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Abstract—The numerical solution of the three-dimensional Il. THE DOMAIN DECOMPOSITION STRATEGY

time-harmonic Maxwell equations using high order methods sch S . .
as discontinuous Galerkin formulations require efficient ®lvers. For the sake of simplicity we consider the following non-

A domain decomposition strategy is introduced for this purpse. dimensioned transverse electric model problem in a domain
This strategy is based on optimized Schwarz methods applied €2 C R2:
to the first order form of the Maxwell system and leads to the

best possible convergence of these algorithms. The prindgs are Find the non-dimensioned field, H) satisfying:

explained for a 2D model problem and numerical simulations lweE — curl H = 0, i.n Q, 1)
confirm the predicted theoretical behavior. The efficiency $ iwpH + curl E =0, in Q,
further demonstrated on more realistic 3D geometries inclding n x (E — E"®) + (H — H™) = 0, on 012.

a bioelectromagnetism application. ) )
The parameters and p denote respectively the relative

dielectric permittivity and the relative magnetic permiégh
w the angular frequency) the unitary outgoing normal and
(E'»¢, H®¢) the components of an incident electromagnetic
|. INTRODUCTION wave.
For solving (1), the domaif is decomposed in two non-
ISCONTINUOUS Galerkin (DG) methods are emergingverlapping subdomair3; and(2,. The common interface to
for the solution of time-harmonic Maxwell’s equations); and(}, is denoted byl'. The DD strategy is then a variant
[1] because of the enhanced flexibility compared to the coef the classical Schwarz method:
forming edge element method [2]. For instance, by using a, \we start with an initial electromagnetic fie{@?, HY) on
DG method, dealing with non-conforming meshes is straight-  gach subdomaif;, I = 1, 2.
forward. The formulation of such methods in the case of the, The (p + 1)-th iterate (EP*' HP™') is the solution of
first order elliptic Maxwell system has been fully analyzaed i (1) restricted to the subdomaify; with an interface
[3] and an extension to the time-harmonic first order sysemi  ansmission condition ofi of the form:
introduced in [4] where a numerical comparison of different ol , bl by
schemes is proposed. { n x (B —ER) JQF Si(H —HE) =0, 2)
Nonetheless, before taking advantage of the flexibility of with 5y = oy + 6197,

the DG methods, the design of efficient algorithms for the  where 02 denotes the second-order derivative along the
resulting sparse linear system has to be addressed. Here we interface. The operato§; ensures the transmission of
propose a domain decomposition (DD) strategy based on the field (E?,,H?,) computed at the previous iteration

optimized Schwarz methods [5]-[7]. First, the DD strategy i in the neighboring subdomaim with parametersa;,
introduced in the two-domain case for a 2D transverse @ectr By proper]y chosen to control the convergence of the

model problem. Then the discretization of the problem by a  algorithm.

DG method is presented. Finally, numerical results for a 2D, The limit of the sequenceE?, HY), ey is the restriction
problem confirm the expected theoretical behavior of the DD to (); of (E, H) the solution of (1). Thus, we can use a
method and 3D numerical experiments on simplified problems  stopping criterion:

pave the way for more realistic applications.

Index Terms—Domain decomposition methods, discontinuous
Galerkin methods, optimized interface conditions.

2 p+1 1 )

EPFL P — (EP,HP
le(l HT) — (B l)”<tol, 3)
=1
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this boundary condition is strongly dependent on the mesdegreek:
size used for the discretization and the convergence to the
solution can be slow. We refer to this condition as the ctadsi

condition in the following. Thus no particular continuity constraint is enforced at the

Nonetheless, it is possible to greatly improve the cofnterface of each element. The weak formulation of the discr
vergence rate by optimizing it with respect tq, 5;. This problem is then the following:
theoretical study is done in [7] directly on (1) and in [9] for ) .
the second ordeturl curl formulation. Find (Ex, Hy) € Vi, x Vi, such that:

The closed-form expressions obtained for the coefficien Sa(H;L,G) +m :/ 1 (Hinc _ NtEinc) Gds
«;, B; are in particular dependent of the mesh size. Thege 2 ” ’
expressions are then used in a DD strategy generalized ® maér
than two subdomains.

Let us briefly recall the analysis proposed in [7] in ordel| vF < V2,G eV,
to deduce a theoretical convergence ratéor the iterative
algorithm depending on the mesh sizeThis analysis is done
on the continuous,e. without discretization, DD method but o(Hy, G) :/ oo, Gl + Z / oH, Gds
numerical arguments are given in the following for showing ’ Q, poroF
that the results remain valid with a discretization. 1

The study ofp is done for a decomposition @&¢ into two +/ SHrGds,
infinite domains. A Fourier transform is applied with respec 7%
to the tangential variables to the interface (artificial bdary —b(G,Ej,) = > / G curl(Ep)dv — ) /{G}t[[E_h]]Tds

K F

Vi ={VelL’Q) /VK €Ty, Vik€P(K)}. (4

1 . o
b(Hy, F) — (B, F) = / 5 (NaH" — NoNLE"™)'Fds,
o0

where:

separating the two domains). The resulting local equatians KeT, Fero
be solved leading to the formulation of an iterative procgss 1G NEOd
plied to the interface variables. Then, we obtain the redoct 50, 9 (NnEn)ds.

factor of the error ) as a function of the Fourier variable 5nq finally:

and the parameters involved in the interface conditions. In

order to obtain the best possible convergence rate, onesneedE;, F) = / iweE, Fdv +
to optimize this quantity with respect to the parametensttie h

range of possible spatial frequencies that can be repezsent 1, =

on a given mesh. In the sequel, we treat the cases of zerb /m §(N“Eh>(N“F)dS'
order boundary conditions where we take in ()equal to

i t 2
zero that is the case of generalized impedance conditiovis. TThg matn):an denotes(—ny_ Tl"”)h fora vect?m (()j”%] ' {G}
possibilities are considered; = «s anda; # as. It has been and [F]r denotes respectively the mean Gfand the jump

proved thato; are equal to(iw) " (p; + ip:) wherep, andps pf thg tangentiéil componen_t &f over a faceF' of the se_t of
are reported in Table I. When the mesh paramegter small, |n.ter|or faceS.F - Note that in order to !<eep the. consllstency
the maximum numerical frequency that can be represented h, the continuous problem, a num.erlcal flux is defined on
the mesh is estimated By, .x = % whereC' is a constant. We the |_nte_rface of ea_lch element enfc_)rcmg weakly t_he _tangbntl
also definek.. such thate_ < w < k. in order to exclude the continuity constraint for the electric and magnetic fieldheT

frequencyw from the optimization process and this frequenc?roper choice of different kind of fluxes has been discussed

being treated by the Krylov method (see also [6] for details)T°™ he numerical point of view in [4]. For instance, the
choicea = 0 corresponds to the case of the centered flux, and

TABLE | a = 1/2 to the choice of a simplified upwind flux. The former
CONVERGENCE RATE AND TRANSMISSION CONDITION PARAMETERS has the advantage to be easy to implement and requires a lower
memory storage. The latter has better convergence preperti

> /F o[BS [F]rds

Fero

Case P p1 p2
vact ved | vzl
w L) TCw
1 1= 7 vVh Ty 2y IV. TWO-DIMENSIONAL NUMERICAL RESULTS
1 1 1 3 4 . .
2 1- % pt mi1Cg | T The agreement between the theoretical and numerical con-
w4 2h4% h4

vergence rates is demonstrated on a problem Qith]0; 12,
(E¢ H"®) = exp(—iwx)(0,1,1) andw = 27 discretized by
discontinuous Galerkin methods. Firstly, we study the influ
111. DISCRETIZATION OF THE PROBLEM ence of the choice of the numerical flux and of the polynomial

) o order on the theoretical convergence rate. Secondly, wiy stu
For the discretization of the local problem &%, a DG  {he multidomain case.

method is used. The domain is decomposed into a set of

elementsT;, such thatUgxer, K = ;. The approximate ]
solution (E,, Hy,) of (1) is an element of/? whereV, is the A. Influence of the element order and of the numerical flux
finite element space of square-integrable discontinuoakusc The first DG discretization is based on a triangular uniform
fields whose restriction to an elemeht is polynomial of mesh with P, (K) as the local space in each eleméat On
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Figure 1, the number of iterations for achieving a prescribas a linear system whose unknowns are auxiliary interface
accuracy against the mesh size is shown for both boundagriables. This interface system is usually solved by a éiryl
conditions (Case 1 and Case 2). The curves fit nicely theethod which gives more robustness to the DD strategy. Here
dependence ih predicted by the theorye. they behave like we make use of GMRES for solving the interface system. We
h=095 for Case 1 and likeh -2 for Case 2. observe that, independently of the flux chosen, the number
of iterations grows roughly ad’?-3 where N is the number

of subdomains. Thus, the convergence deteriorates with the
number of subdomains and it advocates for the use of a coarse
grid in order to obtain an optimal solver. Nevertheless the
hierarchy of the transmission conditions is maintained tted

1 optimized versions enable us to accelerate the convergence
compared to the classical condition [8].

Number of iterations against the mesh size.w=2 1
T

g 05
—+— Parameters Case 1|4
g 025

——+— Parameters Case 2

10t}

1048

1047

iterations

T T

10k

4 +—+ Classical
+ -+ Est. exponent: 0.29
e—e Case 1 >
e -e Est. exponent: 0.26 P
=—a Case 2
= -m Est. exponent: 0.3

15

1071

h

Fig. 1. Number of iterations against the mesh gizé ogarithmic scale.

Number of iterations

In order to demonstrate that the theoretical results are
independent of the choice of the DG discretization, we also
approximate numerically this asymptotic convergence rate
using three polynomial orders for the element interpotatio
(here quadrilateral elements are considered to simpligy th
management of the multi-domain case for this academic prafyy. 2. Number of iterations against the number of subdosidihe number
lem) and two different fluxes; these experiments are regortef degrees of freedom is constant. Results for the centend fl
in Table II. A behavior close toh="5 and h=%25 for the
number of iterations is obtained by the numerical experigien
independently of the choice of the numerical flux and of the

H
10! 10? 10°
Number of subdomains

numerical order. — ! %
+—+ Classical -
+ -+ Est. exponent: 0.31
TABLE Il e—e Case 1
ESTIMATED VALUE OF § WHEREp = 1 — Ch?, + e Est. exponent: 0.28
=—a Case 2 >
@ = -m Est. exponent: 0.31 i~
o
Flux Qo | Q1 Q2 ©
Centered Case 1 0.48 | 0.46 | 0.49 2
Centered Case 2 0.27 | 0.26 | 0.23 °
Upwind Case 1| 0.45 | 0.47 | 0.47 £
Upwind Case 2| 0.37 | 0.26 | 0.25 3

B. Influence of the number of subdomains s - J
Number of subdomains

As in practice more than two domains are used, the perfor-
mances of the optimized conditions are evaluated for more
subdomains. The same problem as in Subsection IV-A E%
solved.

The numerical experiments are still performed on a struc-
tured grid and then the partition into several subdomains is
made in a regular way: a decomposition¥hx N rectangular .
subdomains of the unit square. The results for the centerdd Scattering by a sphere
case are shown on Figure 2 and the results for the upwindThe implementation of optimized interface conditions for
case on Figure 3; §; polynomial approximation is used forthree-dimensional time-harmonic Maxwell's equations is a
these figures. Note that for obtaining these results, a Krylaork in progress. Here, we give preliminary results for tH2 D
subspace method is coupled to the Schwarz algorithm. Indestlategy based on first order absorbing boundary conditisns
as it is explained in [5], the DD method can be formulateglansmission conditions.

3. Number of iterations against the number of subdosadihe number
egrees of freedom is constant. Results for the upwind flux

V. THREE-DIMENSIONAL PROBLEM
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The problem under consideration is the scattering of a plamth P, and P, elements and upwind and centered fluxes are
wave by a perfectly conducting unit sphere. The incidensed for the meshes M1 and M2. The mesh M1 and a view

wave is given byE" = (exp(—iwz),0,0)! and H"¢ =

of the solution is proposed on Figure 4.

(0, exp(—iwz),0)t, with w = 4. The absorbing boundary Performance results are given in Table V. The parallel

is set to one wavelength from the surface of the perfectly coefficiency, evaluated using the maximum CPU to REAL ratio,

ducting sphere. The mesh is composed of 1,382,400 tetmhew@dinges from 65% to 75%.

and aP,(K) local space is used for the DG method. The total

number of unknowns is 8,294,400.
Numerical experiments are conducted on a cluster of 64

AMD Opteron/2 GHz processors with a Gigabit Ethernet intef=ygsp
connection. One subdomain is associated to each processora M1
a sparse matrix direct method is used to solve the subdomain-
problem. Note that we use a BiCGstabmethod [10] either

TABLE V
COMPUTATION TIMES. U: UPWIND FLUX, C: CENTERED FLUX.

Method | N, | #iterations | CPU (min/max)| REAL

DG-P;-c | 96 47 346 sec/466 se¢ 714 sec
DG-P;-u 96 46 347 sec/547 se¢ 765 sec
DG-FPy-c 96 33 228 sec/322 seq¢ 428 sec

for solving the interface system or as a global solver withou
preconditionner.

Performance results are given in Table Ill where 'DDM
refers to the DD solution strategy. The per processor time f
performing the factorization is 18.0 sec (min)/102.0 seax)n
while the associated memory usage is 405 MB (min)/1001 M
(max). In addition to the gain in computing time, a cleg
advantage of the DD strategy is its parallel efficiency tteat c
be evaluated here as the ratio of 'CPU (max)’ over 'Elapse
which is equal to 92% while the corresponding feature for th

global solver is 74%.

PERFORMANCE RESULTS'CPU (MIN/MAX )’ ARE PER PROCESSOR

TABLE Il

MEASURES OF THECPUTIME. 'ELAPSED' IS THE ELAPSED TIME

Solver | # iterations | CPU (min) | CPU (max) Elapsed
Global 2031 1940.0 sec| 2142.0 sec| 2919.0 sec
DDM 14 259.0 sec| 413.0sec| 449.0 sec

B. A bioelectromagnetism example

We conclude this section of results with the application
the proposed numerical methodology to the simulation of A
time-harmonic electromagnetic wave propagation problem
an irregularly shaped and heterogeneous medium. The pnob
under consideration is concerned with the propagation of
plane wave in realistic geometrical models of head tissuets

Fig. 4. View of the mesh M1 and a solution computed on this mesh

VI. CONCLUSION

In this paper, classical and optimized Schwarz algorithms
have been applied to time-harmonic Maxwell's equations
discretized by DG methods. Concerning Schwarz algorithms
based on optimized interface conditions, two-dimensiowal
merical results show a good agreement with the theory in the

s@se of the simplest optimized conditions and the behavior

IS, independent of the choice of the flux and the polynomial
9rder for the finite element space. Preliminary results in

e three-dimensional case are very promising for claksica
wgerface conditions, opening the way to improvements by
ing optimized interface conditions on realistic applmas.

Two tetrahedral meshes have been used whose characseristic

are summarized in Table IV. The frequency of the incident

TABLE IV

CHARACTERISTICS OF THE TETRAHEDRAL MESHES

Mesh | # tetrahedra] Lyin (M) | Lmax (M) | Lavg (M)
M1 361,848 0.00185 0.04537 0.01165
M2 1,853,832 0.00158 0.02476 0.00693
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