth extensions bj ∈ An−q−1,0(X,E) so that

bj |X0 = bj0, and we let σ̃ = σ −
∑
bj ∧ dtj ∈ An−q,0(X,E). We check [σ̃] is what we are

looking for. Since [σ̃] = [σ] in An−q,0(X/Y,E), we see [σ̃] ∈ H0(Y, F ), and (1) and (2) for
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σ̃. Moreover ∂σ̃ =
∑

(ηj − ∂bj) ∧ dtj , and (ηj − ∂bj)|X0 ∧ ωq+1
0 = ∂aj

0 − ∂(bj0 ∧ ωq+1
0 ) = 0.

Hence we have ηj(σ̃)|X0 ∧ ωq+1
0 = 0, i.e., (3) for σ̃.

(II) We assume that the function y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around t = 0.

We take σ ∈ An−q,0(X,E) which satisfies all three properties in (I). We write ∂hσ =
∑
µj ∧ dtj and ∂σ =

∑
ηj ∧ dtj. By Lemma 6.1 and 6.2, for every j, there exists

ξj
0 ∈ An−q−1,0(X0, E0) such that ∂h0ξ

j
0 = µj|X0 and that ∂ξj

0 is primitive. We take ξj ∈
An−q−1,0(X,E) such that ξj|X0 = ξj

0 for every j. We consider σ̃ = σ −
∑

j ξ
j ∧ dtj .

Since [σ̃] = [σ] in An−q,0(X,E), we see [σ̃] ∈ H0(Y, F ), and (1) and (2) for σ̃. We have

∂hσ̃ =
∑

(µj − ∂hξ
j) ∧ dtj and ∂σ̃ =

∑
(ηj − ∂ξj) ∧ dtj . The property (3) for σ̃ follows

from the primitivity of ηj|X0 for σ and of (∂ξj)|X0 = ∂ξj
0. The property (4) for σ̃ follows

from µj|X0 − (∂hξ
j)|X0 = 0. �

6.3. Nakano semi-positivity.

Proposition 6.4. Let σ1, . . . , σm ∈ An−q,0(X,E) with [σ1], . . . , [σm] ∈ H0(Y, F ) and sat-

isfying the properties (3) and (4) in Proposition 6.3. Then
√
−1∂∂T ([σ])t=0 ≤ 0 in

Notation 5.7 for these σ1, . . . , σm.

Proof. We will use the notations in 5.7. By the property (4) in Proposition 6.3, we

have µ|X0 = 0. The property (3) in Proposition 6.3 implies that η|X0 is primitive. In

particular, by using Lemma 2.1, −
∫

X0
(cn−q/q!)(ω

q ∧ η ∧ hη)|X0 = ‖η|X0‖2
h0

the square

norm with respect to ω0 and h0. Then the formula in Lemma 5.8 is

−
√
−1∂∂T ([σ])t=0 = f∗((cN/q!)ω

q ∧
√
−1Θh ∧ σ̂ ∧ hσ̂)t=0 + ‖η|X0‖2

h0
.

The right hand side is non-negative, since the curvature Θh is Nakano semi-positive. �

Corollary 6.5. (F, g) is Nakano semi-positive, and hence so is Rqf∗Ω
n
X/Y (E).

Proof. Since g is a smooth Hermitian metric of F , to show the Nakano semi-positivity, it

is enough to show it on the complement of an analytic subset of Y . By Grauert ([GR,

10.5.4] [Ha, III.12.8, 12.9]), there exists an analytic subset Z ⊂ Y such that the function

y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant on Y \Z. We apply the criterion in Lemma 5.6 at

each point on Y \ Z. Then thanks to Proposition 6.3, Proposition 6.4 in fact shows that

g is Nakano semi-positive on Y \ Z. �
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[Ma] Manivel L., Un théorème de prolongement L
2 de sections holomorphes d’un fibré hermitien, Math.
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