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A premilinary investigation of Anisotropic
Selection in

Cellular Genetic Algorithms

David Simoncini1, Sebastien Verel1, Manuel Clergue1 and Philippe Collard1

I3S - Laboratoire d’Informatique, Signaux, et Systèmes de Sophia Antipolis

Abstract. We introduce the two concepts of Fuzzy Neighborhood and
Anisotropic Selection to control the exploration/exploitation tradeoff in
cellular genetic algorithms.

Introduction

In this paper we deal with the exploration/exploitation tradeoff in cellular ge-
netic algorithms (cGAs). This concept is closely related to the notions of selective
pressure and diversity. We propose to use anisotropic selection (AS) to promote
diversity and to control selective pressure in genetic search. Previous studies
on cGAs selected the size and the shape of neighborhoods [1], or the shape of
the grid [2–4] as basic parameters to tune the search process. Altering these
structural parameters entails a deep change in the way we deal with the prob-
lem. For instance, there is no built-in mean to swap from a rectangular grid
to a square grid without misshaping the neighborhood relation. One important
advantage of the anisotropic selection scheme is that it allows to control the
exploration/exploitation tradeoff without effect, neither on the grid topology,
nor on the neighborhood shape; so the cellular genetic algorithm we propose can
work on a square grid and a simple von Neumann neighborhood shape. The pa-
per is divided in 5 sections. In the first one we give a brief definition of cGA and
an overview of existing techniques used to control the exploration/exploitation
tradeoff. Section 2 introduces the anisotropic selection concept. Section 3 studies
the influence of AS on the selective pressure. In section 4 we compare anisotropic
selection and rectangular grids topologies’ influence on the selective pressure. Fi-
nally, in section 5 we show how AS promotes the emergence of niches.

1 Cellular Genetic Algorithms

1.1 Characterizing the CGA

Cellular Genetic Algorithms (cGAs) are a subclass of Genetic Algorithms (GAs)
in which exploration and population diversity are enhanced thanks to the exis-
tence of small overlapped neighborhoods [5]. Such a kind of structured algorithms
is specially well suited for complex problems [6]. We assume a two-dimensional



toroidal grid as a spatial population structure. Each grid cell contains one in-
dividual of the population. The overlapping neighborhoods provide an implicit
mechanism for migration of genetic material throughout the grid. A genetic al-
gorithm is assumed to be running simultaneously on each grid cell, continuously
selecting parents from the neighborhood of that grid cell in order to produce
an offspring which replaces the current individual according to a replacement
method.

1.2 Takeover Time

A standard technique to study the induced selection pressure without introduc-
ing the perturbing effect of variation operators is to let selection be the only
active operator, and then monitor the growth rate of the best individual in
the initial population [7]. The takeover time is the time it takes for the single
best individual to conquer the whole population. The grid is initialised with
one cell having the best fitness and all the other having a null fitness. Since
no other evolution mechanism but selection takes place, we can observe the way
the best individual spreads over the grid by counting generation after generation
the number of copies of this one. A shorter takeover time thus means a higher
selective pressure. It has been shown that when we move from a panmictic pop-
ulation, as in standard GA, to a spatially structured one of the same size with
synchronous updating of the cells, the global selection pressure induced on the
entire population is weaker [1].

The takeover time is influenced either by the neighborhood size and shape
an dby the grid topology.
Neighborhood size and shape in a cGA are parameters that have some influence
on the takeover time. A larger overlap of local neighborhoods of the same shape
speeds up the best individual’s spreading over the grid. The influence of the
shape is given by Sarma and De Jong through a measure on the neighborhood
which represents the spatial dispersion of a cell pattern [1]. More than the size
of the neighborhood in terms of individuals, the determinant particularity of a
local neighborhood is its radius. The takeover time decreases with this radius in
a spatially structured population.

To measure the relation between grid topology and selective pressure, we
consider rectangular grids, so-called RG, where the population size is fixed to
4096. We use the following grid shapes: 2×2048; 4×1024; 8×512; 16×256; 32×128
and 64× 64 individuals. The selection strategy is a binary tournament. For each
cell we randomly choose two individuals in its neighborhood (Von Neumann
neighborhood) and the best one replaces the individual of the cell on the grid
if it has a better fitness or with the probability 0.5 if the fitnesses are equal.
Figure 1 shows the average on 20 independant runs of growth of best individual
copies against generations, the takeover time is reached when the number of
copies is equal to the size of the grid (see table 1). The average of increase
rate, that is the number of new best individuals copies at each time step, of
these curves for three rectangular grid shapes (64 × 64, 32 × 128, 16 × 256) is
plotted figure 2. This figure helps to understand the growth of the best individual



copies. The increase rate of the best individual is the same for all grids in the
first generations. Then, the spreading speeds down to reach a constant speed
for the rectangular grids. This constant is 2lp1 where p1 is the probability of
selecting the best individuals when there is 1 copies of it in the neighborhood1.
More accuratly, the spreading starts speeding down when a smallest diameter
of the torus (a diameter of the smallest dimension of the grid) is filled by copies
of the best individual (see figure 3(b)). Then, the speed becomes constant until
the best individual has spread over a diameter of the other dimension (see figure
3(c)); this is the reason why the 64× 64 grid curve has no constant period: radii
in the two dimensions are filled at the same time. Finally, the increase rate of the
growth curves falls down to zero as the best individual finishes to conquer the
grid. The results of the experiments we conducted are in agreement with E.Alba
and J.Troya observations that narrow grid shapes induce low selective pressure
[2]. We will see in the next sections that quite the same behavior is observed
with the anisotropic selection method.
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Fig. 1. Growth curves of the best individual on different grid shapes.

2 Anisotropic selection

This section introduce the Anisotropic Selection (AS) method where not all the
neighbors of a cell have the same probability to be selected.

1 As defined in [4]



 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250

in
c
r
e
a
s
e
 r

a
te

time steps

64
32
16

Fig. 2. Increase rate against time steps for three rectangular topologies.

Takeover Time
Grid shape Avg Min Max

64 × 64 83.41.9 79 87
32 × 128 117.82.4 114 123
16 × 256 225.03.8 219 232
8 × 512 449.76.3 437 463

4 × 1024 937.19.9 921 960
2 × 2048 2101.229.9 2045 2155

Table 1. Takeover time for different rectangular grid topologies.

2.1 Von Neumann Fuzzy Neighborhood

The von Neumann neighborhood is defined as all cells reachable in a fixed axial
direction (NorthSouth or EastWest). In the von Neumann Fuzzy Neighborhood,
we assign different probabilities to choose one cell in the neighborhood according
to the direction. Let pns be the probability to choose a cell in the NS direction
and pew = 1 − pns the probability to choose a cell in the EW direction. More,
we assume the probability to stay in place is 1

5 as for uniform distribution. So,
the probability to reach N or S is 2

5pns, and the probability to reach E or W is
2
5pew.

Let α = 2(pns − 0.5) be the control parameter in the range [0, 1]; the case
α = 0 corresponds to standard von Neumann neighborhood with pns = pew = 1

2 ,
and α = 1 is the limiting case for fuzzy neighborhood where pns = 1 and pew = 0.
In this last case, there is a vertical neighborhood with three neighbors only.



(a) (b) (c)

Fig. 3. Spreading of the best individual over a 32x128 grid

2.2 Definition

The Anisotropic Selection operator exploits the von Neumann Fuzzy Neighbor-
hood; it works as follow: for each cell it selects k individuals in the cell neigh-
borhood according to the pns probability (k stands in the range [2, 5]). The k
individuals participate to a tournament and the winner replaces the old indi-
vidual if it has a better fitness or with probability 0.5 if the fitnesses are equal.
Sarma and De Jong [1] established that increasing the neighborhood size cre-
ates a larger overlap and decreases the propagation time. Hence increasing local
neighborhood sizes while keeping the grid size fixed should result in correspond-
ing increases in selection intensity reflected by higher growth rates of the best
individual. The control parameter α is a measure of anisotropy: α = 0 corre-
sponds to standard selection, and α = 1 is the limiting case with the utmost
anisotropy. We conjecture that the selection pressure decreases while increasing
anisotropy.

3 Selective pressure and Anisotropic Selection

In this section we describe the relationship between selection pressure and anisotropic
selection. First we measure the takeover time for different anisotropic degrees,
then we go further into the analyse with the growth curve of the best individual.



We measure the effect of different anisotropy degrees on the takeover time. In
our experiments, the anisotropic selection is based on tournament selection of size
k = 2 on the square grid of side 64. All the 4096 cells are updated synchronously,
they change their states simultaneously. For each cell, individual is replaced if
the selected individual have a better fitness. For each value of control parameter
α, we perform 20 independent runs. When α = 0.0, no direction is privileged
and anisotropic selection is equivalent to the standard isotropic method. When
α = 1.0, only one direction is exploited, the grid can not be filled and the takeover
time is not defined. The figure 4 shows the influence of anisotropic selection on
the takeover time. The takeover time increases when the parameter α increases.
The correlation between takeover time and the anisotropic degree is not linear ;
it fast increases after the value α = 0.9. These results are fairly consistent with
our expectation that selection intensity decreases with the anisotropy degree.
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Fig. 4. Average of the takeover time as a function of the anisotropic degree α.

The figure 5 shows the average curves of the growth of best individual copies
and its rate of increase as a function of time steps. The shape of the curve
is decomposed in three parts: in the first one, the rate of increase is nearly
proportional to the time steps; The growth curve is approximatively a parabola.
In the second one, this rate becomes constant after a period of decrease; The
growth curve becomes linear. In the last one, the rate decreases linearly until zero
with a different slope from the first part. The higher the anisotropic degree α,
the weaker the initial slope of the increase rate. In the same way in the second
part, the slope of growth curve is smaller when α is higher. So, the selective
pressure is lower when the anisotropic degree is higher.

The three part of the growth curve correspond to three periods in the spread
of the best individual on the square grid (see figure 6). During the first one, the



best individual spreads more in the privileged direction rather than the other
one. This period is finished, as describe in section 1.2, when a diameter of the
torus is filled by best individual copies in the privileged direction (see figure
6(b)). During the second period, the best individual fills the second direction of
the grid until it has spread over a diameter in the less privileged direction (see
figure 6(c)). The best individual front is sharp at the beginning, and becomes
approximatively a horizontal line later. The third time finish to fill the grid.
Taking into account those three times, it would be possible to have the equation
of the growth curve as in [4].
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Fig. 5. Growth curves of the best individual on a square grid (a) and the rate of
increase of the corresponding curves (b) for different anisotropic degree α.

4 Anisotropic Selection vs. Rectangular Grid

The modification of the rectangular grid shape and the tuning of the anisotropic
degree are two methods for varying the selective pressure. This section shows in
which way they can be equivalent and the difference of those methods.

4.1 Takeover time analysis

Taking the experimental results from sections 1.2 and 3, we have computed the
α parameter values for which we obtained the same takeover time as for each
rectangular grid shapes. In figure 7 we plot the α values as a function of the l

L
ratio and exhibit the correlation between those parameters. We can see that α is
proportional to the l

L ratio. So, it is possible to have the same selective pressure

using the two methods, according to the takeover time measure, with α = 1− l
L .
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Fig. 6. Spreading of the best individual with α=0.75
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Fig. 7. Anisotropic degree α as a function of l
L

for the same takeover time.

4.2 Growth curve analysis

Figure 8 shows the mean growth curves of the best individual spreading against
time steps for all grid shapes and for the corresponding square grids using
anisotropic selection. Although we found the same takeover time with rectangu-
lar grid shapes and with some values of anisotropic degree, the selective pressure
is exerted in a different way for the two methods during the spread of the best
individual. It is weaker during the first generations in the anisotropic case then
it becomes slightly stronger, and finally reaches the same takeover time.
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Fig. 8. Comparison between growth curves on different grid shapes and on a square
grid with adapted anisotropy degree.

5 Anisotropic selection promotes niching

Many real optimization problems require the coexistence of diverse solutions
during the search. In this section we show how the anisotropic selection is able
to promote niching.

5.1 Niching methods

Niching methods have been proposed in the field of genetic algorithms to preserve
population diversity and to allow the GA to investigate many peaks in parallel.
As a side effect, niching prevents the GA from being trapped in local optima.
Niching methods are inspired from nature where species specialize themselves
to different ecological niches (for example food) in order to decrease the selec-
tive pressure they undergo. Niching GA’s tend to achieve a natural emergence
of niches in the search space. A niche is commonly referred to as an optimum
of the domain, the fitness representing the resources of that niche [8]. Niching
methods are used to solve multimodal problems, and in dynamic optimization
too [9]. For such problems a GA must maintain a diverse population that can
adapt to the changing landscape and locate better solutions dynamically. There
are different niching GA for panmictic population: sharing, crowding, etc. These
methods are based on the concept of distance: sharing [10] decreases the fit-
ness according to the number of similar individuals in the population, and with
crowding, replacement is performed considering the distance between solutions.



5.2 Experimental results

To show up to what extent anisotropic selection promotes niching, we have
conducted experiments where two solutions with the best fitness (here 1) are
placed on the grid at the initial generation. These solutions are farther from
each other in the less favored direction (here oriented horizontally). We use a
square grid with 64 × 64 individuals. Figure 9 shows some snapshots of the
spreading of the two bests over generations for different anisotropic degrees.
Cells in light grey (resp. dark grey) are copies of the first best (resp. the second
best), and all white cells have a null fitness value. Generations grow from top to
bottom, and the anisotropic parameter α increases from left to right. The left-
hand row (α = 0) represents standard binary tournament schema ; we observe
that isotropic selection is not able to maintain niches, after 1000 generations the
grid is a mixture of the two optima. On the other hand, as α increases, frontiers
between niches emerge and cells with the same lineage seems more and more
closely linked.

Conclusions and perspectives

This paper presents a new selection scheme in cellular genetic algorithms. The
main objective is to control in a flexible way the exploration/exploitation trade-
off. We propose to exploit the cellular GA characteristics to promote diversity
during a genetic search process. Previous studies in cGA selected structural pa-
rameters, as neighborhood or grid shape, to tune the selective pressure. The
main drawback of these techniques is that altering a structural parameter en-
tails a deep change in the way we deal with the problem. The new selection
scheme we propose is based on fuzzy neighborhood where a cell is chosen ac-
cording to different probabilities. In order to favor one direction rather than
the other one, anisotropic selection chooses individuals in fuzzy neighborhood.
Experiments conducted to establish relation between the takeover time and the
degree of anisotropy are consistent with our expectation that selection pressure
decreases with the degree of anisotropy. Analysis of the growth curves allows
to distinguish three different phases in the diffusion process. Then experimental
results establish linear correlation in takeover between AS and cGA using rect-
angular grid. Finally we point out capabilities of AS to promote the emergence
of niches.

This paper is a preliminary investigation and a more extensive analysis must
be made to confirm that equilibrium between exploration and exploitation makes
AS a good technique for complex problems in static or dynamic environments.
Future works should address the following issues: compare AS and changes in
the neighborhood shape and size, measure AS effects with cGA using mutation
and crossover, change the balance of directions dynamically. This last point is an
important feature: tuning the control parameter α, it would be possible to make
the algorithm to self-adjust the selective pressure, depending on global or local
measures of diversity. This adaptive ability have two important advantages: first,
parameter α may vary in a continuous way, second, changes in this parameter



have no effect, neither on the grid topology, nor on the neighborhood shape. In
general, we have to continue investigation of Anisotropic Selection to assess its
validity and generality.
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Fig. 9. Spreading of two copies of the best individual


