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Abstract

For OFDMA systems, we find a rough but easily computed upper

bound for the probability of loosing communications by insufficient num-

ber of sub-channels on downlink. We consider as random the positions of

receiving users in the system as well as the number of sub-channels dedi-

cated to each one. We use recent results of the theory of point processes

which reduce our calculations to that of the first and second moments of

the total required number of sub-carriers.

1 Introduction

The demand for high data rate wireless applications with restrictions in the RF
signal bandwidth requires bandwidth efficient air interface schemes. It is known
that OFDM yields a relatively simple solution to these problems [7]. Based on
the OFDM system, OFDMA can achieve a larger capacity. Furthermore, this
latter system is more flexible, since it can be easily scaled to fit in a certain piece
of spectrum simply by changing the number of used subcarriers [9]. However,
as any wireless systems, OFDM and OFDMA have physical limitations which
cause loss of communications. This loss can be caused by insufficient power or by
low signal-to-interference ratio, for instance. In this paper we are interested in
the calculation of an upper bound of the probability of loosing a communication
due to an insufficient number of sub-channels in the downlink.

We say that the system is overloaded when all non-used sub-channels are
not enough to warrant a minimum data rate for an incoming demand. We
consider a system with N0 sub-carriers and Ni is the number of sub-carriers
used by the i-th user in the cell. As it is usually done, we substitute the
finite number of subcarriers by infinity and substitute the loss probability by
Ploss = P (

∑

i Ni > N0). It is well known that this consideration gives us an
upper bound for the actual loss probability.

A user i requires a capacity Ci depending on the service he uses. Considering
a system with just one kind of service, all users require the same capacity C0.
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Even so, the number of subcarriers for each user varies according to the channel
conditions. These conditions can be summarized into two kinds of gains, one
depending only on the position of the user i, the path loss Gpli , and a gain
Gi, which classically may include the shadowing and the Rayleigh fading. We
choose the simplest model to represent the path loss:

Gpli =
K

Dγ
i

where K and γ are constants and Di is the distance between the user i and the
antenna.

Shannon’s maximum achievable capacity implies that:

Ni =













C0

W log2

(

1 +
PtGpliGi

I

)













where W is the bandwidth of each sub-carrier, Pt is the mean transmitted
power by sub-channel and I is the power of the additive Gaussian white noise
by sub-channel.

We consider that the number as well as the position of users in the cells
are random. After some natural assumptions done in the following section, we
conclude that the configuration of users in the cell is a Poisson point process
(see section 2).

After a summary on Poisson point process, we consider three different cases
to calculate an upper bound for the loss probability. First we consider the
simplest case with deterministic gain. In Section 4, we consider a non-selective
frequency gain, the shadowing. In section 5, we consider a general case from
which all other cases could be derived but for which no closed form formula
exists.

2 Poisson point processes

For details on point processes, we refer to [1, 4, 5, 6]. A configuration η in Rk

is a set {xn, n ≥ 1} where for each n ≥ 1, xn ∈ Rk, xn 6= xm for n 6= m and
each compact subset of Rk contains only a finite subset of η. We denote by ΓRk

the set of configurations in Rk. Equipped with the vague topology of discrete
measures, ΓRk is a complete, separable metric space. A point process Φ is a
random variable with values in ΓRk , i.e., Φ(ω) = {Xn(ω), n ≥ 1} ∈ ΓRk . For
A ⊂ Rk, we denote by ΦA the random variable which counts the number of
atoms of Φ(ω) in A:

ΦA(ω) =
∑

n≥1

1Xn(ω)∈A ∈ N ∪ {+∞}.

Poisson point processes are particular instances of point processes such that:
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Definition 1. Let Λ be a σ finite measure on Rk. A point process Φ is a
Poisson process of intensity Λ whenever the two following properties hold.

1 - For any compact subset A ∈ Rk, ΦA is a Poisson random variable of
parameter Λ(A), i.e.,

P(ΦA = k) = e−Λ(A) Λ(A)k

k!
.

2 - For any disjoint subsets A and B, the random variables ΦA and ΦB are
independent.

The notion of point process trivially extends to configurations in Rk × X
where X is a subset of Rm. A configuration is then typically of the form
{(xn, yn), n ≥ 1} where for each n ≥ 1, xn ∈ Rk and yn ∈ X . We keep
writing (xn, yn) as a couple, though it could be thought as an element of Rk+m,
to stress the asymmetry between the spatial coordinate xn and the so-called
mark, yn. For a marked point process, we denote by Φ the set of locations,
i.e., Φ(ω) = {Xn, n ≥ 1} and by Φ̄ the set of both locations and marks, i.e.,
Φ̄(ω) = {(Xn, Yn), n ≥ 1}. A marked point process with position dependent
marking is a marked point process for which the law of Yn, the mark associated
to the atom located at Xn, depends only on Xn through a kernel K:

P(Yn ∈ B |Φ) = K(Xn, B), for any B ⊂ X.

If K is a probability kernel, i.e., if K(x, X) = 1 for any x ∈ Rk then it is well
known that Φ̄ is a Poisson process of intensity K(x, dy)dΛ(x) on Rk×Rm. The
Campbell formula is a well known and useful formula

Theorem 1. Let Φ̄ be a marked Poisson process on Rk × Rm. Let Λ be the
intensity of the underlying Poisson process and K the kernel of the position
dependent marking. For f : Rk×Rm → R a measurable non-negative function,
let

F =

∫

f dΦ̄ =
∑

n≥1

f(Xn, Yn).

Then,

E [F ] =

∫

Rk×Rm

f(x, y)K(x, dy)dΛ(x).

Definition 2. For F : ΓRk → R, for any x ∈ Rk, we define

DxF (ω) = F (ω ∪ {x}) − F (ω).

Note that for F =
∫

fdΦ, DxF = f(x), for any x ∈ Rk. We now quote from
[3, 10] the main result on which our inequalities are based:
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Theorem 2 (Concentration inequality). Assume that Φ is a Poisson pro-
cess on Rk of intensity Λ. Let f : Rk → R+ a measurable non-negative function
and let

F (ω) =

∫

f dΦ =
∑

n≥1

f(Xn(ω)).

Assume that |DxF (ω)| ≤ s for any x ∈ Rk. Let

mF = E [F ] =

∫

f(x) dΛ(x)

and

vF =

∫

|DxF (ω)|2dΛ(x) =

∫

f2(x) dΛ(x).

Then, for any t ∈ R+,

P(F − mF ≥ t) ≤ exp

(

− vF

s2
g

(

t s

vF

))

where g(t) = (1 + t) ln(1 + t) − t.

3 Deterministic gain

We state the following assumptions:

Assumption 1. The position of each user is independent on the position of
all other. The users are indistinguishable, i.e., the positions are identically
distributed.

Assumption 2. The time between two consecutive demands of users for service
in the system (or interarrival time) is exponentially distributed.

We define ρ(x) as the surface density of interarrival time in s−1m−2, constant
in time. Hence, for a region H ⊆ B, the mean interarrival rate is h =

∫

H ρ(x)dx
in s−1.

Assumption 3. The service time for every user is exponentially distributed
with mean 1/ν.

Assumption 4. The cell C is circular, with radius R and with the antenna in
the center.

Assumption 5. The channel gain depends only on the distance from the trans-
mitting antenna.

Assumption 6. The surface density of interarrival time is constant.

These assumptions are commonly done to simplify the mathematical treat-
ment and are quite reasonable. If we show that the point process given by the
location of the users is a Poisson process, then it is sufficient to have the two
first moments in order to apply theorem 2 and then calculate an upper bound
Psup for Ploss. To do this, we consider the following lemma:
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Lemma 1. Considering assumptions 1, 2 and 3, the point process Φ of the ac-
tive users positions is, in equilibrium, a Poisson process with intensity dΛ(x) =
ρ(x)ν−1dx

Proof. For a region H , in virtue of assumptions 2 and 3, the number of receiving
(i.e., active) customers is the same as the number of customers in an M/M/∞
queue with input rate h and mean service time ν−1. It is known [8] that the
distribution of the number of users U in equilibrium is then

P (U = u) =
(h/ν)u

u!
e−h/ν.

It follows that the first condition of definition 1 is satisfied with intensity measure
Λ(H)

Λ(H) = h/ν =

∫

H

ρ(x)

ν
dx.

Condition 2 of definition 1 follows straightforwardly from assumption 1.

Without loss of generality, we consider the cell C has its antenna located at
the origin. We are looking at evaluating

P(

∫

N dΦ ≥ N0),

where N(x) is defined by

N(x) =













C0

W log2

(

1 +
PtKḡ

Ixγ

)













,

where ḡ is the mean gain due to shadowing. Note that, with respect to x, N is
increasing and piecewise constant. Let Rj , j = 1, · · · , Nmax be the values such
that N(x) = j for x ∈ [Rj , Rj+1). We can easily determine them by

Rj =

(

PtKg

I(2C0/(jW ) − 1)

)1/γ

.

According to Theorem 1, it is then clear that

E

[
∫

N dΦ

]

=

∫

NdΛ =
πρ

ν

Nmax
∑

j=1

j(R2
j − R2

j−1).

We denote by mN the last quantity. Moreover,

∫

N2dΛ =
πρ

ν

Nmax
∑

j=1

j2(R2
j − R2

j−1).
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α 1.5 1.6 1.7 1.8 1.9 2

Psup 0.18 0.1 0.04 0.02 0.008 0.003
∆ 0.98 0.1 1.15 1.3 1.3 1.4

Table 1: Comparison between Psup and Ploss for deterministic gain.

We denote by vN the last quantity. We take N0 of the form αmN , so that
according to Theorem 2:

P(

∫

N dΦ ≥ αmN ) ≤ Psup(α)

where

Psup(α) = exp

(

− vN

N2
max

g

(

(α − 1)mNNmax

vF

))

.

It is then natural to verify how far this bound is from the exact value of the
loss probability in simple situations where simulation is available. We used here
γ = 2.8, C0 = 200 kb/s, W = 250 kHz and PtK/I = 1 × 106. For the surface
density of interarrival time we use ρ = 0.0006 min−1m−2 and the service time
is 1/ν = 1 min, so, the mean number of users in the system is πR2ρ/ν = 18.85
users. If we consider the shadowing with σ =

√
10 dB and µ = 6 dB, we can

use the mean gain g, giving g = 1/12. Thus, users in the cell boundary use 3
sub-channels, so Nmax = 3. For α varying from 1 to 2, which corresponds here
to loss probabilities about 2% or 0.01%, we computed ∆ = log10 Psup/Ploss.
Though concentration inequalities are usually thought as almost optimal, the
results shown in Table 1 seem at first glance disappointing. Remind though
that the computation of the bound is immediate whereas the simulation on a
fast PC took several hours to get a decent confidence interval. Remind also that
the error is about the same order of magnitude as the error made when using a
usual trick which consists in replacing infinite buffers by finite ones in Jackson
networks (see [2]). The margin provided by the bounds may be viewed as a
protection against errors in the modelling or in the estimates of the parameters.

4 Random gain

Let us determine now the upper bound probability Psup for Ploss without as-
sumption 5 but holding all other assumptions of the preceding section. Lemma 1
still holds, since it is a consequence of assumptions 1, 2 and 3. We also state
two other natural assumptions:

Assumption 7. The random gain is totally described by the log-normal shad-
owing, with mean µ and standard deviation σ, both in dB.

For a user at distance d from the origin, the gain is G = 1/S, where S follows
a log-normal distribution:

pS(y) =
ξ√

2πσy
exp

[

− (10 log10 y − µ)2

2σ2

]

,
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where ξ = 10/ ln 10.

Assumption 8. A user is able to receive the signal only if the signal-to-interference
ratio is above some constant βmin.

This means, in particular, that the number of subcarriers needed by a trans-
mitting user is surely bounded by

Nmax =

⌈

C0

W log2(1 + βmin)

⌉

.

The situation is slightly different from that of Section 3, since the functional
depends on two aleas: positions and gains. Consider now that our configurations
are of the form (x, s) where x ∈ R2 is still a position and s ∈ R is a gain. Since
gain and positions are independent, we then have a Poisson process on R3 of
intensity measure dΛ(x) ⊗ pS(y)dy. Thus we want to evaluate an upper bound
of

P(

∫

NdΦ ≥ N0)

where

N(x, y) =













C0

W log2

(

1 +
PtK

Iyxγ

)













.

According to Theorem 2, we must compute

mN =

∫

N(x, y)pS(y)dy dΛ(x)

and

vN = sup
ω

∫

|Dx,yF (ω)|2pS(y)dy dΛ(x)

=

∫

N2(x, y)pS(y)dy dΛ(x).

Let β0 = ∞ and βj = 2C0/(Wj) − 1 for j = 1, · · · , Nmax − 1. For j =
1, · · · , Nmax − 1, let

Aj =

∫

C×R+

1{y‖x‖γ≤PtK/Iβj}pS(y) dy dx

and A0 = 0.

Lemma 2. For j = 1, · · · , Nmax − 1,

Aj = πR2Q(αj − ζ lnR)

+ πe2/ζ2+2αj/ζQ(ζ lnR − 2/ζ − αj),

where

αj =
1

σ
(10 log10(PtK/Iβj) − µ) and ζ =

10γ

σ ln 10
.
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Proof. We can write

Aj =

∫

C

P(S‖x‖γ ≤ β̃j) dx

where β̃j = PtK/Iβj. Remind that S is equal in distribution to exp(N (µ, σ2)ξ)
with ξ = ln(10)/10. Thus after a few manipulations, we get

Aj = 2π

∫ R

0

r Q(αj − ζ ln r) dr,

where

Q(x) =
1√
2π

∫ x

−∞

exp(− u2

2
) du.

The final result follows by a tedious but straightforward integration by parts.

Theorem 3. For any function θ : R → R,

∫

θ(N(x, y))pS(y)dy dΛ(x)

=

Nmax−1
∑

j=1

θ(j)(Aj − Aj−1) + θ(Nmax)(πR2 − ANmax−1).

Proof. Since N can take only a finite number of values, we have

∫

θ(N(x, y))pS(y)dy dΛ(x)

=
ρ

ν

Nmax
∑

j=1

θ(j)

∫

C×R+

1{(x, y), N(x, y)=j}pS(y)dy dx.

Now we see that

N(x, y) = j ⇐⇒ β̃j−1 < y‖x‖γ ≤ β̃j ,

for j = 1, · · · , Nmax − 1 and N(x, y) = Nmax when y‖x‖γ > β̃Nmax−1. The
proof is thus complete.

We used the same set of values as for the simulation of Section 3 together
with assumptions 8 and 7 with βmin = 0.2. Results of Table 2 show that the
theoretical bound is rather stable when gains become stochastic.

α 1.5 1.6 1.7 1.8 1.9 2

Psup 0.2 0.1 0.05 0.02 0.01 0.004
∆ 1.7 1.8 2.1 2.3 2.4 2.6

Table 2: Comparison between Psup and Ploss for random gain.
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5 General case

Actually, the method can be applied to more general situations as we illustrate
now. We consider only assumptions 1, 2, 3 and 8, a non-frequency selective
random gain G with distribution pG, a finite number of antennas with a deter-
ministic pattern and the assumption that the user will receive the signal from
the antenna which can provide a better signal-to-interference ratio.

Now C is the Borel set where it is possible to find users. Possibly, C = R2.
In this region, we have a finite number of antennas J + 1 with the j-th located
at yj, j = 1, J , and the one we observe located at y0. This means that for each
user, there is a vector G = (G, G1, ..., GJ) where G is the gain due the antenna
at y0 and Gj due to antenna located at yj . We then define the Poisson point
process Ψ in C ×RJ+1

+ , representing the user positions and the gain of each one
due to each antenna. Again, since gains from different antennas and positions
are independent altogether, Ψ has intensity λm:

λm(g, x) = pG(g)pG(g1)...pG(gJ)
ρ(x)

ν

We define the sets

A′ =







J
⋃

j=1

(

(g, g1, . . . , x), gj >
‖x − y0‖γ

‖x − yj‖γ
g

)







and
B = ((s, x), s ≤ R(x)) ,

where

R(x) =
PtK

βmin‖x − y0‖γ
.

The event ((G, X) ∈ A′) means that the antenna at y0 provides the highest
signal-to-interference ratio to a point X . The event ((S, X) ∈ B) means the
signal-to-interference ratio provided by the antenna at y0 to a point X is higher
than βmin. By Theorem 2, we are thus led to compute

∫∫

A∩B

N(‖x‖, g)kdλm(x, g),

for k = 1, 2. There is no longer a closed form formula for these integrals but
they can be easily and quickly computed by numerical methods. This yields to
an upper bound of Ploss. We simulated in this section the loss probability for an
antenna placed at the origin and six other antennas placed at the points y1 =
(2R, 0), y2 = (R, R

√
3), y3 = (−R, R

√
3), y4 = (−2R, 0), y5 = (−R,−R

√
3) and

y6 = (R,−R
√

3), representing an hexagonal arrangement. All other parameters
are the same as the ones in previous sections. We find a mean mN = 21.60 and
the second moment vN = 26.81. It turns out that the results are close to the
results in Section 4, suggesting that the approach of Section 4 is satisfactory
enough with our physical assumptions.
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6 Concluding remarks

Using the concentration and deviation inequalities and the difference operator
on Poisson space, we have calculated the upper bound probability of overloading
the system by high demand of subcarriers, over path loss and shadow fading.
To do this we have found the first and second moment of the marked Poisson
point process of users. We conclude that it is possible to find an upper bound
for the overloading probability, even in a relatively complex system, which is
analytically computable in a very simple fashion. The method works for any
functional of the configurations, possibly enriched by marks, which depends only
on the positions of each user. It does not work for functionals involving relative
distance between two or more users. Actually, for such a functional F , there is
no bound on DxF (ω) valid for all x and ω.
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