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Abstract

In this paper, we prove a central limit theorem for a sequence of
iterated Skorohod integrals using the techniques of Malliavin calculus.
The convergence is stable, and the limit is a conditionally Gaussian
random variable. Some applications to sequences of multiple stochastic
integrals, and renormalized weighted quadratic variation of the frac-
tional Brownian motion are discussed.
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1 Introduction

Consider a sequence of random variables {Fn, n ≥ 1} defined on a complete
probability space (Ω,F , P ). Suppose that the σ-field F is generated by an
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isonormal Gaussian process X = {X(h), h ∈ H} on a separable Hilbert space
H. This means that X is a centered Gaussian family of random variables
indexed by the elements of H, and such that for every h, g ∈ H,

E [X(h)X(g)] = 〈h, g〉H. (1.1)

Suppose that the sequence {Fn, n ≥ 1} is normalized, that is, E(Fn) = 0
and limn→∞ E(F 2

n ) = 1. A natural problem is to find suitable conditions
ensuring that Fn converges in law towards a given distribution. When the
random variables Fn belong to the qth Wiener chaos, q ≥ 2, then it turns
out that the following conditions are equivalent:

(i) Fn converges in law to N(0, 1);

(ii) limn→∞ E[F 4
n ] = 3;

(iii) limn→∞ fn ⊗r fn = 0, for all r = 1, . . . , q − 1;

(iv) limn→∞ ‖DFn‖2
H

= q in L2,

where fn is the element in the symmetric tensor product H⊙q associated
with Fn, fn ⊗r fn denotes the contraction of order r of fn and itself, and
D is the derivative operator in the sense of Malliavin calculus (see Section
2 for more details).

Moreover, in this case, we have the following bound

sup
z∈R

|P (Fn ≤ z) − P (N ≤ z)| 6

√
E
[(

1 − q−1‖DFn‖2
H

)2]
, (1.2)

where N denotes a random variable with the law N(0, 1).
The equivalence between conditions (i), (ii) and (iii) was proved in Nu-

alart and Peccati [23] by means of the Dambis, Dubins and Schwarz The-
orem. The equivalence with condition (iv) was proved later by Nualart
and Ortiz-Latorre [22] using tools of Malliavin calculus. Finally, the Berry-
Esseen’s type bound (1.2) has been proved by Nourdin and Peccati in [17].

In particular, the above result implies that the convergence in distri-
bution of a sequence of multiple stochastic integrals towards a Gaussian
random variable is completely determined by the asymptotic behavior of
their second and fourth moments, and it can be seen as a simplification
of the classical “method of moments and diagrams” (see, for instance, the
survey by Surgailis [30] and the references therein).
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Peccati and Tudor [27] also obtained a multidimensional version of Pec-
cati and Nualart theorem. In particular they proved that given a sequence
{Fn, n ≥ 1} of d-dimensional random vectors, such that F i

n belongs to the
qith Wiener chaos for i = 1, . . . , d, where 1 6 q1 6 . . . 6 qd, then if the
covariance matrix of Fn converges to the d × d identity matrix Id, the con-
vergence in distribution to each component to the law N(0, 1) implies the
convergence in distribution of the whole sequence Fn to the standard cen-
tered Gaussian law N(0, Id).

Recent examples of application of these results are, among others, the
study of p-variations of fractional stochastic integrals (Corcuera et al. [4]),
quadratic functionals of bivariate Gaussian processes (Deheuvels et al. [5]),
self-intersection local times of fractional Brownian motion (Hu and Nu-
alart [7]), approximation schemes for scalar fractional differential equa-
tions (Neuenkirch and Nourdin [13]), high-frequency CLTs for random fields
on homogeneous spaces (Marinucci and Peccati [11, 12] and Peccati [24]),
needlets analysis on the sphere (Baldi et al. [1]), estimation of self-similarity
orders (Tudor and Viens [31]) and weighted power variations of iterated
Brownian motion (Nourdin and Peccati [16]).

Since the works by Nualart and Peccati [23] and Peccati and Tudor
[27], great efforts have been made to find similar statements in the case
where the limit is not necessarily Gaussian. In the references [25] and [26]
Peccati and Taqqu have proposed sufficient conditions ensuring that a given
sequence of multiple Wiener-Itô integrals converges stably towards mixtures
of Gaussian random variables. On the other hand, Nourdin and Peccati
[15] proved an extension of the above equivalence (i) - (iv) for a sequence of
random variables {Fn, n ≥ 1} in a fixed qth Wiener chaos, q ≥ 2, where the
limit law is 2Gν/2 − ν, Gν/2 being the Gamma distribution with parameter
ν/2. Let us also mention that in [17] Nourdin and Peccati derived bounds
for this convergence similar to (1.2).

The purpose of this paper is to study the convergence in distribution of a
sequence of random variables of the form Fn = δq(un), where un are random
variables with values in H⊗q, and δq denotes the iterated divergence opera-
tor (also called Skorohod integral), towards a mixture of Gaussian random
variables. Our main result, Theorem 3.1, says that under some conditions,
if 〈un,DqFn〉H⊗q converges in L1 to a nonnegative random variable S2,
then the sequence Fn converges stably to a random variable F with condi-

tional characteristic function E
(
eiλF

∣∣X) = E

(
e−

λ2

2
S2

)
. Notice that if un

is deterministic, then Fn belongs to the qth Wiener chaos, and we have a

3



sequence of the type considered above. In particular, if S2 is determinis-
tic, we recover the fact that condition (iv) above implies the convergence in
distribution to the law N(0, 1).

We develop some particular applications of Theorem 3.1 in the following
directions. First we consider a sequence of random variables in a fixed
Wiener chaos and we derive new criteria for the convergence to a mixture
of Gaussian laws. Second, we show the convergence in law of the sequence
δ2(un), where un is a two parameter process of the form

un = n2H− 1
2

n−1∑

k=0

f(Bk/n)1(k/n,(k+1)/n]2 ,

to the random variable σH

∫ 1
0 f(Bs)dWs, where B is a fractional Brownian

motion with Hurst parameter H ∈
(

1
8 , 1

2

)
, and W is a Brownian motion

independent of B. As a consequence of this convergence we establish a new
asymptotic result for the behavior of the weighted quadratic variation of
the fractional Brownian motion with Hurst parameter H ∈

(
1
8 , 1

2

)
. This

result complements and provides a new perspective to the results proved
by Nourdin in [14], Nourdin, Nualart and Tudor in [18], and Nourdin and
Réveillac in [19].

The paper is organized as follows. In Section 2 we present some pre-
liminary results about Malliavin calculus and fractional Brownian motion.
Section 3 contains the proof of the main result. In Section 4, we apply it
to sequences of multiple stochastic integrals, while Section 5 focuses on the
applications to the quadratic variation of the fractional Brownian motion.

2 Preliminaries

Let H be a real separable Hilbert space. For any q ≥ 1 let H⊗q be the qth
tensor product of H and denote by H⊙q the qth symmetric tensor product.

Suppose that X = {X(h), h ∈ H} is an isonormal Gaussian process on
H, defined on some probability space (Ω,F , P ). Recall that this means that
the covariance of X is given in terms of the scalar product of H by (1.1).
Suppose that F is generated by X.

For every q ≥ 1, let Hq be the qth Wiener chaos of X, that is, the
closed linear subspace of L2(Ω,F , P ) generated by the random variables
{Hn(X(h)), h ∈ H, ‖h‖

H
= 1}, where Hn is the nth Hermite polynomial.

We denote by H0 the space of constant random variables. For any q ≥ 1,
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the mapping Iq(h
⊗q) = q!Hq(X(h)) provides a linear isometry between the

symmetric tensor product H⊙q equipped with the modified norm
√

q! ‖·‖
H⊗q

and the qth Wiener chaos Hq. For n = 0, H0 = R, and I0 is the identity
map.

It is well-known (Wiener chaos expansion) that L2(Ω,F , P ) can be de-
composed into the infinite orthogonal sum of the spaces Hq. Therefore, any
square integrable random variable F ∈ L2(Ω,F , P ) admits the following
chaotic expansion

F =

∞∑

q=0

Iq(fq), (2.1)

where f0 = E[F ], and the fq ∈ H⊙q, q ≥ 1, are uniquely determined by
F . For every q ≥ 0 we denote by Jq the orthogonal projection operator on
the qth Wiener chaos. In particular, if F ∈ L2(Ω,F , P ) is as in (2.1), then
JqF = Iq(fq) for every q ≥ 0.

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H⊙p

and g ∈ H⊙q, for every r = 0, . . . , p ∧ q, the contraction of f and g of order
r is the element of H⊗(p+q−2r) defined by

f ⊗r g =

∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . . ⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ . . . ⊗ eir〉H⊗r . (2.2)

Notice that f ⊗r g is not necessarily symmetric and we denote its sym-
metrization by f⊗̃rg ∈ H⊙(p+q−2r). Moreover, f ⊗0 g = f ⊗ g equals the
tensor product of f and g while, for p = q, f ⊗q g = 〈f, g〉H⊗q .

In the particular case where H = L2(A,A, µ), where (A,A) is a mea-
surable space and µ is a σ-finite and non-atomic measure, one has that
H⊙q = L2

s(A
q,A⊗q, µ⊗q) is the space of symmetric and square integrable

functions on Aq. Moreover, for every f ∈ H⊙q, Iq(f) coincides with the
multiple Wiener-Itô integral of order q of f with respect to X introduced
by Itô in [8]. In this case, (2.2) can be written as

(f ⊗r g)(t1, . . . , tp+q−2r) =

∫

Ar

f(t1, . . . , tp−r, s1, . . . , sr)

× g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr)dµ(s1) . . . dµ(sr).

Let us introduce some basic elements of the Malliavin calculus with re-
spect to the isonormal Gaussian process X. We refer the reader to Nualart
[21] for a more detailed presentation of these notions. Let S be the set of
all smooth and cylindrical random variables of the form

F = g (X(φ1), . . . ,X(φn)) , (2.3)
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where n ≥ 1, g : R
n → R is a infinitely differentiable function with compact

support and φi ∈ H. The Malliavin derivative of F with respect to X is the
element of L2(Ω,H) defined as

DF =

n∑

i=1

∂g

∂xi
(X(φ1), . . . ,X(φn)) φi.

In particular, DX(h) = h for every h ∈ H. By iteration, one can define the
mth derivative DmF , which is an element of L2(Ω,H⊙m), for every m ≥ 2.

For m ≥ 1 and p ≥ 1, D
m,p denotes the closure of S with respect to the

norm ‖ · ‖m,p, defined by the relation

‖F‖p
m,p = E [|F |p] +

m∑

i=1

E
(
‖DiF‖p

H⊗i

)
.

The Malliavin derivative D verifies the following chain rule. If ϕ : R
n → R

is continuously differentiable with bounded partial derivatives and if F =
(F1, . . . , Fn) is a vector of elements of D

1,2, then ϕ(F ) ∈ D
1,2 and

D ϕ(F ) =

n∑

i=1

∂ϕ

∂xi
(F )DFi.

We denote by δ the adjoint of the operator D, also called the divergence

operator. A random element u ∈ L2(Ω,H) belongs to the domain of δ, noted
Domδ, if and only if it verifies

|E〈DF, u〉H| ≤ cu ‖F‖L2 ,

for any F ∈ D
1,2, where cu is a constant depending only on u. If u ∈ Domδ,

then the random variable δ(u) is defined by the duality relationship (called
“integration by parts formula”)

E(Fδ(u)) = E〈DF, u〉H, (2.4)

which holds for every F ∈ D
1,2. The duality formula (2.4) extends to the

iterated divergence operator δq, and we have

E (Fδq(u)) = E
(
〈DqF, u〉H⊗q

)
(2.5)

for any element u in the domain of δq and any random variable F ∈ D
q,2.

Moreover, δq(h) = Iq(h) for any h ∈ H⊙q. The divergence operator δ is also
called the Skorohod integral because in the case of the Brownian motion it
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coincides with the anticipating stochastic integral introduced by Skorohod in
[29]. The iterated divergence δq is also called the multiple Skorohod integral.

The following property will be extensively used in the paper (see [21,
Proposition 1.3.3]). For every F ∈ D

1,2 and every u ∈ Domδ such that Fu
and Fδ(u) + 〈DF, u〉H are square integrable, one has that Fu ∈ Domδ and

δ(Fu) = Fδ(u) − 〈DF, u〉H. (2.6)

Iterating formula (2.6) yields

Fδ2(u) = δ2(Fu) + 2δ (〈DF, u〉H) + 〈D2F, u〉H⊗2 , (2.7)

for all F ∈ D
2,2 and u ∈ Domδ2, assuming that all the terms are well defined

and square integrable.
For any Hilbert space V , we denote by D

k,p(V ) the corresponding Sobolev
space of V -valued random variables (see [21, page 31]). The operator δ is
continuous from D

k,p(H) to D
k−1,p, for any k ≥ 1 and p > 1, and the op-

erator δ2 is continuous from D
k,p(H⊗2) to D

k−2,p for any k ≥ 2, that is, we
have

‖δ(u)‖k−1,p ≤ ck,p ‖u‖Dk,p(H) , (2.8)
∥∥δ2(v)

∥∥
k−2,p

≤ ck,p ‖v‖Dk,p(H⊗2) . (2.9)

These estimates are consequences of Meyer inequalities (see [21, Proposition
1.5.7]). In particular, these estimates imply that D

1,2(H) ⊂ Domδ, and
D

2,2(H⊗2) ⊂ Domδ2.
We will also use the following commutation relationship between the

derivative and divergence operators (see [21, Proposition 1.3.2])

Dh(δ(u)) = 〈u, h〉H + δ(Dhu), (2.10)

for any h ∈ H, and u ∈ D
2,2(H), where we use the notation DhF = 〈DF,h〉

H
.

By iteration we get the formulas

Dh(δ2(u)) = δ2(Dhu) + 2δ(u ⊗1 h), (2.11)

and

D2
h⊗g(δ

2(u)) = δ2(D2
h⊗gu) + 2δ(Dhu ⊗1 g)

+2δ(Dgu ⊗1 h) + 〈u, h ⊗ g〉
H⊗2 , (2.12)

provided u is a symmetric element of D
4,2(H).
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The operator L is defined on the Wiener chaos expansion as

L =
∞∑

q=0

−qJq,

and is called the infinitesimal generator of the Ornstein-Uhlenbeck semi-
group. The domain of this operator in L2 is the set

DomL = {F ∈ L2(Ω) :

∞∑

q=1

q2 ‖JqF‖2
L2(Ω) < ∞} = D

2,2.

There is an important relation between the operators D, δ and L (see [21,
Proposition 1.4.3]). A random variable F belongs to the domain of L if and
only if F ∈ Dom (δD) (i.e. F ∈ D

1,2 and DF ∈ Domδ), and in this case

δDF = −LF. (2.13)

Note also that a random variable F as in (2.1) is in D
1,2 if, and only if,

∞∑

q=1

q‖fq‖2
H⊙q < ∞,

and, in this case, E
(
‖DF‖2

H

)
=
∑

q≥1 q‖fq‖2
H⊙q . If H = L2(A,A, µ) (with µ

non-atomic), then the derivative of a random variable F as in (2.1) can be
identified with the element of L2(A × Ω) given by

DaF =
∞∑

q=1

qIq−1 (fq(·, a)) , a ∈ A. (2.14)

Finally, we need the definition of stable convergence (see for instance,
the original paper [28], or the book [9] for an exhaustive discussion of stable
convergence).

Definition 2.1 A sequence of random variables {Fn, n ≥ 1} converges sta-
bly to a random variable F , if F is defined on an enlarged probability space
(Ω,G, P ), where F ⊆ G, and for any continuous and bounded function
f : R → R and any bounded F-measurable random variable Z, we have

E (f(Fn)Z) → E (f(F )Z) ,

as n tends to infinity.
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3 Convergence in law of multiple Skorohod inte-

grals

As in the previous section, let X = {X(h), h ∈ H} be an isonormal Gaussian
process associated with a separable Hilbert space H. The next theorem is
the main result of this paper.

Theorem 3.1 For a fixed q ≥ 1, suppose that Fn is a sequence of ran-
dom variables of the form Fn = δq(un), for some random variables un in
D

2q,2q(H⊙q). Suppose moreover that the sequence Fn is bounded in L1, and
that:

(i)
〈
un, (DFn)⊗k1 ⊗ . . . ⊗ (Dq−1Fn)⊗kq−1 ⊗ h

〉
H⊗q converges to zero in L1,

for all integers r, k1, . . . , kq−1 ≥ 0 such that k1+2k2+. . .+(q−1)kq−1+
r = q, and all h ∈ H⊗r;

(ii) 〈un,DqFn 〉
H⊗q converges in L1 to a nonnegative random variable S2.

Then, Fn converges stably to a random variable with conditional Gaus-
sian law N(0, S2) given X.

Remark 3.2 When q = 1, condition (i) of the theorem is that 〈un, h〉H
converges to zero in L1, for each h ∈ H. When q = 2, condition (i) means
that 〈un, h⊗ g〉H⊗2 , 〈un,DFn ⊗ h〉H⊗2 and 〈un,DFn ⊗DFn〉H⊗2 converge to
zero in L1, for each h, g ∈ H. And so on.

Proof of Theorem 3.1. Taking into account Definition 2.1, it suffices
to show that for any h1, . . . , hm ∈ H, the sequence ξn := (Fn,X(h1), . . . ,X(hm))
converges in distribution to a vector

(F∞,X(h1), . . . ,X(hm)),

where F∞ satisfies

E(eiλF∞ |X(h1), . . . ,X(hm)) = e−
λ2

2
S2

(3.1)

for any λ ∈ R. Since the sequence Fn is bounded in L1, the sequence ξn is
tight. Assume that (F∞,X(h1), . . . ,X(hm)) denotes the limit in law of a
certain subsequence of ξn, denoted again by ξn.

Let Y = φ(X(h1), . . . ,X(hm)), with φ ∈ C∞
b (Rm) (φ is infinitely dif-

ferentiable, bounded, with bounded partial derivatives of all orders), and
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consider φn(λ) = E
(
eiλFnY

)
for λ ∈ R. The convergence in law of ξn, and

the fact that Fn is bounded in L1 imply that

lim
n→∞

φ′
n(λ) = lim

n→∞
iE
(
FneiλFnY

)
= iE(F∞eiλF∞Y ). (3.2)

On the other hand, by the duality relationship (2.5) between the iterated
derivative and divergence operators we obtain

φ′
n(λ) = iE(FneiλFnY ) = iE

(
δq(un)eiλFnY

)
= iE

(〈
un,Dq

(
eiλFnY

)〉
H⊗q

)

= i

q∑

a=0

(
q

a

)
E
(〈

un,Da
(
eiλFn

)
⊗̃Dq−aY

〉
H⊗q

)

= i

q∑

a=0

(
q

a

)∑ a!

k1! . . . ka!
(iλ)k1+···+ka

×E
(
eiλFn

〈
un, (DFn)⊗k1⊗̃ . . . ⊗̃(DaFn)⊗ka⊗̃Dq−aY

〉
H⊗q

)

= i

q∑

a=0

(
q

a

)∑ a!

k1! . . . ka!
(iλ)k1+···+ka

×E
(
eiλFn

〈
un, (DFn)⊗k1 ⊗ . . . ⊗ (DaFn)⊗ka ⊗ Dq−aY

〉

H⊗q

)
,

where the second sum in the last equality runs over all sequences of integers
(k1, . . . , ka) such that k1 +2k2 + . . .+aka = a by the Faá di Bruno’s formula.
By condition (i), this yields that

φ′
n(λ) = −λE

(
eiλFn 〈un,DqFn〉H⊗q Y

)
+ Rn,

with Rn converging to zero as n → ∞. Using condition (ii) and (3.2), we
obtain that

iE(F∞eiλF∞Y ) = −λE
(
eiλF∞S2Y

)
.

Since S2 is defined through condition (ii), it is in particular measurable with
respect to X. Thus, the following linear differential equation verified by the
conditional characteristic function of F∞ holds:

∂

∂λ
E(eiλF∞ |X(h1), . . . ,X(hm)) = −λS2 E(eiλF∞ |X(h1), . . . ,X(hm)).

By solving it we obtain (3.1), which yields the desired conclusion.
The next corollary provides stronger but easier conditions for the con-

vergence in law.
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Corollary 3.3 For a fixed q ≥ 1, suppose that Fn is a sequence of ran-
dom variables of the form Fn = δq(un), for some random variables un in
D

2q,2q(H⊙q). Suppose moreover that the sequence Fn is bounded in D
q,p, for

all p ≥ 2, and that:

(i’) 〈un, h〉H⊗q converges to zero in L1 for all h ∈ H⊗q; and un ⊗l DlFn

converges to zero in L2(Ω;H⊗(q−l)) for all l = 1, . . . , q − 1;

(ii) 〈un,DqFn 〉
H⊗q converges in L1 to a nonnegative random variable S2.

Then, Fn converges stably to a random variable with conditional Gaus-
sian law N(0, S2) given X.

Proof. It suffices to show that condition (i’) implies condition (i) in
Theorem 3.1. When ka 6= 0 for 1 ≤ a ≤ q−1, we have, for all h ∈ H⊗r (with
r = q − k1 − 2k2 − . . . − aka)

∣∣∣
〈
un, (DFn)⊗k1 ⊗ . . . ⊗ (DaFn)⊗ka ⊗ h

〉

H⊗q

∣∣∣

=

∣∣∣∣
〈

un ⊗a DaFn,

(DFn)⊗k1 ⊗ . . . ⊗ (Da−1Fn)⊗ka−1 ⊗ (DaFn)⊗(ka−1) ⊗ h
〉

H⊗(q−a)

∣∣∣

≤ ‖un ⊗a DaFn‖H⊗(q−a)

×
∥∥∥(DFn)⊗k1 ⊗ . . . ⊗ (Da−1Fn)⊗ka−1 ⊗ (DaFn)⊗(ka−1) ⊗ h

∥∥∥
H⊗(q−a)

.

The second factor is bounded in L2, and the first factor converges to zero
in L2, for all a = 1, . . . , q − 1. In the case a = 0 we have that 〈un, h〉H⊗q

converges to zero in L1, for all h ∈ H⊗q, by condition (i’). This completes
the proof.

4 Multiple stochastic integrals

Suppose that H is a Hilbert space L2(A,A, µ), where µ is a σ-finite measure
without atoms.

Fix an integer m ≥ 2, and consider the sequence of multiple stochastic
integrals {Fn = Im(gn), n ≥ 1} with gn ∈ H⊙m. From (2.14) we have
DFn = mIm−1(gn). Using (2.13) we can write Fn = − 1

mLFn = 1
mδ(DFn).

Applying Theorem 3.1 with q = 1 and un = 1
mDFn yields:
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Proposition 4.1 For a fixed m ≥ 2, suppose that Fn is a sequence of ran-
dom variables of the form Fn = Im(gn), with gn ∈ H⊙m. Suppose moreover
that the sequence gn is bounded in H⊙m, and that:

(a) 〈gn ⊗m−1 gn, h⊗2〉H⊗2 converges to zero for all h ∈ H;

(b) 1
m‖DFn‖2

H
converges in L1 to a nonnegative random variable S2.

Then, Fn converges stably to a random variable with conditional Gaus-
sian law N(0, S2) given X.

Proof. It suffices to apply Theorem 3.1 to un = Im−1(gn) and q = 1.
We have

E
(
〈un, h〉2H

)
= E

(
〈Im−1(gn), h〉2

H

)
= E

(
Im−1(gn ⊗1 h)2

)

= (m − 1)! ‖gn ⊗1 h‖2
H⊗(m−1)

= (m − 1)!
〈
gn ⊗m−1 gn, h⊗2

〉
H⊗2 → 0,

which implies condition (i) in Theorem 3.1, see Remark 3.2. Condition (ii)
in Theorem 3.1 follows from (b) and the equality 〈un,DFn〉H = 1

m‖DFn‖2
H
.

If S2 = 1, then condition (b) coincides with condition (iv) in the intro-
duction. In this case, Nualart and Peccati Theorem combined with Lemma
6 in [22] tells us that if the variances converge to one condition (a) is auto-
matically satisfied.

On the other hand, we can also apply Theorem 3.1 with un = gn. In this
way, applying Corollary 3.3, we obtain that the following conditions imply
that Fn converges to a normal random variable N(0, 1) independent of X:

(α) gn is bounded in H⊙q and it converges weakly to zero,

(β) ‖gn ⊗l gn‖H⊗2(q−l) converges to zero for all l = 1, . . . , q − 1;

(γ) q!‖gn‖2
H⊗q converges to 1.

In fact, notice first that if gn is bounded in H⊙q, Fn is bounded in all
the Sobolev spaces D

q,p, p ≥ 2. Then, condition (ii) in Corollary 3.3 follows
from (γ) and the equality Dq (Iq(gn)) = q!gn, and, finally, condition (i’) in

12



Corollary 3.3 follows from (ii) and

E

[∥∥∥gn ⊗l DlFn

∥∥∥
2

H⊗(q−l)

]
=

q!2

(q − l)!2
E
[
‖gn ⊗l Iq−l(gn)‖2

H⊗(q−l)

]

=
q!2

(q − l)!2
E
[
‖Iq−l(gn ⊗l gn)‖2

H⊗(q−l)

]

=
q!2

(q − l)!
‖gn ⊗l gn‖2

H⊗2(q−l) .

In this way we recover the fact that condition (iii) in the introduction
implies the normal convergence.

5 Weighted quadratic variation of the fractional

Brownian motion

The fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is
a centered Gaussian process B = {Bt, t ≥ 0} with the covariance function

E(BsBt) = RH(s, t) =
1

2

(
t2H + s2H − |t − s|2H

)
. (5.1)

From (5.1) it follows that E(|Bt − Bs|2) = (t − s)2H , for all 0 6 s < t. On
the other hand, for each a > 0 the process {a−HBat, t ≥ 0} is also a fBm
with Hurst parameter H (self-similarity property).

As a consequence, the sequence {Bj − Bj−1, j = 1, 2, . . .} is stationary,
Gaussian and ergodic, with correlation given by

ρH(n) =
1

2

[
(n + 1)2H − 2n2H + (n − 1)2H

]
, (5.2)

which behaves as H(2H − 1)n2H−2 as n tends to infnity.
Set ∆Bk = B(k+1)/n − Bk/n, where k = 0, 1, . . . , n, and n ≥ 1. The

Ergodic Theorem and the self-similarity property imply that, for any p > 0,
the sequence npH−1

∑n−1
k=0 |∆Bk|p converges almost surely and in L1 to

cp = E(|B1|p). In this situation, it is well-known (see, for instance [2], [4]),
that a central limit theorem holds, and the sequence

1√
n

n−1∑

k=0

(
npH |∆Bk|p − cp

)
(5.3)

converges in law to the law N(0, σ2
p,H), for some constant σp,H > 0, provided

H ∈ (0, 3
4).
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There has been some recent interest in the study of the asymptotic be-
havior of the weighted p-variation of the fBm (see [18] and the references
therein). Consider the case of the quadratic variation, that is, p = 2. In this
case, when we introduce a weight of the form f(Bk/n) some unexpected re-

sults happen, and the critical value H = 1
4 plays an important role. We are

interested in the asymptotic behavior of the sequence of random variables

Gn =
1√
n

n−1∑

k=0

f(Bk/n)
(
n2H (∆Bk)

2 − 1
)

. (5.4)

Assuming that the function f satisfies some regularity and growth condi-
tions, for any H ∈

(
1
4 , 3

4

)
we have

Gn
Stably−→ σH

∫ 1

0
f(Bs)dWs, (5.5)

where W is a Brownian motion independent of B, and

σ2
H =

1

2

∑

r∈Z

ρH(r)2 < ∞, (5.6)

whereas for H ∈
(
0, 1

4

)

n2HGn
L2

−→ 1

4

∫ 1

0
f ′′(Bs)ds. (5.7)

The convergence (5.5) follows easily from (5.3) in the case H ∈
(

1
2 , 3

4

)
(see

[4]), and in the case H ∈
(

1
2 , 3

4

)
this convergence is a particular case of the

general asymptotic results for the p-variation obtained by Nourdin, Nualart
and Tudor in [18]. The method of proof in these papers consists on consid-
ering two different levels of discretization n 6 m, and use the convergence
to a normal law of (5.3) (case f = 1).

The convergence (5.7) was obtained by Nourdin [14] using the techniques
of Malliavin calculus. The critical case H = 1

4 has been recently solved by
Nourdin and Réveillac [19]: the convergence is in law and the limit is equal
to a linear combination of the limits in (5.5) and (5.7). The proof of this
result follows an approach similar to the proof of Theorem 3.1.

We are going to show that Theorem 3.1 provides a proof of the following
new result for H ∈

(
1
8 , 1

2

)

Gn − 1

4
n

1
2
−2H

∫ 1

0
f ′′(Bs)ds

Stably−→ σH

∫ 1

0
f(Bs)dWs. (5.8)

14



Notice that (5.8) provides the asymptotic behavior of the fluctuations asso-
ciated with the convergence (5.7) in the case H ∈ (1

8 , 1
4). In this way we get

also a proof of (5.5) in the case H ∈
(

1
4 , 1

2

)
without using the two steps of

discretization as in [18], and a new proof of the convergence in the critical
case H = 1

4 , obtained by Nourdin and Réveillac in [19].
The main idea of the proof is a decomposition of the random variable

Gn into the sum of three terms, using Equation (2.7). The first one is a
double divergence and it converges in law for any H ∈

(
1
8 , 1

2

)
by Theorem

5.2 below, the second one is a divergence which converges to zero in L2, and
the third one behaves as −1

4n
1
2
−2H

∫ 1
0 f ′′(Bs)ds.

Before stating and proving our results, we need some preliminaries on
the Malliavin calculus associated with the fBm and some technical results
(see [21, Chapter 5]).

In the following we assume H ∈
(
0, 1

2

)
. We denote by E the set of step

functions on [0, T ]. Let H be the Hilbert space defined as the closure of E
with respect to the scalar product

〈
1[0,t],1[0,s]

〉
H

= RH(t, s).

The mapping 1[0,t] → Bt can be extended to a linear isometry between the
Hilbert space H and the Gaussian space spanned by B. We denote this
isometry by φ → B(φ). In this way {B(φ), φ ∈ H} is an isonormal Gaussian
space.

We know that the space H coincides with I
H− 1

2
0+ (L2[0, T ]), where

I
H− 1

2
0+ f(x) =

1

Γ(H − 1
2 )

∫ x

0
(x − y)H−

3
2 f(y)dy

is the left-sided Liouville fractional integral of order H − 1
2 (see [6]).

We make use of the notation

εt = 1[0,t],

∂k/n = ε(k+1)/n − εk/n = 1((k+1)/n−k/n],

for t ∈ [0, 1], n ≥ 1, and k = 0, . . . , n − 1. Notice that n2H(∆Bk)
2 − 1 =

n2HI2(∂
⊗2
k/n

).

We need the following technical lemma.

Lemma 5.1 Suppose that H < 1
2 . Let n ≥ 1 and k = 0, . . . , n−1. We have

(a)
∣∣E(Br(Bt − Bs))

∣∣ 6 (t − s)2H for any r ∈ [0, 1] and 0 6 s < t 6 1.
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(b)
∣∣∣
〈
εt, ∂k/n

〉
H

∣∣∣ 6 n−2H for any t ∈ [0, 1].

(c) supt∈[0,1]

∑n−1
k=0

∣∣∣
〈
εt, ∂k/n

〉
H

∣∣∣ = O(1), as n tends to infinity.

(d)
∣∣∣
〈
εk/n, ∂k/n

〉2
H
− 1

4n4H

∣∣∣ 6 3
4n4H

[
(k + 1)2H − k2H

]
, which implies

n−1∑

k=0

∣∣∣∣
〈
εk/n, ∂k/n

〉2
H
− 1

4n4H

∣∣∣∣ ≤ Cn−2H , (5.9)

for some constant C.

(e) We have
〈
∂j/n, ∂k/n

〉
H

= n−2H ρH(k − j). Consequently,

n−1∑

k,j=0

∣∣∣
〈
∂j/n, ∂k/n

〉
H

∣∣∣ = O(n1−2H), (5.10)

and
n−1∑

k,j=0

〈
∂j/n, ∂k/n

〉2
H

= O(n1−4H). (5.11)

Proof. We have

E(Br(Bt − Bs)) =
1

2

(
r2H + t2H − |t − r|2H

)
− 1

2

(
r2H + s2H − |s − r|2H

)

=
1

2
(t2H − s2H) +

1

2

(
|s − r|2H − |t − r|2H

)
.

Using the inequality |b2H − a2H | 6 |b − a|2H for any a, b ∈ [0, 1], because
H < 1

2 , we deduce (a). Property (b) is an immediate consequence of (a).
To show property (c) we use

〈
εt, ∂k/n

〉
H

=
1

2n2H

[
(k + 1)2H − k2H − |k + 1 − nt|2H + |k − nt|2H

]
.

Property (d) follows from

〈
εk/n, ∂k/n

〉
H

=
1

2n2H

[
(k + 1)2H − k2H − 1

]
,

and
∣∣∣∣
〈
εk/n, ∂k/n

〉2
H
− 1

4n4H

∣∣∣∣ =
1

4n4H

[
(k + 1)2H − k2H

] ∣∣(k + 1)2H − k2H − 2
∣∣ .
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Finally, property (e) follows from

n−1∑

k,j=0

∣∣∣
〈
∂j/n, ∂k/n

〉
H

∣∣∣ ≤ n−2H
n−1∑

k,j=0

|ρH(j − k)| ≤ n1−2H
∑

r∈Z

|ρH(r)|.

In the sequel, we will also make use of the following hypotheses on f :
R → R:

(H) f belongs to C4 and

sup
t∈[0,1]

E(|f (i)(Bt)|p) < ∞, (5.12)

for any p ≥ 2 and i = 0, 1, 2, 3, 4.
Notice that a sufficient condition for (5.12) to hold is that f satisfies

an exponential growth condition of the form
∣∣f (4)(x)

∣∣ 6 kecx|p|
for some

constants c, k > 0 and 0 < p < 2.

Our main result is the following theorem on the convergence of double
Skorohod integrals.

Theorem 5.2 Suppose H ∈
(

1
8 , 1

2

)
, and let f be a function satisfying Hy-

pothesis (H). Consider the sequence of two-parameter step processes defined
by

un = n2H−
1
2

n−1∑

k=0

f(Bk/n)∂⊗2
k/n. (5.13)

Then δ2(un) converges stably to σH

∫ 1
0 f(Bs)dWs, where W is a Brownian

motion independent of B, and σH has been defined in (5.6).

Proof. We are going to show that the sequence Fn = δ2(un) satisfies
the conditions of Theorem 3.1 with q = 2. We make use of the notation

αk,j =
〈
εk/n, ∂j/n

〉
H

, βk,j =
〈
∂k/n, ∂j/n

〉
H

,

for k, j = 0, . . . , n − 1 and n ≥ 1. Also C will denote a generic constant.

Step 1. Let us show first that Fn is bounded in L2. Taking into account
the continuity of the divergence operator (see (2.9)), it suffices to show that
un is bounded in D

2,2(H⊗2). Using (H), the estimate (5.11) we obtain

E
(
‖un‖2

H⊗2

)
= n4H−1

n−1∑

k,j=0

E
(
f(Bk/n)f(Bj/n)

)
β2

k,j ≤ C,
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and from

Dun = n2H− 1
2

n−1∑

k=0

f ′(Bk/n)εk/n ⊗ ∂⊗2
k/n,

D2un = n2H− 1
2

n−1∑

k=0

f ′′(Bk/n)ε⊗2
k/n ⊗ ∂⊗2

k/n,

we obtain in the same way

E
(
‖Dun‖2

H⊗3

)
= n4H−1

n−1∑

k,j=0

E
(
f ′(Bk/n)f ′(Bj/n)

) 〈
εk/n, εj/n

〉
β2

k,j ≤ C,

E
(∥∥D2un

∥∥2

H⊗4

)
= n4H−1

n−1∑

k,j=0

E
(
f ′′(Bk/n)f ′′(Bj/n)

) 〈
εk/n, εj/n

〉2
β2

k,j ≤ C.

Notice that by the same method we can show that the sequence un is
bounded in D

3,2(H⊗2).

Step 2. Let us show condition (i) of Theorem 3.1. In view of Re-
mark 3.2, it suffices to show that for any s, t ∈ [0, 1] the random variables
〈un, εt ⊗ εs〉H⊗2, 〈un, εt ⊗ DFn〉H⊗2 and 〈un, ,DFn ⊗ DFn〉H⊗2 converges to
zero in L1 as n tends to infinity. From conditions (b) and (c) in Lemma 5.1
we obtain

E
(∣∣〈un, εt ⊗ εs〉H⊗2

∣∣) 6 n2H− 1
2

n−1∑

k=0

E
(∣∣f(Bk/n)

∣∣)
∣∣∣
〈
∂k/n, εt

〉
H

〈
∂k/n, εs

〉
H

∣∣∣

6 C n− 1
2 , (5.14)

which converges to zero as n tends to infinity. Consider now the term

〈un, εt ⊗ DFn〉H⊗2 = n2H− 1
2

n−1∑

k=0

f(Bk/n)
〈
∂k/n,DFn

〉
H

〈
∂k/n, εt

〉
H

.

We have, using again condition (c) in Lemma 5.1

E
(∣∣〈un, εt ⊗ DFn〉H⊗2

∣∣) 6 n2H− 1
2

n−1∑

k=0

E
(∣∣∣f(Bk/n)

〈
∂k/n,DFn

〉
H

∣∣∣
) ∣∣∣
〈
∂k/n, εt

〉
H

∣∣∣

6 Cn2H− 1
2 sup

06k6n−1

[
E
(〈

∂k/n,DFn

〉2
H

)] 1
2

6 CnH− 1
2

[
E
(
‖DFn‖2

H

)] 1
2
. (5.15)
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Then, applying the continuity of the operator δ2 from D
3,2(H⊗2) into D

1,2

(see (2.9)) yields

[
E
(
‖DFn‖2

H

)]1
2 ≤

∥∥δ2(un)
∥∥

D1,2 ≤ C ‖un‖D3,2(H⊗2) ≤ C ′. (5.16)

Therefore, (5.16) implies that (5.15) converges to zero as n tends to infinity
because H < 1

2 .
Consider finally the term

E
(∣∣〈un,DFn ⊗ DFn〉H⊗2

∣∣) 6 n2H− 1
2

n−1∑

k=0

E
(∣∣f(Bk/n)

∣∣ 〈∂k/n,DFn

〉2
H

)
.

(5.17)
Using the inequality |x| 6 1 + x2 we can estimate right-side of (5.17) by

Mn := n2H− 1
2

n−1∑

k=0

E
(
h(Bk/n)

〈
∂k/n,DFn

〉2
H

)
,

where h(x) = 1 + f(x)2.
Using the commutation relationship (2.11) we obtain

〈
∂k/n,D

(
δ2(f(Bj/n)∂⊗2

j/n)
) 〉

H
= 2δ(f(Bj/n)∂j/n)βj,k+δ2(f ′(Bj/n)∂⊗2

j/n)αj,k,

(5.18)
which implies

〈
∂k/n,DFn

〉
H

= 2n2H− 1
2

n−1∑

j=0

δ(f(Bj/n)∂j/n)βj,k+n2H− 1
2

n−1∑

j=0

δ2(f ′(Bj/n)∂⊗2
j/n)αj,k.

As a consequence

E
(
h(Bk/n)

〈
∂k/n,DFn

〉2
H

)

≤ 8n4H−1
n−1∑

j,l=0

βj,kβl,kE
(
h(Bk/n)δ(f(Bj/n)∂j/n)δ(f(Bl/n)∂l/n)

)

+2n4H−1
n−1∑

j,l=0

αj,kαl,kE
(
h(Bk/n)δ2(f ′(Bj/n)∂⊗2

j/n)δ2(f ′(Bl/n)∂⊗2
l/n)
)

= Ak,n + Bk,n.

This leads to the decomposition

Mn ≤ n2H− 1
2

n−1∑

k=0

Ak,n + n2H− 1
2

n−1∑

k=0

Bk,n.
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For the term Ak,n, using
∑n−1

j,l=0

∣∣βjkβlk

∣∣ ≤ n−4H
(∑

r∈Z

∣∣ρH(r)
∣∣)2 and

∑n−1
j=0

∣∣βjk

∣∣ ≤
n−2H

∑
r∈Z

∣∣ρH(r)
∣∣ (which follows from Lemma 5.1 (e)), we obtain

|Ak,n| ≤ Cn−1 sup
0≤k,j,l≤n−1

∣∣E
(
h(Bk/n)δ(f(Bj/n)∂j/n)δ(f(Bl/n)∂l/n)

)∣∣

≤ Cn−1 sup
0≤j≤n−1

[
E
(∣∣δ(f(Bj/n)∂j/n)

∣∣4
)]1

2
.

Using δ(f(Bj/n)∂j/n) = f(Bj/n)∆Bj − f ′(Bj/n)αj,j we get the estimate

|Ak,n| ≤ Cn−2H−1. (5.19)

Therefore,

n2H−
1
2

n−1∑

k=0

|Ak,n| ≤ Cn−
1
2

converges to zero as n tends to infinity.
The term Bk,n requires a finer analysis. Set

Jk,j,l = E
(
h(Bk/n)δ2(f ′(Bj/n)∂⊗2

j/n)δ2(f ′(Bl/n)∂⊗2
l/n)
)

.

Then,

|Bk,n| ≤ 2n4H−1
n−1∑

j,l=0

|αj,kαl,k| |Jk,j,l| . (5.20)

Applying the integation by parts formula (2.5) yields

Jk,j,l = E
(
f ′(Bj/n)

〈
D2
[
h(Bk/n)δ2(f ′(Bl/n)∂⊗2

l/n)
]
, ∂⊗2

j/n

〉
H⊗2

)

= E
(
f ′(Bj/n)h′′(Bk/n)δ2(f ′(Bl/n)∂⊗2

l/n)α2
k,j

)

+2E
(
f ′(Bj/n)h′(Bk/n)

〈
D
(
δ2(f ′(Bl/n)∂⊗2

l/n)
)

, ∂j/n

〉
H

αk,j

)

+E
(
f ′(Bj/n)h(Bk/n)

〈
D2
[
δ2(f ′(Bl/n)∂⊗2

l/n)
]
, ∂⊗2

j/n

〉
H⊗2

)

= J
(1)
k,j,l + J

(2)
k,j,l + J

(3)
k,j,l. (5.21)

For the first term we have, using again (2.5),

J
(1)
k,j,l = E

(
f ′(Bl/n)f (3)(Bj/n)h′′(Bk/n)α2

j,lα
2
k,j

)

+2E
(
f ′(Bj/n)f ′′(Bl/n)h(3)(Bk/n)αj,lα

2
k,jαk,l

)

+E
(
f ′(Bj/n)f ′(Bl/n)h(4)(Bk/n) α2

k,lα
2
k,j

)
.
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Hence, using Lemma 5.1 (b), we get

∣∣∣J (1)
k,j,l

∣∣∣ ≤ Cn−8H . (5.22)

In order to handle the term J (2) using (5.18) we can write

J
(2)
k,j,l = 4E

(
f ′(Bj/n)h′(Bk/n)δ(f ′(Bl/n)∂l/n)βl,jαk,j

)

+2E
(
f ′(Bj/n)h′(Bk/n)δ2(f ′′(Bl/n)∂⊗2

l/n)αl,jαk,j

)

Applying the integration by parts formulas (2.4) and (2.5) we obtain

J
(2)
k,j,l = 4E

(
f ′(Bl/n)f ′′(Bj/n)h′(Bk/n) αj,lβl,jαk,j

)

+4E
(
f ′(Bl/n)f ′(Bj/n)h′′(Bk/n)βl,jαk,lαk,j

)

+2E
(
f ′′(Bl/n)f (3)(Bj/n)h′(Bk/n)α2

j,lαl,jαk,j

)

+4E
(
f ′′(Bl/n)f ′′(Bj/n)h′′(Bk/n)αj,lαl,jαk,lαk,j

)

+2E
(
f ′′(Bl/n)f ′(Bj/n)h(3)(Bk/n)αl,jα

2
k,lαk,j

)
.

As a consequence, using Lemma 5.1 (b)

∣∣∣J (2)
k,j,l

∣∣∣ ≤ C
(
n−4Hβl,j + n−8H

)
. (5.23)

To handle the term J
(3)
k,j,l, using (2.12) we can write

〈
D2
[
δ2(f ′(Bl/n)∂⊗2

l/n)
]
, ∂⊗2

j/n

〉
H⊗2

= 2f ′(Bl/n)β2
l,j

+4δ
(
f ′′(Bl/n)∂l/n

)
βl,jαl,j + δ2(f (3)(Bl/n)∂⊗2

l/n)α2
l,j.

As a consequence

J
(3)
k,j,l = 2E

(
f ′(Bj/n)h(Bk/n)f ′(Bl/n)β2

l,j

)

+4E
(
f ′(Bj/n)h(Bk/n)δ

(
f ′′(Bl/n)∂l/n

)
βj,lαl,j

)

+E
(
f ′(Bj/n)h(Bk/n)δ2(f (3)(Bl/n)∂⊗2

l/n)α2
l,j

)
.
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Applying the integration by parts formula (2.4) and (2.5) we obtain

J
(3)
k,j,l = 2E

(
f ′(Bj/n)h(Bk/n)f ′(Bl/n)β2

l,j

)

+4E
(
f ′′(Bl/n)f ′′(Bj/n)h(Bk/n)βl,jαj,lαl,j

)

+4E
(
f ′′(Bl/n)f ′(Bj/n)h′(Bk/n)βl,jαl,jαk,l

)

+E
(
f (3)(Bl/n)f (3)(Bj/n)h(Bk/n)α2

j,lα
2
l,j

)

+2E
(
f (3)(Bl/n)f ′′(Bj/n)h′(Bk/n) αj,lα

2
l,jαk,l

)

+E
(
f (3)(Bl/n)f ′(Bj/n)h′′(Bk/n)α2

l,jα
2
k,l

)

As a consequence, from Lemma 5.1 (b),

∣∣∣J (3)
k,j,l

∣∣∣ ≤ C
(
β2

j,l + n−4H |βl,j| + n−8H
)
. (5.24)

Substituting the estimates (5.22), (5.23) and (5.24) in (5.21) we obtain

|Jk,j,l| ≤ C
(
β2

j,l + n−4H |βl,j| + n−8H
)
. (5.25)

From Lemma 5.1 (b) and (c) we get

n−1∑

k=0

|αj,kαl,k| ≤ Cn−2H ,

and, as a consequence, from (5.20) and (5.25) we get

n2H−
1
2

n−1∑

k=0

|Bk,n| ≤ Cn6H−
3
2

n−1∑

k,j,l=0

|αj,kαl,k|
(

β2
j,l + n−4H |βl,j| + n−8H

)

≤ Cn4H− 3
2 (n2−8H + n−4Hn1−2H + n1−4H)

≤ C
(
n

1
2
−4H + n−

1
2
)
,

which converges to zero if H > 1
8 .

Step 3. Let us show condition (ii). We have

〈
un,D2Fn

〉
H⊗2 = n2H− 1

2

n−1∑

k=0

f(Bk/n)
〈
∂k/n,D2Fn

〉
H⊗2 .
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Using (2.12) this yields

〈
un,D2Fn

〉
H⊗2 = n4H−1

n−1∑

k,j=0

f(Bk/n)
(
2f(Bj/n)β2

j,k

+4δ
(
f ′(Bj/n)∂j/n

)
βj,kαj,k + δ2(f ′′(Bj/n)∂⊗2

j/n)α2
j,k

)

= An + Bn + Cn,

The first term An converges to a nonnegative square integrable random
variable. Indeed,

An =
1

2n

n−1∑

k,j=0

f(Bk/n)f(Bj/n)
(
|k − j + 1|2H + |k − j − 1|2H − 2|k − j|2H

)2

=
1

2n

∞∑

p=−∞

(n−1)∧(n−1−p)∑

j=0∨−p

f(Bj/n)f(B(j+p)/n)
(
|p + 1|2H + |p − 1|2H − 2|p|2H

)2
,

which converges in L1 to

1

2

(
∑

k∈Z

ρH(k)

)∫ 1

0
f(Bs)

2ds .

Then, it suffices to show that the terms Bn and Cn converge to zero in L2.
Consider first Bn. Using (2.10) we can write

Bn = 4n4H−1
n−1∑

k,j=0

δ(f ′(Bk/n)f ′(Bj/n)∂j/n)βk,jαj,k

+4n4H−1
n−1∑

k,j=0

f ′(Bk/n)f ′′(Bj/n) βk,jαj,kαj,k

= B(1)
n + B(2)

n .

We have, using Lemma 5.1 (b) and (5.10)
∥∥∥B(2)

n

∥∥∥
L2

≤ Cn−2H .

On the other hand, the term B
(1)
n is the divergence of

wn = 4n4H−1
n−1∑

k,j=0

f ′(Bk/n)f ′(Bj/n)∂j/nβk,jαj,k.
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Then it suffices to show that wn tends to zero in the norm of the space
D

1,2(H), which follows from

‖wn‖D1,2(H) ≤ Cn3H−1
n−1∑

k,j=0

|βk,jαj,k| ≤ Cn−H .

Finally, using Equation (2.7) we can write

f ′(Bk/n)δ2(f ′′(Bj/n)∂⊗2
j/n) = δ2(f ′(Bk/n)f ′′(Bj/n)∂⊗2

j/n)

+2δ(f ′′(Bk/n)f ′′(Bj/n)∂j/n)αk,j

+f (3)(Bk/n)f ′′(Bj/n)α2
k,j,

and this leads to the following decomposition for the term Cn

Cn = δ2(zn) + 2δ(vn) + Fn,

where

zn = n4H−1
n−1∑

k,j=0

f ′(Bk/n)f ′′(Bj/n)α2
j,k∂

⊗2
j/n,

vn = n4H−1
n−1∑

k,j=0

f ′(Bk/n)f ′′(Bj/n)∂j/nαk,jα
2
j,k,

Fn = n4H−1
n−1∑

k,j=0

f (3)(Bk/n)f ′′(Bj/n)α2
k,jα

2
j,k

We have the following estimates, using Lemma 5.1 (b), (c), (5.10), and (5.11)

‖zn‖2
D2,2(H⊗2) ≤ Cn8H−2

n−1∑

k,j,k′,j′=0

α2
j,kα

2
j′,k′β2

j,j′ ≤ Cn−1,

‖vn‖2
D1,2(H) ≤ Cn8H−2

n−1∑

k,j,k′,j′=0

∣∣βj,j′αk,jαk′,j′α
2
j,kα

2
j′,k′

∣∣ ≤ Cn−2H−1,

‖Fn‖L2(Ω) ≤ Cn4H−1
n−1∑

k,j=0

α2
k,jα

2
j,k ≤ Cn−1.

This completes the proof.
As a consequence of Theorem 5.2 we can derive the following result.
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Theorem 5.3 Suppose that f is a function satisfying Hypothesis (H). Let
Gn be the sequence of random variables defined in (5.4). Then, if H ∈ (1

8 , 1
2)

Gn − 1

4
n

1
2
−2H

∫ 1

0
f ′′(Bs)ds

Stably−→ σH

∫ 1

0
f(Bs)dWs, (5.26)

where W is a Brownian motion independent of B and σH is defined in (5.6).

Proof. We recall first that n2H(∆Bk/n)2 − 1 = n2HI2(∂
⊗2
k/n). Then,

using (2.7) yields

f(Bk/n)I2(∂
⊗2
k/n) = δ2(f(Bk/n)∂⊗2

k/n) + 2δ(f ′(Bk/n)∂k/n)αk,k + f ′′(Bk/n)α2
k,k.

As a consequence,
Gn = δ2(un) + 2δ(vn) + Rn, (5.27)

where un is defined in (5.13),

vn = n2H−
1
2

n−1∑

k=0

f ′(Bk/n)∂k/n αk,k,

and

Rn = n2H− 1
2

n−1∑

k=0

f ′′(Bk/n)α2
k,k

The proof will be done in two steps.

Step 1 We first show that if H ∈
(
0, 1

2

)
, δ(vn) converges to zero in L2

as n tends to infinity. It suffices to show that vn converges to zero in the
norm of the space D

1,2(H). We can write

E
(
‖vn‖2

H

)
= n4H−1

n−1∑

k,l=0

E
(
f ′(Bk/n)f ′(Bl/n)

)
αk,kαl,lβk,l,

and

E
(
‖Dvn‖2

H⊗2

)
= n4H−1

n−1∑

k,l=0

E
(
f ′′(Bk/n)f ′′(Bl/n)

)
αk,kαl,lβk,l

〈
εk/n, εl/n

〉
H

.

Hence, using Lemma 5.1 (b) and (5.10) yields

‖vn‖2
D1,2(H) ≤ Cn−2H ,
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which converges to zero as n tends to infinity.
Step 2 To complete the proof it suffices to check that Rn−n

1
2
−2H 1

4

∫ 1
0 f ′′(Bs)ds

converges to zero in L2 as n tends to infinity. This follows from (5.9) and
the estimates

∥∥∥∥∥n
2H− 1

2

n−1∑

k=0

f ′′(Bk/n)α2
k,k − 1

4
n− 1

2
−2H

n−1∑

k=0

f ′′(Bk/n)

∥∥∥∥∥
2

≤ Cn2H− 1
2

n−1∑

k=0

∣∣∣∣α
2
k,k −

1

4n4H

∣∣∣∣ ≤ Cn− 1
2 .

We can make the following remarks:

1. If H ∈
(

1
4 , 1

2

)
then (5.26) implies that

Gn
Stably−→ σH

∫ 1

0
f(Bs)dWs,

which was proved in [18].

2. If H ∈
(
0, 1

4

)
, then (5.26) together with the fact that the sequence

δ2(un) is bounded in L2 (which holds actually for any H ∈ (0, 1
2 ) by

Step 1 in the proof of Theorem 5.2) imply that n2H− 1
2 Gn converges

in L2 to 1
4

∫ 1
0 f ′′(Bs)ds. This was proved by Nourdin in [14]. On the

other hand, for H ∈ (1
8 , 1

4), (5.26) can also be written as

n
1
2
−2H

[
n2H− 1

2 Gn − 1

4

∫ 1

0
f ′′(Bs)ds

]
Stably−→ σH

∫ 1

0
f(Bs)dWs,

which is the asymptotic behavior of the fluctuations associated to the
result in [14].

3. In the critical case H = 1
4 , (5.26) implies that

Gn
Stably−→ 1

4

∫ 1

0
f ′′(Bs)ds + σ1/4

∫ 1

0
f(Bs)dWs,

which is a result obtained by Nourdin and Réveillac in [19].
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