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ROBUST METHODS FOR LTE AND WIMAX DIMENSIONING

L.DECREUSEFOND, E. FERRAZ, P. MARTINS, AND T.T. VU

Abstract. This paper proposes an analytic model for dimensioning OFDMA
based networks like WiMAX and LTE systems. In such a system, users re-
quire a number of subchannels which depends on their SNR, hence of their
position and the shadowing they experience. The system is overloaded when
the number of required subchannels is greater than the number of available
subchannels. We give an exact though not closed expression of the loss prob-
ability and then give an algorithmic method to derive the number of subchan-
nels which guarantees a loss probability less than a given threshold. We show
that Gaussian approximation lead to optimistic values and are thus unusable.
We then introduce Edgeworth expansions with error bounds and show that
by choosing the right order of the expansion, one can have an approximate
dimensioning value easy to compute but with guaranteed performance. As

the values obtained are highly dependent from the parameters of the system,
which turned to be rather undetermined, we provide a procedure based on
concentration inequality for Poisson functionals, which yields to conservative
dimensioning. This paper relies on recent results on concentration inequalities
and establish new results on Edgeworth expansions.

Concentration inequality, Edgeworth expansion, LTE, OFDMA

1. Introduction

Future wireless systems will widely rely on OFDMA (Orthogonal Frequency Di-
vision Multiple Access) multiple access technique. OFDMA can satisfy end user’s
demands in terms of throughput. It also fulfills operator’s requirements in terms of
capacity for high data rate services. Systems such as 802.16e and 3G-LTE (Third
Generation Long Term Evolution) already use OFDMA on the downlink. Dimen-
sioning of OFDMA systems is then of the utmost importance for wireless telecom-
munications industry.

OFDM (Orthogonal Frequency Division Multiplex) is a multi carrier technique
especially designed for high data rate services. It divides the spectrum in a large
number of frequency bands called (orthogonal) subcarriers that overlap partially
in order to reduce spectrum occupation. Each subcarrier has a small bandwidth
compared to the coherence bandwidth of the channel in order to mitigate frequency
selective fading. User data is then transmitted in parallel on each sub carrier. In
OFDM systems, all available subcarriers are affected to one user at a given time for
transmission. OFDMA extends OFDM by making it possible to share dynamically
the available subcarriers between different users. In that sense, it can then be
seen as multiple access technique that both combines FDMA and TDMA features.
OFDMA can also be possibly combined with multiple antenna (MIMO) technology
to improve either quality or capacity of systems.

In practical systems, such as WiMAX or 3G-LTE, subcarriers are not allocated
individually for implementation reasons mainly inherent to the scheduler design
and physical layer signaling. Several subcarriers are then grouped in subchannels
according to different strategies specific to each system. In OFDMA systems, the
unit of resource allocation is mainly the subchannels. The number of subchannels
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Figure 1. OFDMA principle : subcarriers are allocated according
to the required transmission rate

required by a user depends on his channel’s quality and the required bit rate. If
the number of demanded subchannels by all users in the cell is greater than the
available number of subchannel, the system is overloaded and suffer packet losses.
The questions addressed here can then be stated as follows: how many subchannels
must be assigned to a BS to ensure a small overloading probability ? Given the
number of available subchannels, what is the maximum load, in terms of mean
number of customers per unit of surface, that can be tolerated ? Both questions
rely on accurate estimations of the loss probability.

The objectives of this paper are twofold: First, construct and analyze a gen-
eral performance model for an isolated cell equipped with an OFDMA system as
described above. We allows several classes of customers distinguished by their
transmission rate and we take into account path-loss with shadowing. We then
show that for a Poissonian configuration of users in the cell, the required number
subchannels follows a compound Poisson distribution. The second objective is to
compare different numerical methods to solve the dimensioning problem. In fact,
there exists an algorithmic approach which gives the exact result potentially with
huge memory consumption. On the other hand, we use and even extend some recent
results on functional inequalities for Poisson processes to derive some approxima-
tions formulas which turn to be rather effective at a very low cost. When it comes
to evaluate the performance of a network, the quality of such a work may be judged
according to several criteria. First and foremost, the exactness is the most used
criterion: it means that given the exact values of the parameters, the real system,
the performances of which may be estimated by simulation, behaves as close as
possible to the computed behavior. The sources of errors are of three kinds: The
mathematical model may be too rough to take into account important phenomena
which alter the performances of the system, this is known as the epistemic risk.
Another source may be in the mathematical resolution of the model where we may
be forced to use approximate algorithms to find some numerical values. The third
source lies in the lack of precision in the determination of the parameters character-
izing the system: They may be hard, if not impossible, to measure with the desired
accuracy. It is thus our point of view that exactness of performance analysis is not
all the matter of the problem, we must also be able to provide confidence intervals
and robust analysis. That is why, we insist on error bounds in our approximations.

Resources allocation on OFDMA systems have been extensively studied over
the last decade, often with joint power and subcarriers allocation, see for instance
[1, 8, 14, 15]. The problem of OFDMA planning and dimensioning have been
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more recently under investigation. In [7], the authors propose a dimensioning of
OFDMA systems focusing on link outage but not on the other parameters of the
systems. In [11], the authors give a general methodology for the dimensioning of
OFDMA systems, which mixes a simulation based determination of the distribution
of the signal-to-interference-plus-noise ratio (SINR) and a Markov chain analysis
of the traffic. In [3, 9], the authors propose a dimensioning method for OFDMA
systems using Erlang’s loss model and Kaufman-Roberts recursion algorithm. In
[4], the authors study the effect of Rayleigh fading on the performance of OFDMA
networks.

The article is organized as follows. In Section 2, we describe the system model
and set up the problem. In Section 3, we examine four methods to derive an exact,
approximate or robust value of the number of subchannels necessary to ensure a
given loss probability. In Section 4, we apply these formulas to the particular situ-
ation of OFDMA systems. A new bound for the Edgeworth expansion is in Section
B and Section C contains a new proof of the concentration inequality established
for instance in [16].

2. System Model

In practical systems, such as WiMAX or 3G-LTE, resource allocation algorithms
work at subchannel level. The subcarriers are grouped into subchannels that the
system allocates to different users according to their throughput demand and mobil-
ity pattern. For example, in WiMAX, there are three modes available for building
subchannels: FUSC (Fully Partial Usage of Subchannels), PUSC (Partial Usage of
SubChannels) and AMC (Adaptive modulation and coding). In FUSC, subchannels
are made of subcarriers spread over all the frequency band. This mode is gener-
ally more adapted to mobile users. In AMC, the subcarriers of a subchannel are
adjacent instead of being uniformly distributed over the spectrum. AMC is more
adapted to nomadic or stationary users and generally provides higher capacity.

The grouping of subcarriers into subchannels raises the problem of the estimation
of the quality of a subchannel. Theoretically channel quality should be evaluated on
each subcarrier of the corresponding subchannel to compute the associated capacity.
This work assumes that it is possible to consider a single channel gain for all the
subcarriers making part of a subchannel (for example via channel gains evaluated
on pilot subcarriers).

We consider a circular cell C of radius R with a base station (BS for short) at its
center. The transmission power dedicated to each subchannel by the base station is
denoted by P . Each subchannel has a total bandwidth W (in kHz). The received
signal power for a mobile station at distance d from the BS can be expressed as

(1) P (d) =
PKγ

dγ
GF := PγGd−γ ,

where Kγ is a constant equal to the attenuation at a reference distance, denoted
by dref, that separates far field from near field propagation. Namely,

Kγ =

(

c

4πfdref

)2

dγref,

where f is the radio-wave frequency. The variable γ is the path-loss exponent which
indicates the power at which the path loss increases with distance. Its depends
on the specific propagation environment, in urban area, it is in the range from
3 to 5. It must be noted that this propagation model is an approximate model,
difficult to calibrate for real life situations. In particular, it might be reasonable
to envision models where γ depends on the distance so that the attenuation would
be proportional to dγ(d). Because of the complexity of such a model, γ is often
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considered as constant but the path-loss is multiplied by two random variables
G and F which represent respectively the shadowing, i.e. the attenuation due to
obstacles, and the Rayleigh fading, i.e. the attenuation due to local movements of
the mobile. Usually, G is taken as a log-normal distribution: G = 10S/10, where
S ∼ N (κ, v2). As to F , it is customary to choose an exponential distribution with
parameter 1. Both, the shadowing and the fading experienced by each user are
supposed to be independent from other users’ shadowing and fading. For the sake
of simplicity, we will here treat the situation where only shadowing is taken into
account, the computations would be pretty much like the forthcoming ones and the
results rather similar should we consider Rayleigh fading.

All active users in the cell compete to have access to some of the Navail available
subchannels. There are K classes of users distinguished by the transmission rate
they require: Ck is the rate of class k customers and τk denotes the probability that a
customer belongs to class k. A user, at distance d from the BS, is able to receive the

signal only if the signal-to-interference-plus-noise ratio SNR = P (d)
I is above some

constant βmin where I is the noise plus interference power and P (d) is the received
signal power at distance d, see (1). If the SNR is below the critical threshold, then
the user is said to be in outage and cannot proceed with his communication.

To avoid excess demands, the operator may impose a maximum number Nmax

of allocated subchannels to each user at each time slot. According to the Shannon
formula, for a user demanding a service of bit rate Ck, located at distance d from
the BS and experiencing a shadowing g, the number of requires subchannels is thus
the minimum of Nmax and of

Nuser =







⌈

Ck

W log2 (1 + Pγgd−γ/I)

⌉

if Pγgd
−γ/I ≥ βmin,

0 otherwise,

where ⌈x⌉ means the minimum integer number not smaller than x.
We make the simplifying assumption that the allocation is made at every time

slot and that there is no buffering neither in the access point nor in each mobile
station. All the users have independently from others a probability p to have a
packet to transmit at each slot. This means, that each user has a traffic pattern
which follows a geometric process of intensity p. We also assume that users are
dispatched in the cell according to a Poisson process of intensity λ0. According to
the thinning theorem for Poisson processes, this induces that active users form a
Poisson process of intensity λ = λ0p. This intensity is kept fixed over the time.
That may result from two hypothesis: Either we consider that for a small time
scale, users do not move significantly and thus the configuration does not evolve.
Alternatively, we may consider that statistically, the whole configuration of active
users has reached its equilibrium so that the distribution of active users does not
vary through time though each user may move.

From the previous considerations, a user is characterized by three independent
parameters: his position, his class and the intensity of the shadowing he is experi-
encing. We model this as a Poisson process on E = B(0, R) × {1, · · · , K} ×R+

of intensity measure

λ dν(x) := λ( dx⊗ dτ(k) ⊗ dρ(g))

where B(0, R) = {x ∈ R2, ‖x‖ ≤ R}, τ is the probability distribution of classes
given by τ({k}) = τk and ρ is the distribution of the random variable G defined
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above. We set

f(x, k, g) = min (Nmax,

1{Pγg‖x‖−γ≥Iβmin}

⌈

Ck

W log2 (1 + Pγg‖x‖−γ/I)

⌉)

.

With the notations of Section B,

Ntot =

∫

cell

f(x, k, g) dω(x, k, g).

We are interested in the loss probability which is given by

P(Ntot ≥ Navail).

We first need to compute the different moment of f with respect to ν in order to
apply Theorem 2 and Theorem 3. For, we set

lk = Nmax ∧
⌈

Ck

W log2(1 + βmin)

⌉

,

where a ∧ b = min(a, b). Furthermore, we introduce βk, 0 = ∞,

βk, l =
I

P

(

2Ck/Wl − 1
)

, 1 ≤ k ≤ K, 1 ≤ l ≤ lk − 1,

and βk, lk = Iβmin/P.
By the very definition of the ceiling function, we have

∫

E

fp dν

=

K
∑

k=1

τk

lk
∑

l=1

lp
∫

cell

∫

R

1[βk, l;βk, l−1)(g‖x‖−γ) dρ(g) dx.

According to the change of variable formula, we have

∫

cell

1[βk, l;βk, l−1)(g‖x‖−γ) dx

= π(β
−2/γ
k, l ∧R2 − β

−2/γ
k, l−1 ∧R2)g2/γ .

Thus, we have

∫

cell

∫

R

1[βk, l;βk, l−1)(g‖x‖−γ) dρ(g) dx

= π(β
−2/γ
k, l ∧R2 − β

−2/γ
k, l−1 ∧R2)E

[

10S/5γ
]

= π(β
−2/γ
k, l ∧R2 − β

−2/γ
k, l−1 ∧R2) 10(κ+

v2

10γ ln 10)/5γ := ζk, l.

We thus have proved the following theorem.

Theorem 1. For any p ≥ 0, with the same notations as above, we have:

(2)

∫

fp dν =

K
∑

k=1

τk

lk
∑

l=1

lp ζk, l.



6 L.DECREUSEFOND, E. FERRAZ, P. MARTINS, AND T.T. VU

3. Loss probability

3.1. Exact method. Since f is deterministic, Ntot follows a compound Poisson
distribution: it is distributed as

K
∑

k=1

lk
∑

l=1

l Nk, l

where (Nk, l, 1 ≤ k ≤ K, 1 ≤ l ≤ lk) are independent Poisson random variables,
the parameter of Nk, l is λτkζk, l. Using the properties of Poisson random variables,
we can reduce the complexity of this expression. Let L = max(lk, 1 ≤ k ≤ K) and
for l ∈ {1, · · · , L}, let Kl = {k, lk ≥ l}. Then, Ntot is distributed as

L
∑

l=1

lMl

where (Ml, 1 ≤ l ≤ lk) are independent Poisson random variables, the parameter
of Ml being ml :=

∑

k∈Kl
λτkζk, l. For each l, it is easy to construct an array which

represents the distribution of lMl by the following rule:

pl(w) =

{

0 if w mod l 6= 0,

exp(−ml)m
q
l /q! if w = ql.

By discrete convolution, the distribution of Ntot and then its cumulative distribu-
tion function, are easily calculable. The value of Navail which ensures a loss proba-
bility below the desired threshold is found by inspection. The only difficulty with
this approach is to determine where to truncate the Poisson distribution functions
for machine representation. According to large deviation theory [6],

P(Poisson(θ) ≥ aθ) ≤ exp(−θ(a ln a+ 1− a)).

When θ is known, it is straightforward to choose a(θ) so that the right-hand-side
of the previous equation is smaller than the desired threshold. The total memory
size is thus proportional to max(mla(ml)l, 1 ≤ l ≤ lk). This may be memory
(and time) consuming if the parameters of some Poisson random variables or the
threshold are small. This method is well suited to estimate loss probability since
it gives exact results within a reasonable amount of time but it is less useful for
dimensioning purpose. Given Navail, if we seek for the value of λ which guarantees
a loss probability less than the desired threshold, there is no better way than trial
and error. At least, the subsequent methods even imprecise may help to evaluate
the order of magnitude of λ for the first trial.

3.2. Approximations. We begin by the classical Gaussian approximation. It is
clear that

P(

∫

E

f dω ≥ Navail) = P(

∫

E

fσ( dω − λ dν) ≥ Nσ)

= Eλν

[

1[Nσ,+∞)(

∫

E

fσ( dω − λ dν))

]

where Nσ = (Navail −
∫

fλ dν)/σ. Since the indicator function 1[Nσ,+∞) is not
Lipschitz, in principle, we can not apply the bound given by Theorem 2. In practive,
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it is still reasonable to do it. Hence,

(3) 1−Q(Nσ)−
1

2

√

2

π

m(3, 1)√
λ

≤ P(

∫

E

f dω ≥ Navail) ≤

1−Q(Nσ) +
1

2

√

2

π

m(3, 1)√
λ

,

where Q is the cumulative distribution function of a standard Gaussian random
variable.

From (10), it follows that

(4) 1−Q(Nσ)−
m(3, 1)

6
√
λ

Q(3)(Nσ)− Eλ

≤ P(

∫

E

f dω ≥ Navail) ≤

1−Q(Nσ) +
m(3, 1)

6
√
λ

Q(3)(Nσ) + Eλ

where Eλ is the right-hand-side of (13) with ‖F (3)‖∞ = 1.
Going again one step further, following the same lines, according to (15), one

can show that

(5) P(

∫

E

f dω ≥ Navail) ≤ 1−Q(Nσ)

+
m(3, 1)

6
√
λ

Q(3)(Nσ) +
m(3, 1)2

72λ
Q(5)(Nσ)

+
m(4, 1)

24λ
Q(3)(Nσ) + Fλ

where Fλ is bounded above in (16).
For all the approximations given above, for a fixed value ofNavail, an approximate

value of λ can be obtained by solving numerically an equation in
√
λ.

3.3. Robust upper-bound. If we seek for robustness and not precision, it may
be interesting to consider the so-called concentration inequality. We remark that
in the present context, f is non-negative and bounded by L = maxk lk so that we
are in position to apply Theorem 4. We obtain that

(6) P(

∫

E

f dω ≥
∫

E

f dν + a)

≤ exp

(

−
∫

E
f2λ dν

L2
g(

aL
∫

E f2λ dν
)

)

,

where g is defined in Section C.

4. Applications to OFDMA and LTE

In such systems, there is a huge number of physical parameters with a wide range
of variations, it is thus rather hard to explore the while variety of sensible scenarios.
For illustration purposes, we chose a circular cell of radius R = 300 meters equipped
with an isotropic antenna such that the transmitted power is 1 W and the reference
distance is 10 meters. The mean number of active customers per unit of surface,
denoted by λ, was chosen to vary between 0, 001 and 0.000 1, this corresponds to
an average number of active customers varying from 3 to 30, a realistic value for
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Figure 2. Impact of γ and τ on the loss probability (Navail = 92,
λ = 0.0001)

the systems under consideration. The minimum SINR is 0.3 dB and the random
variable S defined above is a centered Gaussian with variance equal to 10. There
are two classes of customers, C1 = 1, 000 kb/s and C2 = 400 kb/s. It must be
noted that our set of parameters is not universal but for the different scenarios we
tested, the numerical facts we want to point out were always apparent. Since the
time scale is of the order of a packet transmission time, the traffic is defined as the
mean number of required subchannels at each slot provided that the time unit is
the slot duration, that is to say that the load is defined as ρ = λ

∫

cell
f dν.

Figure 2 shows, the loss probability may vary up to two orders of magnitude when
the rate and the probability of each class change even if the mean rate

∑

k τkCk

remains constant. Thus mean rate is not a sufficient parameter to predict the
performances of such a system. The load ρ is neither a pertinent indicator as the
computations show that the loads of the various scenarios differs from less than 3%.

Comparatively, Figure 2 shows that variations of γ have tremendous effects on
the loss probability: a change of a few percents of the value of γ induces a variation
of several order of magnitude for the loss probability. It is not surprising that the
loss probability increases as a function of γ: as γ increases, the radio propagation
conditions worsen and for a given transmission rate, the number of necessary sub-
channels increases, generating overloading. Beyond a certain value of γ (apparently
around 3.95 on Figure 2), the radio conditions are so harsh that a major part of
the customers are in outage since they do not satisfy the SNR criterion any longer.
We remark here that the critical value of γ is almost the same for all configurations
of classes. Indeed, the critical value γc of γ can be found by a simple reasoning:
When γ < γc, a class k customer uses less than the allowed lk subchannels because

the radio conditions are good enough for β
1/γ
k, j ≥ R for some j < lk so that the load
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increases with γ. For γ > γc, all the β
−1/γ
k, l are lower than R and the larger γ, the

wider the gap. Hence the number of customers in outage increases as γ increases
and the load decreases. Thus,

γc ≃ inf{γ, β−1/γ
s, ls−1 ≤ R} for s = arg maxklk.

If we proceed this way for the data of Figure 2, we retrieve γc = 3.95. This means
that for a conservative dimensioning, in the absence of estimate of γ, computations
may be done with this value of γ.

For a threshold given by ǫ = 10−4, we want to find Navail such that P(Ntot ≥
Navail) ≤ ǫ. As said earlier, the exact method gives the result at the price of a
sometimes lengthy process. In view of 3, one could also search for α such that

(7) 1−Q(α) +
1

2

√

2

π
m(3, λ) = ǫ

and then consider ⌈+
∫

E f dν + ασ⌉ as an approximate value of Navail. Unfortu-
nately and as was expected since the Gaussian approximation is likely to be valid
for large values of λ, the corrective term in (7) is far too large (between 30 and
500 depending on γ) for (7) to have a meaning. Hence, we must proceed as usual
and find α such that 1 −Q(α) = ǫ, i.e. α ≃ 3.71. The approximate value of Navail

is thus given by ⌈
∫

E f dν + 3.71σ⌉. The consequence is that we do not have any
longer any guarantee on the quality of this approximation, how close it is to the
true value and even more basic, whether it is greater or lower than the correct
value. In fact, it is absolutely impossible to choose a dimensioning value lower than
the true value since there is no longer a guarantee that the loss probability is lower
than ǫ. As shows Figure 3, it turns out that the values returned by the Gaussian
method are always under the true value. Thus this annihilates any possibility to
use the Gaussian approximation for dimensioning purposes.

Going one step further, according to (4), one may find α such that

1−Q(α)− m(3, λ)

6
Q(3)(α) + Eλ = ǫ

and then use

⌈3.5 +
∫

E

f dν + ασ⌉

as an approximate guaranteed value of Navail. By guaranteed, we mean that ac-
cording to (4), it holds for sure that the loss probability with this value of Navail

is smaller than ǫ even if there is an approximation process during its computation.
Since the error in the Edgeworth approximation is of the order of 1/λ, instead of

1/
√
λ for the Gaussian approximation, one may hope that this method will be ef-

ficient for smaller values of λ. It turns out that for the data sets we examined, Eλ

is of the order of 10−7/λ, thus this method can be used as long as 10−7/λ ≪ ǫ.
Otherwise, as for the Gaussian case, we are reduced to find α such that

1−Q(α)− m(3, λ)

6
Q(3)(α) = ǫ

and consider ⌈
∫

E f dν + ασ⌉ but we no longer have any guarantee on the validity
of the value. As Figure 3 shows, for the considered data set, Edgeworth methods
leads to an optimistic value which is once again absolutely not acceptable. One can
pursue the development as in (15) and use (5), thus we have to solve

1−Q(α)− m(3, λ)

6
Q(3)(α)

− m(3, 1)2

72λ
Q(6)(α) +

m(4, 1)

24λ
Q(4)(α)− Fλ = ǫ.
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For the values we have, it turns out that Fλ is of the order of 10−9λ−3/2 which
is negligible compared to ǫ = 10−4, so that we can effectively use this method for
λ ≥ 10−4. As it is shown in Figure 3, the values obtained with this development are
very close to the true values but always greater as it is necessary for the guarantee.
The procedure should thus be the following: compute the error bounds given by
(3), (13) and (5) and find the one which gives a value negligible with respect to the
threshold ǫ, then use the corresponding dimensioning formula. If none is suitable,
use a finer Edgeworth expansion or resort to the concentration inequality approach.

Note that the Edgeworth method requires the computations of the first three
(or five) moments, whose lengthiest part is to compute the ζk, l which is also a
step required by the exact method. Thus Edgeworth methods are dramatically
simpler than the exact method and may be as precise. However, both the exact
and Edgeworth methods suffer from the same flaw: There are precise as long as the
parameters, mainly λ and γ, are perfectly well estimated. The value of γ is often set
empirically (to say the least) so that it seems important to have dimensioning values
robust to some estimate errors. This is the goal of the last method we propose.

According to (6), if we find α such that

g(
αL

∫

E f2λ dν
) = − log(ǫ)L2

∫

E f2λ dν

and

(8) Navail =

∫

E

f dν +
α

L2

∫

E

f2λ dν,

we are sure that the loss probability will fall under ǫ. However, we do not know
a priori how larger this value of Navail than the true value. It turns out that the
relative oversizing increases with γ from a few percents to 40% for the large value
of γ and hence small values of Navail. For instance, for γ = 4.2, the value of Navail

given by (8) is 40 whereas the exact value is 32 hence an oversizing of 25%. However,
for γ = 4.12, which is 2% away from 4.2, the required number of subchannels is
also 40. The oversizing is thus not as bad as it may seem since it may be viewed
as a protection against traffic increase, epistemic risk (model error) and estimate
error.
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Appendix A. Hermite polynomials

Let Φ be the Gaussian probability density function: Φ(x) = exp(−x2/2)/
√
2π

and µ the Gaussian measure on R. Hermite polynomials (Hk, k ≥ 0) are defined
by the recursion formula:

Hk(x)Φ(x) = (−1)k
dk

dxk
Φ(x).

For the sake of completness, we recall that

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x.
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Thus, for F ∈ Ck
b , using integration by parts, we have

(9)

∫

R

F (k)(x) dµ(x) =

∫

R

F (x)Hk(x) dµ(x).

Let Q(x) =
∫ x

−∞
Φ(u) du =

∫

R
1(−∞;x](u)Φ(u) du. Then, Q

′ = Φ and

(10)

∫

R

1(−∞;x](u)Hk(u) dµ(u)

= (−1)k
∫ x

−∞

Φ(k)(u) du = (−1)kQ(k)(x) = −Hk−1(x)Φ(x).

Appendix B. Edgeworth expansion

For details on Poisson processes, we refer to [2, 5]. For E a Polish space equipped
with a Radon measure ν, ΓE denotes the set of locally finite discrete measures on
E. The generic element ω of ΓE may be identified with a set ω = {xn, n ≥ 1} such
that ω ∩ K has finite cardinal for any K compact in E. We denote by

∫

E
f dω

the sum
∑

x∈ω f(x) provided that it exists as an element of R∪ {+∞}. A Poisson
process of intensity ν is a probability Pν on ΓE , such that for any f ∈ CK(E, R),

Eν

[

exp(−
∫

E

f dω)

]

= exp(−
∫

E

1− e−f(x) dν(x)).

For f ∈ L1(ν), the Campbell formula states that

Eν

[
∫

f dω

]

=

∫

f dν.

We introduce the discrete gradient D defined by

DxF (ω) = F (ω ∪ {x})− F (ω), for all x ∈ E.

In particular, for f ∈ L1(ν), we have

Dx

∫

E

f dω = f(x).

The domain of D, denoted by Dom D is the set of functionals F : ΓE → R such
that

Eν

[
∫

E

|DxF (ω)|2 dν(x)

]

< ∞.

The integration by parts then says that, for any F ∈ Dom D, any u ∈ L2(ν),

(11) Eν

[

F

∫

E

u(x)( dω(x)− dν(x))

]

= Eν

[
∫

E

DxF u(x) dν(x)

]

.

We denote by σ = ‖f‖L2(ν)

√
λ and fσ = f/σ. Note that ‖fσ‖L2(ν) = 1/λ and that

m(p, λ) :=

∫

E

|fσ(x)|pλ dν(x) = ‖f‖−p
L2(ν)‖f‖

p
Lp(ν)λ

1−p/2.

The proof of the following theorem may be found in [5, 12, 13].

Theorem 2. Let f ∈ L2(ν). For λ > 0, let

Nλ =

∫

E

fσ(x)( dω(x)− λ dν(x)).
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Then, for any Lipschitz function F from R to R, we have
∣

∣

∣

∣

Eλν

[

F (Nλ)
]

−
∫

R

F dµ

∣

∣

∣

∣

≤ 1

2

√

π

2
m(3, λ) ‖F‖Lip.

To prove the Edgeworth expansion and its error bound, we introduce some no-
tions of Gaussian calculus. For F ∈ C2

b (R; R), we consider

AF (x) = xF ′(x)− F ′′(x), for any x ∈ R.

The Ornstein-Uhlenbeck semi-group is defined by

PtF (x) =

∫

R

F (e−tx+
√

1− e−2ty) dµ(y) for any t ≥ 0.

The infinitesimal generator A and Pt are linked by the following identity

(12) F (x)−
∫

R

F (y) dµ(y) = −
∫ ∞

0

APtF (x) dt.

Theorem 3. For F ∈ C3
b (R, R),

(13)

∣

∣

∣

∣

Eλν

[

F (Nλ)
]

−
∫

R

F (y) dµ(y)

−1

6
m(3, λ)

∫

R

F (y)H3(y) dµ(y)

∣

∣

∣

∣

≤
(

m(3, 1)2

6
+

m(4, 1)

9

√

2

π

)

‖F (3)‖∞
λ

·

Proof. According to the Taylor formula,

(14) DxG(Nλ) = G(Nλ + fσ(x))−G(Nλ)

= G′(Nλ)fσ(x) +
1

2
f2
σ(x)G

′′(Nλ)

+
1

2
fσ(x)

3

∫ 1

0

r2G(3)(rNλ + (1− r)fσ(x)) dr.

Hence, according to (11) and (14),

Eλν

[

Nλ(PtF )′(Nλ)
]

= Eλν

[
∫

E

fσ(x)Dx(PtF )′(Nλ)λ dν(x)

]

= Eλν

[

(PtF )′′(Nλ)
]

+
1

2

∫

E

f3
σ(x)λ dν(x)Eλν

[

(PtF )(3)(Nλ)
]

+
1

2

∫

E

f4
σ(x)λ dν(x)

×Eλν

[
∫ 1

0

(PtF )(4)(rNλ + (1 − r)fσ(x))r
2 dr

]

= A1 +A2 +A3.

It is well known that for F ∈ Ck, (x 7→ PtF (x)) is k + 1-times differentiable and
that we have two expressions of the derivatives (see [10]):

(PtF )(k+1)(x)

=
e−(k+1)t

√
1− e−2t

∫

R

F (k)(e−tx+
√

1− e−2ty)y dµ(y).
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and (PtF )(k+1)(x) = e−(k+1)tPtF
(k)(x). The former equation induces that

‖(PtF )(k+1)‖∞ ≤ e−(k+1)t

√
1− e−2t

‖F (k)‖∞
∫

R

|y| dµ(y)

=
e−(k+1)t

√
1− e−2t

√

2

π
‖F (k)‖∞.

Hence,

|A3| ≤
e−4t

6
√
1− e−2t

√

2

π
m(4, λ) ‖F (3)‖∞.

Moreover, according to Theorem 2,

∣

∣

∣

∣

Eλν

[

(PtF )(3)(Nλ)
]

−
∫

R

(PtF )(3)(x) dµ(x)

∣

∣

∣

∣

≤ 1

2

√

π

2
m(3, λ)‖(PtF )(4)‖∞

≤ 1

2
m(3, λ)

e−4t

√
1− e−2t

‖F (3)‖∞.

Then, we have,

|A2 −
1

2
m(3, λ)

∫

R

(PtF )(3)(x) dµ(x)|

≤ 1

4
m(3, λ)2

e−4t

√
1− e−2t

‖F (3)‖∞.

Hence,

Eλν

[

Nλ(PtF )′(Nλ)− (PtF )′′(Nλ)
]

=
1

2
m(3, λ)

∫

R

(PtF )(3)(x) dµ(x) +R(t),

where

R(t) ≤
(

m(3, λ)2

4
+

m(4, λ)

6

√

2

π

)

‖F (3)‖∞
e−4t

√
1− e−2t

·

Now then,

∫

R

(PtF )(3)(x) dµ(x)

= e−3t

∫

R

∫

R

F (3)(e−tx+
√

1− e−2ty) dµ(y)

= e−3t

∫

R

F (3)(y) dµ(y)

= e−3t

∫

R

F (y)H3(y) dµ(y),

since the Gaussian measure on R2 is rotation invariant and according to (9). Re-
marking that

∫ ∞

0

e−4t(1− e−2t)−1/2 dt = 2/3

and applying (12) to x = Nλ, the result follows. �
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This development is not new in itself but to the best of our knowledge, it is
the first time that there is an estimate of the error bound. Following the same
lines, we can pursue the expansion up to any order provided that F be sufficiently
differentiable. Namely, for F ∈ C5

b , we have

(15) Eλν

[

F (Nλ)
]

=

∫

R

F (y) dµ(y)

+
m(3, 1)

6
√
λ

∫

R

F (3)(y) dµ(y) +
m(3, 1)2

72λ

∫

R

F (6)(y) dµ(y)

+
m(4, 1)

24λ

∫

R

F (4)(y) dµ(y) + Fλ‖F (5)‖∞.

where

(16) Fλ ≤ m(3, 1)

λ3/2

(

2

45
m(3, 1)2

+(
4

135
+

π2

128
)

√

2

π
m(4, 1)

)

.

Appendix C. Concentration inequality

We are now interested in an upper bound, which is called concentration inequal-
ity.

Theorem 4. Let M,a > 0. Assume that |f(z)| ≤ M ν−a.s and f ∈ L2(E, ν), then

(17) P(F > E [F ] + a) ≤ exp

{

− M2

V [F ]
g

(

a.M

V [F ]

)}

where g(u) = (1 + u) ln(1 + u)− u.

The above theorem can be directly derived from [16]. However let us take this
opportunity to prove this theorem in a very nice, simple and elementary fashion,
exactly the same way as Bennett built his concentration inequality for the sum of
n i.i.d random variables.

Proof. Using Chernoff’s bound we have:

P(F > E [F ] + a) ≤ E
[

eθF
]

/eθ(E[F ]+a)

= e
∫
E(e

θf(z)−1−θf(z)) dν(z)−θa

Now assume that |f(z)| ≤ M ν−a.s . Observe that the function (ex − 1− x)/x2 is
increasing on R (the value at 0 is 1/2), we have that

eθf(z) − θf(z)− 1 ≤ eθM − 1− θM

M2
f2(z) ν a.s.

Thus,

P(F > E [F ] + a)

≤ exp

{
∫

E

(

eθM − θM − 1

M2
f2(z)

)

dν(z)− θa

}

= exp

{

eθM − 1− θM

M2
V [F ]− θa

}

·

We find that θ = ln (1 + aM/V [F ]) /M minimizes the right-hand-side and thus we
obtain (17). �
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