Ivan Nourdin 
email: ivan.nourdin@upmc.fr
  
David Nualart 
email: nualart@math.ku.edu
  
  
  
Central limit theorems for multiple Skorohod integrals

Keywords: central limit theorem, fractional Brownian motion, Malliavin calculus. 2000 Mathematics Subject Classification: 60F05, 60H05, 60G15, 60H07

published or not. The documents may come    

Central limit theorems for multiple Skorohod integrals

Ivan Nourdin, David

Introduction

Consider a sequence of random variables {F n , n ≥ 1} defined on a complete probability space (Ω, F, P ). Suppose that the σ-field F is generated by an isonormal Gaussian process X = {X(h), h ∈ H} on a real separable infinitedimensional Hilbert space H. This just means that X is a centered Gaussian family of random variables indexed by the elements of H, and such that, for every h, g ∈ H, E [X(h)X(g)] = h, g H .

(1.1)

Suppose that the sequence {F n , n ≥ 1} is normalized, that is, E(F n ) = 0 and lim n→∞ E(F 2 n ) = 1. A natural problem is to find suitable conditions ensuring that F n converges in law towards a given distribution. When the random variables F n belong to the qth Wiener chaos of X (for a fixed q ≥ 2), then it turns out that the following conditions are equivalent: (i) F n converges in law to N (0, 1);

(ii) lim n→∞ E[F 4 n ] = 3;

(iii) lim n→∞ DF n 2 H = q in L 2 (Ω).

Here, D stands for the derivative operator in the sense of Malliavin calculus (see Section 2 below for more details). More precisely, the following bound is in order, where N denotes a standard Gaussian random variable:

sup z∈R |P (F n ≤ z) -P (N ≤ z)| E 1 - 1 q DF n 2 H 2 (1.2) q -1 3q E(F 4 n ) -3 . (1.3) 
The equivalence between conditions (i) and (ii) was proved in Nualart and Peccati [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] by means of the Dambis, Dubins and Schwarz theorem. It implies that the convergence in distribution of a sequence of multiple stochastic integrals towards a Gaussian random variable is completely determined by the asymptotic behavior of their second and fourth moments, which represents a drastic simplification of the classical "method of moments and diagrams" (see, for instance, the survey by Peccati and Taqqu [START_REF] Peccati | Moments, cumulants and diagram formulae for non-linear functionals of random measures[END_REF], as well as the references therein). The equivalence with condition (iii) was proved later by Nualart and Ortiz-Latorre [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF] using tools of Malliavin calculus. Finally, the Berry-Esseen's type bound (1.2) is taken from Nourdin and Peccati [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], while (1.3) was shown in Nourdin, Peccati and Reinert [START_REF] Nourdin | Invariance principles for homogeneous sums: universality of Wiener chaos[END_REF].

Peccati and Tudor [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF] also obtained a multidimensional version of the equivalence between (i) and (ii). In particular, they proved that, given a sequence {F n , n ≥ 1} of d-dimensional random vectors such that F i n belongs to the q i th Wiener chaos for i = 1, . . . , d, where 1 q 1 . . . q d , then if the covariance matrix of F n converges to the d × d identity matrix I d , the convergence in distribution to each component towards the law N (0, 1) implies the convergence in distribution of the whole sequence F n towards the standard centered Gaussian law N (0,

I d ).
Recent examples of application of these results are, among others, the study of p-variations of fractional stochastic integrals (Corcuera et al. [START_REF] Corcuera | Power variation of some integral fractional processes[END_REF]), quadratic functionals of bivariate Gaussian processes (Deheuvels et al. [START_REF] Deheuvels | On quadratic functionals of the Brownian sheet and related processes[END_REF]), self-intersection local times of fractional Brownian motion (Hu and Nualart [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF]), approximation schemes for scalar fractional differential equations (Neuenkirch and Nourdin [START_REF] Neuenkirch | Exact rate of convergence of some approximation schemes associated to SDEs driven by fractional Brownian motion[END_REF]), high-frequency CLTs for random fields on homogeneous spaces (Marinucci and Peccati [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF][START_REF] Marinucci | Group representations and highresolution central limit theorems for subordinated spherical random fields[END_REF] and Peccati [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF]), needlets analysis on the sphere (Baldi et al. [START_REF] Baldi | Subsampling Needlet Coefficients on the Sphere[END_REF]), estimation of self-similarity orders (Tudor and Viens [START_REF] Tudor | Variations and estimators for the selfsimilarity order through Malliavin calculus[END_REF]), weighted power variations of iterated Brownian motion (Nourdin and Peccati [START_REF] Nourdin | Weighted power variations of iterated Brownian motion[END_REF]) or bipower variations of Gaussian processes with stationary increments (Barndorff-Nielsen et al. [START_REF] Barndorff-Nielsen | Bipower variations for Gaussian processes with stationary increments[END_REF]).

Since the works by Nualart and Peccati [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] and Peccati and Tudor [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF], great efforts have been made to find similar statements in the case where the limit is not necessarily Gaussian. In the references [START_REF] Peccati | Stable convergence of multiple Wiener-Itô integrals[END_REF] and [START_REF] Peccati | Stable convergence of generalized L 2 stochastic integrals and the principle of conditioning[END_REF], Peccati and Taqqu propose sufficient conditions ensuring that a given sequence of multiple Wiener-Itô integrals converges stably towards mixtures of Gaussian random variables. In another direction, Nourdin and Peccati [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] proved an extension of the above equivalence (i) -(iii) for a sequence of random variables {F n , n ≥ 1} in a fixed qth Wiener chaos, q ≥ 2, where the limit law is 2 G ν/2ν, G ν/2 being the Gamma distribution with parameter ν/2.

The purpose of the present paper is to study the convergence in distribution of a sequence of random variables of the form F n = δ q (u n ), where u n are random variables with values in H ⊗q (the qth tensor product of H) and δ q denotes the multiple Skorohod integral (that is, δ 2 (u) = δ(δ(u)), δ 3 (u) = δ(δ(δ(u))), and so on), towards a mixture of Gaussian random variables. Our main abstract result, Theorem 3.1, roughly says that under some technical conditions, if u n , D q F n H ⊗q converges in L 1 (Ω) to a nonnegative random variable S 2 , then the sequence F n converges stably to a random variable F with conditional characteristic function E e iλF X) = E e -λ 2 2 S 2 . Notice that if u n is deterministic, then F n belongs to the qth Wiener chaos, and we have a sequence of the type considered above. In particular, if S 2 is also deterministic, we recover the fact that condition (iii) above implies the convergence in distribution to the law N (0, 1).

We develop some particular applications of Theorem 3.1 in the following directions. First, we consider a sequence of random variables in a fixed Wiener chaos and we derive new criteria for the convergence to a mixture of Gaussian laws. Second, we show the convergence in law of the sequence δ q (u n ), where q ≥ 2 and u n is a q-parameter process of the form

u n = n qH-1 2 n-1 k=0 f (B k/n )1 (k/n,(k+1)/n] q ,
towards the random variable σ H,q 1 0 f (B s )dW s , where B is a fractional Brownian motion with Hurst parameter H ∈ 1 4q , 1 2 , W is a standard Brownian motion independent of B, and σ H,q denotes some positive constant. This convergence allows us to establish a new asymptotic result for the behavior of the weighted qth Hermite variation of the fractional Brownian motion with Hurst parameter H ∈ 1 4q , 1 2 , which complements and provides a new perspective to the results proved by Nourdin [START_REF] Nourdin | Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion[END_REF], Nourdin, Nualart and Tudor [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF], and Nourdin and Réveillac [START_REF] Nourdin | Asymptotic behavior of weighted quadratic variations of fractoinal Brownian motion: the critical case H = 1/4[END_REF]. The reader is referred to Section 5 for a detailed description of these results.

The paper is organized as follows. In Section 2, we present some preliminary results about Malliavin calculus. Section 3 contains the statement and the proof of the main abstract result. In Section 4, we apply it to sequences of multiple stochastic integrals, while Section 5 focuses on the applications to the weighted Hermite variations of the fractional Brownian motion.

Preliminaries

Let H be a real separable infinite-dimensional Hilbert space. For any integer q ≥ 1, let H ⊗q be the qth tensor product of H. Also, we denote by H ⊙q the qth symmetric tensor product.

Suppose that X = {X(h), h ∈ H} is an isonormal Gaussian process on H, defined on some probability space (Ω, F, P ). Recall that this means that the covariance of X is given in terms of the scalar product of H by (1.1). Assume from now on that F is generated by X.

For every integer q ≥ 1, let H q be the qth Wiener chaos of X, that is, the closed linear subspace of L 2 (Ω) generated by the random variables {H q (X(h)), h ∈ H, h H = 1}, where H q is the qth Hermite polynomial defined by H q (x) = (-1) q q! e x 2 /2 d q dx q e -x 2 /2 .

We denote by H 0 the space of constant random variables. For any q ≥ 1, the mapping I q (h ⊗q ) = q!H q (X(h)) provides a linear isometry between H ⊙q (equipped with the modified norm √ q! • H ⊗q ) and H q (equipped with the L 2 (Ω) norm). For q = 0, by convention H 0 = R, and I 0 is the identity map.

It is well-known (Wiener chaos expansion) that L 2 (Ω) can be decomposed into the infinite orthogonal sum of the spaces H q . That is, any square integrable random variable F ∈ L 2 (Ω) admits the following chaotic expansion:

F = ∞ q=0 I q (f q ), (2.1) 
where f 0 = E[F ], and the f q ∈ H ⊙q , q ≥ 1, are uniquely determined by F . For every q ≥ 0, we denote by J q the orthogonal projection operator on the qth Wiener chaos. In particular, if F ∈ L 2 (Ω) is as in (2.1), then J q F = I q (f q ) for every q ≥ 0. Let {e k , k ≥ 1} be a complete orthonormal system in H. Given f ∈ H ⊙p , g ∈ H ⊙q and r ∈ {0, . . . , p ∧ q}, the rth contraction of f and g is the element of H ⊗(p+q-2r) defined by

f ⊗ r g = ∞ i 1 ,...,ir=1
f, e i 1 ⊗ . . . ⊗ e ir H ⊗r ⊗ g, e i 1 ⊗ . . . ⊗ e ir H ⊗r .

(2.2)

Notice that f ⊗ r g is not necessarily symmetric. We denote its symmetrization by f ⊗ r g ∈ H ⊙(p+q-2r) . Moreover, f ⊗ 0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗ q g = f, g H ⊗q .

In the particular case H = L 2 (A, A, µ), where (A, A) is a measurable space and µ is a σ-finite and non-atomic measure, one has that H ⊙q = L 2 s (A q , A ⊗q , µ ⊗q ) is the space of symmetric and square integrable functions on A q . Moreover, for every f ∈ H ⊙q , I q (f ) coincides with the multiple Wiener-Itô integral of order q of f with respect to X (introduced by Itô in [START_REF] Itô | Multiple Wiener integral[END_REF]) and (2.2) can be written as (f ⊗ r g)(t 1 , . . . , t p+q-2r ) = A r f (t 1 , . . . , t p-r , s 1 , . . . , s r ) × g(t p-r+1 , . . . , t p+q-2r , s 1 , . . . , s r )dµ(s 1 ) . . . dµ(s r ).

Let us now introduce some basic elements of the Malliavin calculus with respect to the isonormal Gaussian process X. We refer the reader to Nualart [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for a more detailed presentation of these notions. Let S be the set of all smooth and cylindrical random variables of the form

F = g (X(φ 1 ), . . . , X(φ n )) , (2.3) 
where n ≥ 1, g : R n → R is a infinitely differentiable function with compact support, and φ i ∈ H. The Malliavin derivative of F with respect to X is the element of L 2 (Ω, H) defined as

DF = n i=1 ∂g ∂x i (X(φ 1 ), . . . , X(φ n )) φ i .
By iteration, one can define the qth derivative D q F for every q ≥ 2, which is an element of L 2 (Ω, H ⊙q ). For q ≥ 1 and p ≥ 1, D q,p denotes the closure of S with respect to the norm • D q,p , defined by the relation

F p D q,p = E [|F | p ] + q i=1 E D i F p H ⊗i .
The Malliavin derivative D verifies the following chain rule. If ϕ : R n → R is continuously differentiable with bounded partial derivatives and if F = (F 1 , . . . , F n ) is a vector of elements of D 1,2 , then ϕ(F ) ∈ D 1,2 and

Dϕ(F ) = n i=1 ∂ϕ ∂x i (F )DF i .
We denote by δ the adjoint of the operator D, also called the divergence operator. The operator δ is also called the Skorohod integral because in the case of the Brownian motion it coincides with the anticipating stochastic integral introduced by Skorohod in [START_REF] Skorohod | On a generalization of a stochastic integral[END_REF]. A random element u ∈ L 2 (Ω, H) belongs to the domain of δ, noted Domδ, if and only if it verifies

E DF, u H ≤ c u E(F 2 )
for any F ∈ D 1,2 , where c u is a constant depending only on u. If u ∈ Domδ, then the random variable δ(u) is defined by the duality relationship (called 'integration by parts formula'):

E(F δ(u)) = E DF, u H , (2.4) 
which holds for every F ∈ D 1,2 . The formula (2.4) extends to the multiple Skorohod integral δ q , and we have

E (F δ q (u)) = E D q F, u H ⊗q (2.5)
for any element u in the domain of δ q and any random variable F ∈ D q,2 . Moreover, δ q (h) = I q (h) for any h ∈ H ⊙q .

The following property will be extensively used in the paper.

Lemma 2.1 Let q ≥ 1 be an integer. Suppose that F ∈ D q,2 , and let u be a symmetric element in Domδ q . Assume that, for any

0 ≤ r + j ≤ q, D r F, δ j (u) H ⊗r ∈ L 2 (Ω, H ⊗q-r-j ).
Then, for any r = 0, . . . , q -1, D r F, u H ⊗r belongs to the domain of δ q-r and we have

F δ q (u) = q r=0 q r δ q-r D r F, u H ⊗r . (2.6) 
(We use the convention that δ 0 (v) = v, v ∈ R, and

D 0 F = F , F ∈ L 2 (Ω).)
Proof. We prove this lemma by induction on q. For q = 1 it reads F δ(u) = δ(F u) + DF, u H , and this formula is well-known, see e.g. [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Proposition 1.3.3]. Suppose the result is true for q. Then, if u belongs to the domain of δ q+1 , by the induction hypothesis applied to δ(u),

F δ q+1 (u) = F δ q (δ(u)) = q r=0 q r δ q-r D r F, δ(u) H ⊗r . (2.7) 
On the other hand

D r F, δ(u) H ⊗r = δ D r F, u H ⊗r + D r+1 F, u H ⊗r . (2.8)
Finally, substituting (2.8) into (2.7) yields the desired result.

For any Hilbert space V , we denote by D k,p (V ) the corresponding Sobolev space of V -valued random variables (see [20, page 31]). The operator δ q is continuous from D k,p (H ⊗q ) to D k-q,p , for any p > 1 and any integers k ≥ q ≥ 1, that is, we have

δ q (u) D k-q,p ≤ c k,p u D k,p (H ⊗q ) (2.9)
for all u ∈ D k,p (H ⊗q ), and some constant c k,p > 0. These estimates are consequences of Meyer inequalities (see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Proposition 1.5.7]). In particular, these estimates imply that D q,2 (H ⊗q ) ⊂ Domδ q for any integer q ≥ 1.

We will also use the following commutation relationship between the Malliavin derivative and the Skorohod integral (see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Proposition 1.3.2])

Dδ(u) = u + δ(Du), (2.10) 
for any u ∈ D 2,2 (H). By induction we can show the following formula for any symmetric element u in D j+k,2 (H ⊗j )

D k δ j (u) = j∧k i=0 k i j i i!δ j-i (D k-i u). (2.11)
We will make use of the following formula for the variance of a multiple Skorohod integral. Let u, v ∈ D 2q,2 (H ⊗q ) ⊂ Domδ q be two symmetric functions. Then

E(δ q (u)δ q (v)) = E( u, D q (δ q (v)) H ⊗q ) = q i=0 q i 2 i!E u, δ q-i (D q-i v) H ⊗q = q i=0 q i 2 i!E D q-i u, D q-i v H ⊗(2q-i) . (2.12)
The operator L is defined on the Wiener chaos expansion as

L = ∞ q=0 -qJ q ,
and is called the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. The domain of this operator in L 2 (Ω) is the set

DomL = {F ∈ L 2 (Ω) : ∞ q=1 q 2 J q F 2 L 2 (Ω) < ∞} = D 2,2 .
There is an important relation between the operators D, δ and L (see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Proposition 1.4.3]). A random variable F belongs to the domain of L if and only if F ∈ Dom (δD) (i.e. F ∈ D 1,2 and DF ∈ Domδ), and in this case δDF = -LF.

(2.13)

Note also that a random variable

F as in (2.1) is in D 1,2 if and only if ∞ q=1 qq! f q 2 H ⊗q < ∞,
and, in this case,

E DF 2 H = q≥1 qq! f q 2 H ⊗q . If H = L 2 (A, A, µ)
(with µ non-atomic), then the derivative of a random variable F as in (2.1) can be identified with the element of L 2 (A × Ω) given by

D a F = ∞ q=1 qI q-1 (f q (•, a)) , a ∈ A.
(2.14)

Finally, we need the definition of stable convergence (see, for instance, the original paper [START_REF] Rényi | On stable sequences of events[END_REF], or the book [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] for an exhaustive discussion of stable convergence). Definition 2.2 Let F n be a sequence of random variables defined on the probability space (Ω, F, P ), and suppose that F is a random variable defined on an enlarged probability space (Ω, G, P ), with F ⊆ G. We say that F n converges G-stably to F (or only stably when the context is clear) if, for any continuous and bounded function f : R → R and any bounded F-measurable random variable Z, we have

E [f (F n )Z] → E [f (F )Z] as n tends to infinity.

Convergence in law of multiple Skorohod integrals

As in the previous section, X = {X(h), h ∈ H} is an isonormal Gaussian process associated with a real separable infinite-dimensional Hilbert space H. The next theorem is the main abstract result of the present paper.

Theorem 3.1 Fix an integer q ≥ 1, and suppose that F n is a sequence of random variables of the form F n = δ q (u n ), for some symmetric functions u n in D 2q,2q (H ⊗q ). Suppose moreover that the sequence F n is bounded in L 1 (Ω), and that:

(i) u n , (DF n ) ⊗k 1 ⊗ . . . ⊗ (D q-1 F n ) ⊗k q-1 ⊗ h H ⊗q converges in L 1 (Ω)
to zero, for all integers r, k 1 , . . . , k q-1 ≥ 0 such that

k 1 + 2k 2 + . . . + (q -1)k q-1 + r = q,
and all h ∈ H ⊗r ;

(ii)

u n , D q F n H ⊗q converges in L 1 (Ω) to a nonnegative random variable S 2 .
Then, F n converges stably to a random variable with conditional Gaussian law N (0, S 2 ) given X.

Remark 3.2 When q = 1, condition (i) of the theorem is that u n , h H converges to zero in L 1 (Ω), for each h ∈ H. When q = 2, condition (i) means that u n , h ⊗ g H ⊗2 , u n , DF n ⊗ h H ⊗2 and u n , DF n ⊗ DF n H ⊗2 converge to zero in L 1 (Ω), for each h, g ∈ H.
And so on.

Proof of Theorem 3.1. Taking into account Definition 2.2, it suffices to show that for any h 1 , . . . , h m ∈ H, the sequence

ξ n = (F n , X(h 1 ), . . . , X(h m ))
converges in distribution to a vector (F ∞ , X(h 1 ), . . . , X(h m )), where F ∞ satisfies, for any λ ∈ R,

E(e iλF∞ |X(h 1 ), . . . , X(h m )) = e -λ 2 2 S 2 . (3.1)
Since the sequence F n is bounded in L 1 (Ω), the sequence ξ n is tight. Assume that (F ∞ , X(h 1 ), . . . , X(h m )) denotes the limit in law of a certain subsequence of ξ n , denoted again by

ξ n . Let Y = φ(X(h 1 ), . . . , X(h m )), with φ ∈ C ∞ b (R m ) (φ is infinitely dif- ferentiable,
bounded, with bounded partial derivatives of all orders), and consider φ n (λ) = E e iλFn Y for λ ∈ R. The convergence in law of ξ n , together with the fact that

F n is bounded in L 1 (Ω), imply that lim n→∞ φ ′ n (λ) = lim n→∞ iE F n e iλFn Y = iE(F ∞ e iλF∞ Y ). (3.2)
On the other hand, by (2.5) and the Leibnitz rule for D q , we obtain

φ ′ n (λ) = iE(F n e iλFn Y ) = iE δ q (u n )e iλFn Y = iE u n , D q e iλFn Y H ⊗q = i q a=0 q a E u n , D a e iλFn ⊗D q-a Y H ⊗q = i q a=0 q a a! k 1 ! . . . k a ! (iλ) k 1 +•••+ka ×E e iλFn u n , (DF n ) ⊗k 1 ⊗ . . . ⊗(D a F n ) ⊗ka ⊗D q-a Y H ⊗q = i q a=0 q a a! k 1 ! . . . k a ! (iλ) k 1 +•••+ka ×E e iλFn u n , (DF n ) ⊗k 1 ⊗ . . . ⊗ (D a F n ) ⊗ka ⊗ D q-a Y H ⊗q ,
where the second sum in the two last equalities runs over all sequences of integers (k 1 , . . . , k a ) such that k 1 + 2k 2 + . . . + ak a = a, due to the Faá di Bruno's formula. By condition (i), this yields that

φ ′ n (λ) = -λE e iλFn u n , D q F n H ⊗q Y + R n ,
with R n converging to zero as n → ∞. Using condition (ii) and (3.2), we obtain that iE(F ∞ e iλF∞ Y ) = -λE e iλF∞ S 2 Y .

Since S 2 is defined through condition (ii), it is in particular measurable with respect to X. Thus, the following linear differential equation verified by the conditional characteristic function of F ∞ holds:

∂ ∂λ E(e iλF∞ |X(h 1 ), . . . , X(h m )) = -λ S 2 E(e iλF∞ |X(h 1 ), . . . , X(h m )).
By solving it, we obtain (3.1), which yields the desired conclusion.

The next corollary provides stronger but easier conditions for the stable convergence.

Corollary 3.3 For a fixed q ≥ 1, suppose that F n is a sequence of random variables of the form F n = δ q (u n ), for some symmetric functions u n in D 2q,2q (H ⊗q ). Suppose moreover that the sequence F n is bounded in D q,p for all p ≥ 2, and that: (i') u n , h H ⊗q converges to zero in L 1 (Ω) for all h ∈ H ⊗q ; and u n ⊗ l D l F n converges to zero in L 2 (Ω; H ⊗(q-l) ) for all l = 1, . . . , q -1;

(ii) u n , D q F n H ⊗q converges in L 1 (Ω) to a nonnegative random variable S 2 .
Then, F n converges stably to a random variable with conditional Gaussian law N (0, S 2 ) given X.

Proof.

It suffices to show that condition (i') implies condition (i) in Theorem 3.1. When k a = 0 for 1 ≤ a ≤ q -1, we have, for all h ∈ H ⊗r (with

r = q -k 1 -2k 2 -. . . -ak a ), u n , (DF n ) ⊗k 1 ⊗ . . . ⊗ (D a F n ) ⊗ka ⊗ h H ⊗q = u n ⊗ a D a F n , (DF n ) ⊗k 1 ⊗ . . . ⊗ (D a-1 F n ) ⊗k a-1 ⊗ (D a F n ) ⊗(ka-1) ⊗ h H ⊗(q-a) ≤ u n ⊗ a D a F n H ⊗(q-a) × (DF n ) ⊗k 1 ⊗ . . . ⊗ (D a-1 F n ) ⊗k a-1 ⊗ (D a F n ) ⊗(ka-1) ⊗ h H ⊗(q-a) .
The second factor is bounded in L 2 (Ω), and the first factor converges to zero in L 2 (Ω), for all a = 1, . . . , q -1. In the case a = 0 we have that u n , h H ⊗q converges to zero in L 1 (Ω), for all h ∈ H ⊗q , by condition (i'). This completes the proof.

Multiple stochastic integrals

Suppose that H is a Hilbert space L 2 (A, A, µ), where (A, A) is a measurable space and µ is a σ-finite and non-atomic measure. Fix an integer m ≥ 2, and consider a sequence of multiple stochastic integrals {F n = I m (g n ), n ≥ 1} with g n ∈ H ⊙m . We would like to apply Theorem 3.1 with q = 1 to the sequence F n . To do this, we represent each

F n as F n = δ(u n ), with u n = I m-1 ( g n ),
for g n ∈ H ⊗m some function which is symmetric in the first m -1 variables. Notice that, from (2.14), we have DF n = mI m-1 (g n ). Hence, since

F n = -1 m LF n = 1 m δ(DF n ) by (2.13
), g n is always a possible choice for g n . (In this case, g n is symmetric in all the variables.) However, as observed, for instance, in Example 4.2 below, the choice g n = g n does not allow to conclude in general.

Proposition 4.1 For a fixed integer m ≥ 2, let F n be a sequence of random variables of the form F n = I m (g n ), with g n ∈ H ⊙m . Suppose moreover that F n is bounded in L 2 (Ω) and that F n = δ(u n ), where u n = I m-1 ( g n ), for g n ∈ H ⊗m some function which is symmetric in the first m -1 variables. Finally, assume that:

(a) g n ⊗ m-1 g n , h ⊗2 H ⊗2 converges to zero for all h ∈ H; (b) u n , DF n H converges in L 1 (Ω) to a non negative random variable S 2 .
Then, F n converges stably to a random variable with conditional Gaussian law N (0, S 2 ) given X.

Proof. It suffices to apply Theorem 3.1 to u n = I m-1 ( g n ) and q = 1. Indeed, we have 

E u n , h 2 H = E I m-1 ( g n ), h 2 H = E I m-1 ( g n ⊗ 1 h) 2 = (m -1)! g n ⊗ 1 h 2 H ⊗(m-1) = (m -1)! g n ⊗ m-1 g n , h ⊗2 H ⊗2 → 0,
F n = I 2 (g n ) = √ n 1 0 t n W t dW t , and 
D s F n = √ ns n W s + √ n 1 s t n W t dW t .
We can take

u n (t) = √ nt n W t , that is, g n (s, t) = √ nt n 1 [0,t] (s). In this case, ( g n ⊗ 1 g n )(s, t) = ns n t n (s ∧ t),
which converges to zero weakly in L 2 (Ω), and

u n , DF n H = 1 0 nt 2n W 2 t dt + n 1 0 t n W t t 0 s n W s dW s dt, which converges in L 2 (Ω) to 1 2 W 2 1 .
Therefore, conditions (a) and (b) of Proposition 4.1 are satisfied with S 2 = 1 2 W 2 1 , and F n converges in distribution to 1 √ 2 W 1 × N , with N ∼ N (0, 1). One easily see on this particular example that the choice g n = g n does not allows us to conclude in general (except when S 2 is deterministic); indeed, one can check here that

u n , DF n H = 1 m DF n 2 H does not converge in L 1 (Ω).
If we take g n = g n and S 2 = 1, then condition (b) coincides with condition (iii) in the introduction. In this case, Nualart and Peccati criterion combined with Lemma 6 in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF] tells us that, if the sequence of variances converges to one, then condition (a) is automatically satisfied.

On the other hand, we can also apply Theorem 3.1 with u n = g n . In this way, applying Corollary 3.3, we obtain that the following conditions imply that F n converges to a normal random variable N (0, 1) independent of X:

(α) g n converges weakly to zero;

(β) g n ⊗ l g n H ⊗2(q-l) converges to zero for all l = 1, . . . , q -1;

(γ) q! g n 2 H ⊗q converges to 1.

Indeed, notice first that if g n is bounded in H ⊙q , then F n is bounded in all the Sobolev spaces D q,p , p ≥ 2. Then, condition (ii) in Corollary 3.3 follows from (γ) and the equality D q (I q (g n )) = q!g n . On the other hand, condition (i') in Corollary 3.3 follows from (ii) and

E g n ⊗ l D l F n 2 H ⊗(q-l) = q! 2 (q -l)! 2 E g n ⊗ l I q-l (g n ) 2 H ⊗(q-l) = q! 2 (q -l)! 2 E I q-l (g n ⊗ l g n ) 2 H ⊗(q-l) = q! 2 (q -l)! g n ⊗ l g n 2 H ⊗2(q-l) ≤ q! 2 (q -l)! g n ⊗ l g n 2 H ⊗2(q-l) .
In this way we recover the fact that condition (iii) in the introduction implies the normal convergence.

5 Weighted Hermite variations of the fractional Brownian motion

Description of the results

The fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is a centered Gaussian process B = {B t , t ≥ 0} with the covariance function

E(B s B t ) = R H (s, t) = 1 2 t 2H + s 2H -|t -s| 2H .
(5.1)

From (5.1), it follows that E|B t -B s | 2 = (ts) 2H for all 0 s < t and that, for each a > 0, the process {a -H B at , t ≥ 0} is also a fBm with Hurst parameter H (self-similarity property). As a consequence, the sequence {B j -B j-1 , j = 1, 2, . . .} is stationary, Gaussian and ergodic, with correlation given by

ρ H (n) = 1 2 |n + 1| 2H -2|n| 2H + |n -1| 2H , (5.2) 
which behaves as H(2H -1)|n| 2H-2 as n tends to infnity. Set ∆B k/n = B (k+1)/n -B k/n , where k = 0, 1, . . . , n, and n ≥ 1. The ergodic theorem combined with the self-similarity property implies that the sequence n 2H-1 n-1 k=0 ∆B k/n 2 converges, almost surely and in L 1 (Ω), to E(B 2 1 ) = 1. Moreover, it is well-known (see, e.g., [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF]) that, provided H ∈ (0, 3 4 ), a central limit theorem holds: the sequence

1 √ n n-1 k=0 n 2H ∆B k/n 2 -1 = 1 √ n n-1 k=0 H 2 n H ∆B k/n (5.3)
converges in law to N (0, σ 2 H ) as n → ∞, for some constant σ H > 0. (Notice also that, by normalizing with √ n log n instead of √ n, the central limit theorem continues to hold in the critical case H = 3 4 .) When H > 3 4 , the situation is very different. Indeed, we have in contrast that

n 1-2H n-1 k=0 n 2H ∆B k/n 2 -1 = n 1-2H n-1 k=0 H 2 n H ∆B k/n converges in L 2 (Ω). More generally, consider an integer q ≥ 2. If H < 1-1 2q , then the sequence 1 √ n n-1 k=0 H q n H ∆B k/n (5.4)
converges in law to N (0, σ 2 q,H ) (for some constant σ q,H > 0), whereas, if H > 1 -1 2q , then the sequence

n q-qH-1 n-1 k=0 H q n H ∆B k/n
converges in L 2 (Ω). Some unexpected results happen when we introduce a weight of the form f (B k/n ) in (5.4). In fact, a new critical value (H = 1 2q ) plays an important role. More precisely, consider the following sequence of random variables:

G n = 1 √ n n-1 k=0 f (B k/n )H q (n H ∆B k/n ).
(5.5)

Here, the integer q ≥ 2 is fixed and the function f : R → R is supposed to satisfy some suitable regularity and growth conditions. In [START_REF] Nourdin | Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion[END_REF][START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF], the following convergences as n → ∞ are shown:

• If H < 1 2q , then n qH-1 2 G n L 2 (Ω) -→ (-1) q 2 q q! 1 0 f (q) (B s )ds.
(5.6)

• If 1 2q < H < 1 -1 2q , then G n stably -→ σ H,q 1 0 f (B s )dW s , (5.7) 
where W is a Brownian motion independent of B, and

σ 2 H,q = q! r∈Z ρ H (r) q < ∞.
(5.8)

• If H = 1 -1 2q , then G n √ log n stably -→ 2 q! 1 - 1 2q q/2 1 - 1 q q/2 1 0 f (B s )dW s ,
where W is a Brownian motion independent of B.

•

If H > 1 -1 2q , then n q(1-H)-1 2 G n L 2 (Ω) -→ 1 0 f (B s )dZ (q) s ,
where Z (q) denotes the Hermite process of order q canonically constructed from B (see [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF] for the details).

In addition, when q = 2 and H = 1 4 , it was shown in [START_REF] Nourdin | Asymptotic behavior of weighted quadratic variations of fractoinal Brownian motion: the critical case H = 1/4[END_REF] that G n converges stably to a linear combination of the limits in (5.7) and (5.6). (The proof of this last result follows an approach similar to the proof of our Theorem 3.1, and allows to derive a change of variable formula for the fBm of Hurst index 1 4 , with a correction term that is an ordinary Itô integral with respect to a Brownian motion that is independent of B.) But the convergence of G n in the critical case H = 1 2q , q ≥ 3, was open till now. In the present paper, we are going to show that Theorem 3.1 provides a proof of the following new result, valid for any integer q ≥ 2 and any index

H ∈ 1 4q , 1 2 : G n -n -1 2 -qH (-1) q 2 q q! n-1 k=0 f (q) (B k/n ) stably -→ σ H,q 1 0 f (B s )dW s . (5.9) 
(See Theorem 5.3 below for a precise statement.) Notice that (5.9) provides a new proof of (5.7) in the case H ∈ 1 2q , 1
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(without considering two different levels of discretization n m, as in [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF]). More importantly, in the critical case H = 1 2q , convergence (5.9) yields:

G n stably -→ (-1) q 2 q q! 1 0 f (q) (B s )ds + σ 1/(2q),q 1 0 f (B s )dW s .
Hence, the understanding of the asymptotic behavior of the weighted Hermite variations of the fBm is now complete (indeed, the case H = 1 2q , q ≥ 3, was the only remaining case, as mentioned in the discussion above).

The main idea of the proof of (5.9) is a decomposition of the random variable G n using equation (2.6). The term with r = 0 is a multiple Skorohod integral of order q and, by Theorem 5.2 below, it converges in law for any H ∈ 1 4q , 1 2 . The term with r = q behaves as -n -1

Some preliminaries on the fractional Brownian motion

Before proving (5.9), we need some preliminaries on the Malliavin calculus associated with the fBm and some technical results (see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Chapter 5]).

In the following we assume H ∈ 0, 1 2 . We denote by E the set of step functions on [0, 1]. Let H be the Hilbert space defined as the closure of E with respect to the scalar product

1 [0,t] , 1 [0,s] H = R H (t, s) = 1 2 s H + t H -|t -s| H .
The mapping 1 [0,t] → B t can be extended to a linear isometry between the Hilbert space H and the Gaussian space spanned by B. We denote this isometry by φ → B(φ). In this way {B(φ), φ ∈ H} is an isonormal Gaussian space. (In fact, we know that the space H coincides with I

H-1 2 0+ (L 2 [0, 1]), where I H-1 2 0+ f (x) = 1 Γ(H -1 2 ) x 0 (x -y) H-3 2 f (y)dy
is the left-sided Liouville fractional integral of order H -1 2 , see [START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF].) From now on, we will make use of the notation

ε t = 1 [0,t] , ∂ k/n = ε (k+1)/n -ε k/n = 1 (k/n,(k+1)/n] ,
for t ∈ [0, 1], n ≥ 1, and k = 0, . . . , n -1. Notice that H q (n H ∆B k/n ) = n qH I q (∂ ⊗q k/n ). We need the following technical lemma.

Lemma 5.1 Recall that H < 1 2 . Let n ≥ 1 and k = 0, . . . , n -1. We have (a) E(B r (B t -B s )) (t -s) 2H for any r ∈ [0, 1] and 0 s < t 1. (b) ε t , ∂ k/n H n -2H for any t ∈ [0, 1]. (c) sup t∈[0,1] n-1 k=0 ε t , ∂ k/n H = O(1)
as n tends to infinity.

(d) For any integer q ≥ 2,

n-1 k=0 ε k/n , ∂ k/n q H - (-1) q 2 q n 2qH = O(n -2H(q-1)
) as n tends to infinity.

(5.10)

(e) Recall the definition (5.2) of ρ H . We have

∂ j/n , ∂ k/n H = n -2H ρ H (k -j).
Consequently, for any integer q ≥ 1, we can write

n-1 k,j=0 ∂ j/n , ∂ k/n H q = O(n 1-2qH
) as n tends to infinity. (5.11) Proof. We have

E(B r (B t -B s )) = 1 2 r 2H + t 2H -|t -r| 2H - 1 2 r 2H + s 2H -|s -r| 2H = 1 2 (t 2H -s 2H ) + 1 2 |s -r| 2H -|t -r| 2H .
Using the inequality |b 2Ha 2H | |b -a| 2H for any a, b ∈ [0, 1], we deduce (a). Property (b) is an immediate consequence of (a). To show property (c) we use

ε t , ∂ k/n H = 1 2n 2H (k + 1) 2H -k 2H -|k + 1 -nt| 2H + |k -nt| 2H . Property (d) follows from ε k/n , ∂ k/n H = 1 2n 2H (k + 1) 2H -k 2H -1 , and 
ε k/n , ∂ k/n q H - (-1) q 2 q n 2qH = 1 2 q n 2qH (k + 1) 2H -k 2H -1 q -(-1) q = 1 2 q n 2qH q i=1 q i (k + 1) 2H -k 2H i ≤ 1 2 q n 2qH (k + 1) 2H -k 2H q i=1 q i .
Finally, property (e) follows from

n-1 k,j=0 ∂ j/n , ∂ k/n H q ≤ n -2qH n-1 k,j=0 |ρ H (j -k)| q ≤ n 1-2qH r∈Z |ρ H (r)| q .

An auxiliary convergence result

From now on, we fix q ≥ 2 and we make use of the following hypothesis on f : R → R:

(H) f belongs to C 2q and, for any p ≥ 2 and i = 0, . . . , 2q,

E( sup t∈[0,1] |f (i) (B t )| p ) < ∞. (5.12) 
Notice that a sufficient condition for (5.12) to hold is that f satisfies an exponential growth condition of the form f (2q) (x) ke c|x| p for some constants c, k > 0 and 0 < p < 2.

The aim of this section is to prove the following auxiliary convergence result.

Theorem 5.2 Suppose H ∈ 1 4q , 1 2 , and let f be a function satisfying Hypothesis (H). Consider the sequence of q-parameter step processes defined by

u n = n qH-1 2 n-1 k=0 f (B k/n )∂ ⊗q k/n . (5.13) 
Then u n ∈ Domδ q , and δ q (u n ) converges stably to σ H,q 1 0 f (B s )dW s , where W is a Brownian motion independent of B, and σ H,q > 0 is defined in (5.8).

Proof. The fact that u n belongs to Domδ q is a consequence of the inclusion D q,2 (H ⊗q ) ⊂ Domδ q and hypothesis (H). We are now going to show that the sequence F n = δ q (u n ) satisfies the conditions of Theorem 3.1. We make use of the notation

α k,j = ε k/n , ∂ j/n H , β k,j = ∂ k/n , ∂ j/n H , (5.14) 
for k, j = 0, . . . , n -1 and n ≥ 1. Also C will denote a generic constant.

Step 1. Let us show first that F n is bounded in L 2 (Ω). Taking into account the continuity of the Skorohod integral from the space D q,2 (H ⊗q ) into L 2 (Ω) (see (2.9)), it suffices to show that u n is bounded in D q,2 (H ⊗q ). Actually we are going to show that u n is bounded in D k,p (H ⊗k ) for any integer k ≤ 2q and any real number p ≥ 2. Using the estimate (5.11) we obtain

u n 2 H ⊗q = n 2qH-1 n-1 k,j=0 f (B k/n )f (B j/n )β q k,j ≤ C sup 0≤t≤1 |f (B t )| 2 .
Moreover for any integer k ≥ 1,

D k u n = n qH-1 2 n-1 j=0 f (k) (B j/n )ε ⊗k j/n ⊗ ∂ ⊗q j/n ,
and we obtain in the same way

D k u n 2 H ⊗(q+k) = n 2qH-1 n-1 l,j=0 f (k) (B l/n )f (k) (B j/n ) ε l/n , ε j/n k β q l,j ≤ C sup 0≤t≤1 f (k) (B t ) 2 .
Then the result follows from hypothesis (H).

Step 2. Let us show condition (i) of Theorem 3.1. Fix some integers r, k 1 , . . . , k q-1 ≥ 0 such that k 1 +2k 2 +. . .+(q -1)k q-1 +r = q. Let h ∈ H ⊗r . We claim that u n , (DF n ) ⊗k 1 ⊗ . . . ⊗ (D q-1 F n ) ⊗k q-1 ⊗ h H ⊗q converges to zero in L 1 (Ω). Suppose first that r ≥ 1. Without loss of generality, we can assume that h has the form g ⊗ ε t , with g ∈ H ⊗(r-1) . Set Φ n = (DF n ) ⊗k 1 ⊗ . . . ⊗ (D q-1 F n ) ⊗k q-1 ⊗ g. Then we can write

u n , Φ n ⊗ ε t H ⊗q = n qH-1 2 n-1 k=0 f (B k/n ) ∂ ⊗(q-1) k/n , Φ n H ⊗(q-1) ∂ k/n , ε t H .
As a consequence,

E u n , Φ n ⊗ ε t H ⊗q ≤ n qH-1 2 n-1 k=0 E f (B k/n ) ∂ ⊗(q-1) k/n , Φ n H ⊗(q-1) × ∂ k/n , ε t H . Condition (c) of Lemma 5.1 implies n-1 k=0 ∂ k/n , ε t H ≤ C.
Hence,

E u n , Φ n ⊗ ε t H ⊗q ≤ Cn H-1 2 E Φ n 2 H ⊗(q-1) 1 2 
.
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On the other hand

Φ n 2 H ⊗(q-1) = g 2 H ⊗(r-1) q-1 m=1 D m F n 2km H ⊗m ,
and applying the generalized Hölder's inequality

E Φ n 2 H ⊗(q-1) ≤ C q-1 m=1 E D m F n 2km(q-1) H ⊗m 1 q-1 = C q-1 m=1 D m F n 2km L 2km(q-1) (Ω;H ⊗m ) .
By Meyer's inequalities (2.9), for any 1 ≤ m ≤ q -1 and any p ≥ 2, we obtain, using Step 1, that

D m F n L p (Ω;H ⊗m ) = D m δ q (u n ) L p (Ω;H ⊗m ) ≤ δ q (u n ) D m,p ≤ C u n D m+q,p (H ⊗q ) ≤ C. E u n , Φ n ⊗ ε t H ⊗q ≤ Cn H-1 2 ,
which converges to zero as n tends to infinity because H < 1 2 . Suppose now that r = 0. In this case, we have

Φ n = (DF n ) ⊗k 1 ⊗ • • • ⊗ (D q-1 F n ) ⊗k q-1 . Then ∂ ⊗q j/n , Φ n H ⊗q = ∂ j/n , DF n k 1 H • • • ∂ ⊗(q-1) j/n , D q-1 F n k q-1
H ⊗(q-1) .

(5.15)

From (5.15) and (5.13) we obtain

u n , Φ n H ⊗q = n qH-1 2 n-1 k=0 f (B k/n ) q-1 m=1 ∂ ⊗m j/n , D m F n km H ⊗m . (5.16) 
Notice that for any m = 1, . . . , q -1, the term ∂ ⊗m j/n , D m F n H ⊗m can be estimated by n -mH D m F n H ⊗m . Then, taking into account that

sup n E D m F n p H ⊗m < ∞
for any p ≥ 2, and that q-1 m=1 mk m = q, we obtain for E u n , Φ n H ⊗q an estimate of the form C √ n, which is unfortunately not satisfactory. For this reason, a finer analysis of the terms ∂ ⊗m j/n , D m F n H ⊗m is required.

First we are going to apply formula (2.11) to compute the derivative D m F n , m = 1, . . . , q -1:

D m F n = m i=0 m i q i i!δ q-i (D m-i u n ) = n qH-1 2 m i=0 m i q i i! n-1 l=0 ε ⊗(m-i) l/n ⊗ ∂ ⊗i l/n ×δ q-i f (m-i) (B l/n )∂ ⊗(q-i) l/n . (5.17) Set Ψ m,j n = ∂ ⊗m j/n , D m F n H ⊗m ,
and recall the definition of α k,j and β k,j from (5.14). From (5.17) we obtain

Ψ m,j n = n qH-1 2 m i=0 m i q i i! n-1 l=0 α m-i l,j β i l,j δ q-i f (m-i) (B l/n )∂ ⊗(q-i) l/n = m i=0 Φ i,m,j n , (5.18) with 
Φ i,m,j n = n qH-1 2 m i q i i! n-1 l=0 α m-i l,j β i l,j δ q-i f (m-i) (B l/n )∂ ⊗(q-i) l/n
. By Meyer inequalities (2.9) we obtain, using also assumption (H), that, for any p ≥ 2, ≤ Cn -(m-i)2H and n-1 l=0 β i l,j ≤ Cn -2iH . Therefore, for any i ≥ 1, we have For the term B n using again the estimates (5.21) and (5.23) we get

δ q-i f (m-i) (B l/n )∂ ⊗(q-i) l/n L p ≤ C f (m-i) (B l/n )∂ ⊗(q-i) l/n D q-i,p (H ⊗q-i ) ≤ Cn -(q-i)H . ( 5 
Φ i,m,j n L p ≤ Cn iH-1 2 n-1 l=0 α m-i l,j β i l,j ≤ Cn -1 2 -2mH+iH . ( 5 
E (|B n |) ≤ Cn qH+ 1 2 -H(q-µ-ν)-1-2H(µ+ν)+4H = Cn -1 2 -H(µ+ν)+4H ≤ Cn -1 2 +2H
, which converges to zero as n tends to infinity if H < 1 4 . To handle the case H ∈ 1 4 , 1 2 we need more precise estimates for the L 2 (Ω)-norm of Φ 0,ν,j n . We have, using formula (2.12)

E Φ 0,ν,j n 2 = q i 2 m i 2 i! 2 E   n qH-1 2 n-1 l=0 α ν l,j δ q f (ν) (B l/n )∂ ⊗q l/n 2   = n 2qH-1 q i 2 m i 2 i! 2 n-1 l,l ′ =0 α ν l,j α ν l ′ ,j ×E δ q f (ν) (B l/n )∂ ⊗q l/n δ q f (ν) (B l ′ /n )∂ ⊗q l ′ /n = n 2qH-1 q i 2 m i 2 i! 2 n-1 l,l ′ =0 α ν l,j α ν l ′ ,j q i=0 q i 2 i!α q-i l,l ′ α q-i l ′ ,l β 2i l,l ′ ×E f (ν+q-i) (B l/n ) f (ν+q-i) (B l ′ /n ) = q i=0 R i n . If i ≥ 1, then n-1 l,l ′ =0 β 2i l,l ′ ≤ Cn 1-4iH
, and we obtain an estimate of the form R i n L 2 ≤ Cn γ , where

γ = 1 2 (2qH -1 -4νH -4(q -i)H + 1 -4iH) = -qH -2νH. For i = 0, then sup n n-1 l,l ′ =0 α l,l ′ α l ′ ,l < ∞, and we get γ = 1 2 (2qH -1 -2H(2ν + 2q -2)) = -qH -2νH - 1 2 + 2H.
We have obtained the estimate

Φ 0,ν,j n L 2 ≤ Cn -qH-2νH+2H-1 2 .
(5.24) Fix 1 4qH < α < 1. This choice is possible because 1 4qH < 1. We have, by Hölder's inequality,

E (|B n |) ≤ Cn qH-1 2 n-1 j=0 Φ 0,µ,j n α L 2 Φ 0,ν,j n α L 2 Φ 0,µ,j n Φ 0,ν,j n 1-α Θ j n L 1 1-α .
Using (5.24), (5.21) and (5.23) we obtain

E (|B n |) ≤ Cn γ , (5.25) 
where

γ = qH + 1 2 + [-2qH -2(µ + ν)H + 4H -1] α -H(q -µ -ν) + (1 -α)(-1 -2H(µ + ν) + 4H) = - 1 2 + 4H -H(µ + ν) -2αqH ≤ - 1 2 + 2H -2αqH ≤ 1 2 -2αqH < 0, because H < 1 2
. Therefore E (|B n |) converges to zero as n tends to infinity. Step 3. Let us show condition (ii). We have

u n , D q F n H ⊗q = n qH-1 2 n-1 j=0 f (B j/n ) ∂ ⊗q j/n , D q F n H ⊗q .
From (5.18) we get

∂ ⊗q j/n , D q F n H ⊗q = n qH-1 2 q i=0 q i 2 i! n-1 l=0 α q-i l,j β i l,j δ q-i f (q-i) (B l/n )∂ ⊗(q-i) l/n
. Therefore, we can make the decomposition

u n , D q F n H ⊗q = A n + B n + C n ,
where

A n = n 2qH-1 q! n-1 l,j=0
β q l,j f (B l/n )f (B j/n ),

B n = n 2qH-1 q-1 i=1 q i 2 i! n-1 l,j=0
α q-i l,j β i l,j f (B j/n )δ q-i f (q-i) (B l/n )∂

⊗(q-i) l/n , C n = n 2qH-1 n-1 l,j=0
α q l,j f (B j/n )δ q f (q) (B l/n )∂ ⊗(q) l/n .

The term A n converges to a nonnegative square integrable random variable. Indeed,

A n = q! 2 q n n-1 k,j=0 f (B k/n )f (B j/n ) |k -j + 1| 2H + |k -j -1| 2H -2|k -j| 2H q = q! 2 q n ∞ p=-∞ (n-1)∧(n-1-p) j=0∨-p f (B j/n )f (B (j+p)/n ) |p + 1| 2H + |p -1| 2H -2|p| 2H q ,
which converges in L 1 (Ω) to

q! k∈Z ρ H (k) q 1 0 f (B s ) 2 ds .
Then, it suffices to show that the terms B n and C n converge to zero in L 2 (Ω). For the term B n we can write, using the fact that n-1 l,j=0 α q-i l,j β i l,j ≤ Cn -2qH+1

E (|B n |) ≤ Cn 2qH-1 q-1 i=1 n-1 l,j=0
α q-i l,j β i l,j δ q-i f (q-i) (B l/n )∂

⊗(q-i) l/n L 2 ≤ C q-1 i=1
n -H(q-i) , which converges to zero as n tends to infinity. Finally, for the term C n we can write

E (|C n |) ≤ Cn qH+ 1 2 sup j Φ 0,q,j n L 2 ≤ Cn 1 2 -2qH+ (2H- 1 
2 )∨0 , and 1 2 -2qH + 2H -1 2 ∨ 0 < 0, because if 2H -1 2 ≤ 0 this is true due to 1 2 -2qH < 0, and if 2H -1 2 ≥ 0, then we get 2H(1q) < 0. This completes the proof of Theorem 5.2.

Proof of the stable convergence (5.9)

As a consequence of Theorem 5.2, we can derive the following result, which is nothing but (5.9): Theorem 5.3 Suppose that f is a function satisfying Hypothesis (H). Let G n be the sequence of random variables defined in (5.5). Then, provided H ∈ ( 1 4q , 1 2 ), we have

G n -n -1 2 -qH (-1) q 2 q q! n-1 k=0 f (q) (B k/n ) stably -→ σ H,q 1 0 f (B s )dW s ,
where W is a Brownian motion independent of B and σ H,q > 0 is defined by (5.8).

Proof. We recall first that H q n H ∆B k/n = 1 q! n qH δ q (∂ ⊗q k/n ). Then, using (2.6) yields

f (B k/n )δ q (∂ ⊗q k/n ) = q r=0 q r α r k,k δ q-r (f (r) (B k/n )∂ ⊗(q-r) k/n ),
where α k,k is defined in (5.14). As a consequence,

G n = 1 q! n qH-1 2 q r=0 n-1 k=0 q r α r k,k δ q-r (f (r) (B k/n )∂ ⊗(q-r) k/n ) = 1 q! δ q (u n ) + q-1 r=1 δ q-r (v (r) n ) + R n ,
where u n is defined in (5.13),

v (r) n = 1 q! q r n qH-1 2 n-1 k=0 α r k,k f (r) (B k/n )∂ ⊗(q-r) k/n
, and

R n = 1 q! n qH-1 2 n-1 k=0 α q k,k f (q) (B k/n ).
The proof will be done in two steps.

Step 1 We first show that if H ∈ 0, 1 2 , and r = 1, . . . , q -1, δ q-r (v (r) n ) converges to zero in L 2 (Ω) as n tends to infinity. It suffices to show that v (r) n converges to zero in the norm of the space D q-r,2 (H ⊗(q-r) ). For 0 ≤ m ≤ qr, we can write, using the notation β k,l defined by (5.14),

E D m v (r) n 2 H ⊗(q-r+m) = 1 q! q r 2 n 2qH-1 × n-1 k,l=0 E f (r+m) (B k/n )f (r+m) (B l/n ) ×α r k,k α r l,l α m k,l β q-r k,l
≤ Cn 2qH-1 n -2H(2r-2+m+q-r)

= Cn 2H-1-2Hm , which converges to zero as n tends to infinity.

Step 2 To complete the proof it suffices to check that R nn -1 2 -qH (-1) q 2 q q! n-1 k=0 f (q) (B k/n ) converges to zero in L 2 (Ω) as n tends to infinity. This follows from (5.10) and the estimates 1 q! n qH-1 2 n-1 k=0 α q k,k f (q) (B k/n ) -

(-1) q 2 q q! n -1 2 -qH n-1 k=0 f (q) (B k/n ) L 2 ≤ Cn qH-1 2 n-1 k=0 α q k,k - 1 2 q n 2qH ≤ C n -qH+2H-1 2 .
Notice that -qH + 2H -1 2 < 0. The proof is now complete.

. 19 )

 19 Using Lemma 5.1 (b) and (e) we have α m-i l,j

. 20 )

 20 On the other hand, if i = 0, Lemma 5.1 (c) and (5

-qH (-1) q 2 q q! n k=0 f (q) (B k/n ). The remaining terms (1 ≤ r ≤ q -1) converge to zero in L 2 (Ω).
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Notice that the estimate for the L p (Ω)-norm of Φ 0,m,j n in the case i = 0 is worst than for i ≥ 1. We will see later that, for p = 2, we can get a better estimate for Φ 0,m,j n . Because q-1 m=1 k m ≥ 2, the number of factors in q-1 m=1 ∂ j/n , D m F n km H ⊗m is at least two. As a consequence, we can write

for some µ, ν (not necessarily distinct), where

Consider the decomposition

where

From (5.22) and the estimate Ψ m,j n L p ≤ Cn -mH , for all p ≥ 2 and 1 ≤ m ≤ q, we obtain Θ j n L p ≤ Cn -H(q-µ-ν) .

(

Then, from (5.20), (5.21) and (5.23) we obtain

which converges to zero as n tends to infinity, because µ, ν ≥ 1 and H < 1 2 .