This paper describes the workspace and the inverse and direct kinematic analysis of the VERNE machine, a serial/parallel 5-axis machine tool designed by Fatronik for IRCCyN. This machine is composed of a three-degree-offreedom (DOF) parallel module and a two-DOF serial tilting table. The parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. This feature involves (i) a simultaneous combination of rotation and translation for the moving platform, which is balanced by the tilting table and (ii) workspace whose shape and volume vary as a function of the tool length. This paper summarizes results obtained in the context of the European projects NEXT ("Next Generation of Productions Systems").

I. INTRODUCTION

ARALLEL kinematic machines (PKM's) are well known for their high structural rigidity, better payload-toweight ratio, high dynamic performances and high accuracy [START_REF] Merlet | Parallel Robots[END_REF][START_REF] Tlusty | Fundamental comparison of the use of serial and parallel kinematics for machine tools[END_REF][START_REF] Ph | A comparative study of serial and parallel mechanism topologies for machine tools[END_REF]. Thus, they are prudently considered as attractive alternatives designs for demanding tasks such as high-speed machining [START_REF] Weck | Parallel Kinematic Machine Tools -Current State and Future Potentials[END_REF].

A well-known feature of PKM is the existence of multiple solutions to the direct kinematic problem. That is, the moving platform can admit several positions and orientations (poses) in the workspace for one given set of input joint values [START_REF] Merlet | Parallel robots[END_REF]. Moreover, parallel manipulators exist with multiple inverse kinematic solutions. This means that the moving platform can admit several input joint values corresponding to one given pose of the end-effector [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF]. For industrial PKMs, the resolution of the direct and inverse kinematic problems is usually made using iterative methods. With such methods, the calculation time can change as function of the configuration of the PKM. A major drawback of PKMs is a complex workspace. The workspace of a PKM has not a simple geometric shape, and its functional volume is reduced as compared to the space occupied by the machine [START_REF] Majou | The Design of Parallel Kinematic Machine Tools Using Kinetostatic Performance Criteria[END_REF]. D. Kanaan is with the Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN) (UMR CNRS 6597), France (corresponding author to provide phone: 33-240376958; fax: 33-240376930, e-mail: Daniel.Kanaan@irccyn-nantes.fr); P. Wenger is with the IRCCyN (UMR CNRS 6597), France (e-mail: Philippe.Wenger@irccyn-nantes.fr); D. Chablat is with the IRCCyN (UMR CNRS 6597), France (e-mail: Damien.Chablat@irccyn-nantes.fr).

Because many industrial tasks require less than six degrees of freedom, several lower-DOF PKMs have been developed. For some of theme, the reduction of the number of DOFs can result in coupled motions of the moving platform [START_REF] Kim | Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator[END_REF][START_REF] Ibrahim | Kinematic and dynamic modelling of the 3-RPS parallel manipulator[END_REF][START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF]. This is the case, for example, in the RPS manipulator [START_REF] Ibrahim | Kinematic and dynamic modelling of the 3-RPS parallel manipulator[END_REF] and in the parallel module of the VERNE machine. The kinematic modeling of these PKMs must be done case by case according to their structure.

Many researchers have contributed to the study of the kinematics of lower-DOF PKMs. Many of them have focused on the discussion of both analytical and numerical methods [START_REF] Liu | On the analysis of a new spatial three-degree-of freedom parallel manipulator[END_REF][START_REF] Nair | On the forward kinematics of parallel manipulators[END_REF]. This paper investigates the workspace and the inverse and direct kinematics analysis of the VERNE machine (Fig. 1).

Fig. 1. Overall view of the VERNE machine

The following section describes the VERNE machine. In section III, we study the kinematics of the VERNE machine. In section IV, we present the workspace calculation for different tool length and for different orientation angle of the tool. Finally Section V concludes this paper.

II. DESCRIPTION OF THE VERNE MACHINE

The VERNE machine consists of a parallel module and a tilting table as shown in Fig. 2. The vertices of the moving platform of the parallel module are connected to a fixedbase plate through three legs Ι, ΙΙ and ΙΙΙ. Each leg uses a pair of rods linking a prismatic joint to the moving platform through two pairs of spherical joints. Legs ΙΙ and ΙΙΙ are two identical parallelograms. Leg Ι differs from the other two legs in that [START_REF] Liu | On the analysis of a new spatial three-degree-of freedom parallel manipulator[END_REF] Due to the arrangement of the links and joints, legs ΙΙ and ΙΙΙ prevent the platform from rotating about y and z axes. Leg Ι prevents the platform from rotating about z-axis (Fig. 2) because 11 12 [START_REF] Liu | On the analysis of a new spatial three-degree-of freedom parallel manipulator[END_REF] 
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A A B B ≠ , however, a slight coupled rotation α about x-axis exists. The tilting table is used to rotate the workpiece about two orthogonal axes. The first one, the tilting axis, is horizontal and the second one, the rotary axis, is always perpendicular to the tilting table. This machine takes full advantage of these two additional axes to adjust the tool orientation with respect to the workpiece.

III. KINEMATIC ANALYSIS OF THE VERNE MACHINE

A. Kinematic equations of the VERNE machine

In order to analyze the kinematics of the VERNE machine, three relative coordinates are assigned as shown in Fig. 2. A static Cartesian frame ( , , ,

) b R O x y z =
is fixed at the base of the machine tool, with the z-axis pointing downward along the vertical direction. Two mobile Cartesian frame, the first frame ( , , , )

pl P P P R P x y z =
, is attached to the moving platform at point P and the second frame, ( , , , ) Using the parameters defined in Figs. 2 and3, the constraint equations of the parallel manipulator are expressed as:
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Leg Ι is represented by two different Eqs. [START_REF] Ph | A comparative study of serial and parallel mechanism topologies for machine tools[END_REF][START_REF] Weck | Parallel Kinematic Machine Tools -Current State and Future Potentials[END_REF]. This is due to the fact that 11 12
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Leg ΙΙ is represented by a single Eq. ( 5).
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The leg ІІІ, which is similar to leg ІІ (figure 3), is also represented by a single Eq. ( 6).
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Substituting the above value of 2 θ in all constraint equations resulting from Eq. ( 1), we obtain that leg Ι is represented by two different equations ( 10) and ( 11) while leg ΙΙ (respectively leg ΙΙΙ) is represented by only one equation ( 12) (respectively equation 13)). Equations [START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF][START_REF] Liu | On the analysis of a new spatial three-degree-of freedom parallel manipulator[END_REF][START_REF] Nair | On the forward kinematics of parallel manipulators[END_REF][START_REF] Kanaan | Kinematics analysis of the parallel module of the VERNE machine[END_REF] are not reported here because of space limitation. They are available in [START_REF] Kanaan | Workspace and Kinematic analysis of the VERNE machine[END_REF].)

If we identify Eqs. ( 10), ( 11), ( 12) and ( 13) with Eqs. (3), (4), ( 5) and ( 6) respectively, we conclude that:

1 1 α θ φ = + (14) 
The constraint equations of the VERNE machine will be used in order to obtain the inverse kinematic models of the full VERNE machine.

B. Coupling between the position and the orientation of the platform

The parallel module of the VERNE machine possesses three actuators and three degrees of freedom. However, there is a coupling between the position and the orientation angle of the platform. The object of this subsection is to study the coupling constraint imposed by leg I.

By eliminating 1 ρ from Eqs. ( 3) and ( 4), we obtain a relation (15) between , and

P P x y α independently of P z . ( ) ( ) ( ) ( ) 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 sin ( ) 2 cos( ) sin ( ) 2 cos( ) 0 P P R x D d r Rr R y R L R r Rr α α α α + - + - + - - + - = (15) 
We notice that for a given α , Eq. ( 15) represents an ellipse (16). The size of this ellipse is determined by a and b , where a is the length of the semi major axis and b is the length of the semi minor axis.
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These ellipses define the locus of points reachable with the same orientation α .

C. The Inverse Kinematics

For the inverse kinematic problem of the parallel module, the position coordinates ( , , =from Eq. ( 9), the problem consists in solving the system ( 2) S of 4 equations (( 10), ( 11), ( 12) and ( 13)) for only 4 unknowns ( ( 1..3) i i ρ = and 1 θ ).

In both cases, we follow the same reasoning to solve the inverse kinematics. Due to space limitation, we present only the inverse kinematic model of the full VERNE machine. The inverse kinematic model of the parallel module can be obtained easily by considering system ( 1) S instead of system ( 2) S (see [START_REF] Kanaan | Kinematics analysis of the parallel module of the VERNE machine[END_REF]). First, we eliminate 1 ρ from Eqs. ( 10) and ( 11 θ φ α =from Eq. 30 where α can have only four real solutions (which can be proved by drawing together all ellipses of iso-values of α , see [START_REF] Kanaan | Kinematics analysis of the parallel module of the VERNE machine[END_REF]). After finding all the possible orientations, we use the system of equations ( 2) S to calculate the joint coordinates i ρ for each orientation angle 1 θ .

For 1 , ρ we must verify that the values of 1 ρ obtained from Eqs. ( 10) and ( 11) are the same. As a result, we eliminate one of the two solutions.

Observing the above remark and knowing from [16] that Eqs [START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF][START_REF] Liu | On the analysis of a new spatial three-degree-of freedom parallel manipulator[END_REF], ( 12), ( 13) are defined as two-degreepolynomials in , 1..

3 i i ρ =
respectively, we conclude that there are four solutions for leg Ι and two solutions for leg ΙΙ and ΙΙΙ. Thus there are sixteen inverse kinematic solutions for the VERNE machine.

From the sixteen theoretical inverse kinematics solutions shown in Fig. 5, only one is used by the VERNE machine: the one referred to as (p) in Fig. 5, which is characterized by the fact that each leg must have its slider attachment points above the moving platform attachment points. For the remaining 15 solutions one of the sliders leaves its joint limits or the two rods of leg I cross. Most of these solutions are characterized by the fact that at least one of the legs has its slider attachment points lower than the moving platform attachment points. To prevent rod crossing, we also add a condition on the orientation of the moving platform. This condition is 1
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1 1 1 cos( ) R r θ φ + > .
Finally, we check the joint limits of the sliders and the serial singularities [START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF].

Applying the above conditions will always yield a unique solution for practical applications. The proposed method for calculating the various solutions of the inverse kinematic problem has been implemented in C++. We are working with AMTRI, a UK industry, on implementing this code in a simulation package of PKMs, Visual Components.

D. The Forward Kinematics

For the forward kinematics of our spatial parallel manipulator, the values of the joint coordinates ( 1..3) i i ρ = are known and the goal is to find the coordinates P x , P y and P z of the centre of the moving platform P.

To solve the forward kinematics, we successively eliminate variables P x , P y and P z from the system ( 1) S of four equations 4) and we replace this variable in system ( 1) S to obtain a new system ( 3) S of three equations ( 18), ( 19) and (20) derived from equations ( 3), ( 5) and ( 6) respectively. We then compute 22) and we replace this variable in the system ( 4) S in order to eliminate P

x . Equations of system ( ) (i=3..4) Si are not reported here because of space limitation. They are available in [START_REF] Kanaan | Workspace and Kinematic analysis of the VERNE machine[END_REF].

For each step, we determine solutions existence conditions by studying the denominators that appear in the expressions of P x , P y and P z . These conditions are: To finish the resolution of the system, we perform the tangent-half-angle substitution tan( / 2) s α =

1 1 cos( ) 0 R r α -≠ (23) ( )( ) ( ) 2 3 1 1 4 1 1 2 cos( ) 2sin( ) 0 R r rR rR ρ ρ α α - -+ - ≠ ( 
. As a consequence, the forward kinematics of our parallel manipulator results in a eight-degree-characteristic polynomial in s , whose coefficients are relatively large expressions in 1 ρ , 2 ρ and 3 ρ . For the VERNE machine, only 4 assembly-modes have been found (figure 6). It was possible to find up to 6 assembly-modes but only for input joint values out of the reachable joint space of the machine. Only one assemblymode is actually reachable by the machine (solution (a) shown in Fig. 6) because the other ones lead to either rod crossing, collisions, or joint limit violation. The right assembly mode can be recognized, like for the right working mode, by the fact that each leg must have its slider attachment points above the moving platform attachment points

The proposed method for calculating the various solutions of the forward kinematic problem has been implemented in Maple.

IV. WORKSPACE CALCULATION OF THE VERNE MACHINE

A. Workspace calculation of the parallel module [START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF] The parallel module of the VERNE machine possesses 3 degrees of freedom. A complete representation of the workspace is a volume. Consequently this workspace can be defined by the positions in space reachable by the point P, centre of the mobile Cartesian frame pl R . However the parallel module undergoes a complex motion, thus to overcome the complexity caused by the presence of the coupled rotation, we propose the following method.

Step 1. We virtually cut the leg І, which is constituted of rods 11 and 12 (rod ij denotes A ij B ij ) by supposing that 11 geometrically model constraints limiting the workspace of the new parallel architecture. These constraints are: (i) Interference between links, (ii) Leg Length limits, (iii) Serial Singularity, (iv) Mechanical limits on passive joints (we take into consideration the type of joints as well as the location of these joints in the machine) and (v) Actuator stroke. The intersection between these models is a volume.

Step 2. We consider the interdependence between rods 11 and 12 of leg І characterized by the fact that 
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  prismatic joints and the orientation angle α of the moving platform are unknown. The problem consists in solving the system ( 1) S of 4 equations (3-6) for only 4 unknowns ( ( 1..3) i i ρ = and α ). Thus, the position of the TCP ( , , given relative to the frame t R , but the joint coordinates, defined by the position ( 1..3)

  ) in order to obtain a relation (17) between the TCP position and orientation ( , the tilting angle 1 θ .Then, we find all possible orientation angles 1 θ for prescribed values of the position and the orientation of the tool. These orientations are determined by solving a sixdegree-(17). This polynomial can have up to four real solutions. This conclusion is verified by the fact that 1 1
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  (3-6) to lead to an equation function of the joint coordinates ( 1..3) i i ρ = and function of the orientation angle α of the platform. To do so, we first compute P y as function of P z by subtracting equation (3) from equation (

  α by subtracting equation (19) from equation (20). We replace this variable in system ( 3) S to obtain a new system ( 4) S of two equations (21) and (22) derived from equations (18) and (19) respectively. Finally, we compute P x as function of ( 1..3) i i ρ = and α by subtracting equation (21) from equation (

  24) Equation (23) implies that 1 1A B is perpendicular to the slider plane of leg І. In this case equation (16) represents a circle because a b Equations. (5) -(6)).
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 6 The four assembly-modes of the VERNE parallel module for θ
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 12 , where 11 ρ and[START_REF] Nair | On the forward kinematics of parallel manipulators[END_REF] ρ are respectively the joint coordinates of the prismatic joints linking rods 11 and 12 to their guideways. The parallel module of the VERNE machine possesses now 4 degrees of freedom instead of 3. These degrees of freedom are defined by coordinates , z of the point P and by the orientation α of the moving platform. Thus we consider that the orientation α of the platform is given, and we

  will allows us to determine the geometric shape for which the coupling between the position and the orientation of the platform exists. Thus for a given orientation , α the point P describes a surface defined by a hollow cylinder whose base is an ellipse as shown in subsection III.B.
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where

U expressed in frames pl R (linked to the moving platform) and the base frame b R respectively. Finally we obtain:

The intersection between geometric models defined at step 1 and the surface defined at step 2 represents the constant orientation workspace of the new 4 degree-offreedom parallel module. We calculate a horizontal cut of this workspace when the point P, center of the mobile Cartesian frame, moves in a known horizontal plane. Then we proceed by discretization to determine the complete workspace of the parallel module of the VERNE machine (see Figure 7). To calculate the workspace for a given tool length, we only need to express the TCP, U, in the base frame as function of ( )

, , ,

x y z α by using the transformation matrix from Eq. ( 1 B. The manufacturing 3D workspace [START_REF] Kanaan | Workspace and Kinematic analysis of the VERNE machine[END_REF] In this subsection, we calculate the manufacturing 3D workspace of the VERNE (the tool axis remains perpendicular to the part base) by considering that the tilting table rotates about its axis and follows the orientation α of the moving platform, which means that The proposed method for calculating the workspace for various tool lengths and for different tool orientation angles has been implemented in Maple and displayed in the CAD software CATIA. The obtained results show a workspace larger than the one currently used by the VERNE machine (for some given tool orientation angles). So this will able us to improve the productivity of the VERNE machine and to reach the limit of its capacity without risk of collision or damage of the VERNE machine.

V. CONCLUSIONS

This paper was devoted to the kinematic and workspace analysis of a 5-DOF hybrid machine tool, the VERNE machine. This machine possesses a complex motion caused by the unsymmetrical architecture of the parallel module where one of the legs is different from the other two legs. It was shown that the inverse kinematics has sixteen solutions and the forward kinematics may have six real solutions. The workspace was calculated by using a combination of discretization and geometrical method. This work is of interest as it may improve the efficiency of the machine because the controller of the actual VERNE machine resorts to an iterative Newton-Raphson resolution of the kinematic models.