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Central limit theorems for multiple Skorohod integrals

Ivan Nourdin∗ and David Nualart†‡

Abstract: In this paper, we prove a central limit theorem for a sequence of iterated Shorohod

integrals using the techniques of Malliavin calculus. The convergence is stable, and the limit is

a conditionally Gaussian random variable. Some applications to sequences of multiple stochastic

integrals, and renormalized weighted quadratic variation of the fractional Brownian motion are

discussed.
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1 Introduction and main results

Let H be a real separable Hilbert space and, for q > 1, let H⊗q (resp. H⊙q) be the qth
tensor product (resp. qth symmetric tensor product) of H. In the sequel, we consider

X = {X(h) : h ∈ H}, (1.1)

a centered isonormal Gaussian process on H. For every q > 1, we denote by Iq the isometry
between H⊙q (equipped with the norm

√
q!‖ · ‖H⊗q) and the qth Wiener chaos of X. Note

that, if H is a σ-finite measure space with no atoms, then each random variable Iq(h),
h ∈ H⊙q, has the form of a multiple Wiener-Itô integral of order q. For p, q > 1, f ∈ H⊙p,
g ∈ H⊙q and r = 0, . . . , p ∧ q, we denote by f ⊗r g ∈ H⊗(p+q−2r) and f⊗̃rg ∈ H⊙(p+q−2r),
respectively, the rth contraction and the rth symmetrized contraction of f and g. Also in
the sequel, as usual, D denotes the Malliavin derivative operator, while δ is the associated
divergence operator. For more precise definitions and properties, we refer to Section 2.

In what follows, we are interested in finding conditions ensuring that a (correctly nor-
malized) sequence of nonlinear functionals of X converges in law towards a given random
variable. When the limit is Gaussian, we have the following remarkable result (here, and
for the rest of the paper, we shall denote by N (0, 1) the law of a Gaussian random variable
with zero mean and unit variance):
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Theorem 1.1 Fix an integer q > 2 and a sequence {fn}n>1 ⊂ H⊙q such that

lim
n→∞

q!‖fn‖2
H⊗q = lim

n→∞
E
[
Iq(fn)2

]
= 1. (1.2)

Then, the following four conditions are equivalent:

(i) as n → ∞, the sequence {Iq(fn)}n>1 converges in distribution to N ∼ N (0, 1);

(ii) limn→∞ E[Iq(fn)4] = 3;

(iii) for every r = 1, . . . , q − 1, limn→∞ ‖fn ⊗r fn‖H⊗2(q−r) = 0;

(iv) limn→∞ ‖D[Iq(fn)]‖2
H = q in L2.

Moreover, in this case, we have the following bound:

sup
z∈R

∣∣P
(
Iq(fn) ≤ z

)
− P (N ≤ z)

∣∣ 6

√
E
(
1 − q−1‖D[Iq(fn)]‖2

H

)2
. (1.3)

The equivalence between (i), (ii) and (iii) in Theorem 1.1 is proved in Nualart and
Peccati [20] by means of the Dambis, Dubins and Schwarz Theorem. The equivalence
with (iv) was then proved by Nualart and Ortiz-Latorre [19] using exclusively tools from
Malliavin calculus. Finally, the Berry-Esseen’s type bound (1.3) is proved by Nourdin and
Peccati in [15].

In particular, Theorem 1.1 implies that the convergence in distribution of a sequence of
multiple stochastic integrals towards a Gaussian random variable is completely determined
by the asymptotic behavior of their second and fourth moments. As such, Theorem 1.1 can
be seen as a simplification of the classic “method of moments and diagrams” which was,
until then, the usual method allowing to prove weak convergence for nonlinear functionals
of X (see for instance the works by Breuer and Major [2], Major [9], Giraitis and Surgailis
[6] and Chambers and Slud [3]; see also the survey by Surgailis [26] and the references
therein). Peccati and Tudor [24] also proved the following multidimensional version of
Theorem 1.1:

Theorem 1.2 For d > 2, fix d integers 1 6 q1 6 . . . 6 qd. Consider a sequence of random
vectors of the form

Fn =
(
Iq1(f

1
n), . . . , Iqd

(fd
n)
)

where f i
n ∈ H⊙qi. For every 1 6 i, j 6 d, assume that limn→∞ E

[
Iqj

(f j
n)Iqi

(f i
n)
]

= δij,
where δij is the Kronecker symbol. Then, the following two conditions are equivalent:

(i) as n → ∞, the sequence {Fn}n>1 converges in distribution to a standard centered
Gaussian vector Nd(0, Id) (Id is the d × d identity matrix),

(ii) for every j = 1, . . . , d, as n → ∞, the sequence {Iqj
(f j

n)}n>1 converges in distribution
to a standard Gaussian random variable N (0, 1).
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An immediate (but important for applications) consequence of Theorem 1.2 is the
following “stable convergence” generalization of Theorem 1.1:

Proposition 1.3 Let q > 2 be an integer, and let {Iq(fn)}n>1 be a sequence of multiple
integrals verifying (1.2) and satisfying either one of conditions (i)-(iv) of Theorem 1.1.
Then, as n → ∞, for any vector Y = (X(h1), . . . , X(hm)), hi ∈ H, the pair (Iq(fn), Y )
converges in law to (N, Y ), where N ∼ N (0, 1) is independent of X.

Recent examples of application of Theorems 1.1 and 1.2 are the study of: p-variations
of fractional stochastic integrals (Corcuera et al. [4]), quadratic functionals of bivariate
Gaussian processes (Deheuvels et al. [5]), self-intersection local times of fractional Brown-
ian motion (Hu and Nualart [7]), approximation schemes for scalar fractional differential
equations (Neuenkirch and Nourdin [12]), high-frequency CLTs for random fields on ho-
mogeneous spaces (Marinucci and Peccati [10, 11] and Peccati [21]), needlets analysis on
the sphere (Baldi et al. [1]), estimation of self-similarity orders (Tudor and Viens [27]),
weighted power variations of iterated Brownian motion (Nourdin and Peccati [14]), etc.

Since the works by Nualart and Peccati [20] and Peccati and Tudor [24], great efforts
have been made to find some similar statements, but in the case where the limit is not
necessarily a Gaussian random variable. In this direction, let us mention the following
recent works:

(1) Peccati and Taqqu have proposed sufficient conditions ensuring that a given se-
quence of multiple Wiener-Itô integrals converges stably towards mixtures of Gaussian
random variables. More precisely, the following problem is addressed in [22]. Let Y ≥ 0 be
a non-constant random variable having the (finite) chaotic representation Y = 1+ I2(f2)+
. . .+ I2(q−1)(f2(q−1)), let N ∼ N (0, 1) be independent of Y , and suppose that the sequence
Iq(fn) satisfies adequate normalization conditions; is it possible to associate to each fn and
each r = 1, . . . , q − 1, two generalized contraction kernels, say fn ⊗∗

q−r fn and fn ⊗∗∗
q−r fn,

in such a way that the two relations

fn ⊗∗
q−r fn −→n→∞ g2r and fn ⊗∗∗

q−r fn −→n→∞ 0, ∀r = 1, . . . , q − 1, (1.4)

imply that Iq(fn) converges stably to
√

Y ×N? The work [22] by Peccati and Taqqu pro-
vides results in this direction, by constructing the two kernels fn⊗∗

q−rfn and fn⊗∗∗
q−rfn with

the help of “resolutions of the identity” and of a “generalized Clark-Ocone formula”. See
also [23] for an alternative proof of these results by using the “principle of conditioning”.
Moreover, in this latter reference, general results involving Skorohod integrals on abstract
Wiener spaces can also be found.

(2) On the other hand, Nourdin and Peccati [13] proved the following extension of
Theorem 1.1:
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Theorem 1.4 Fix ν > 0 and let Rν be a real-valued random variable such that

E
(
eiλRν

)
=

(
e−iλ

√
1 − 2iλ

)ν

, λ ∈ R. (1.5)

Fix an even integer q > 2, and define

cq :=
1

(q/2)!
(

q−1
q/2−1

)2 =
4

(q/2)!
(

q
q/2

)2 .

Then, for any sequence {fn}n>1 ⊂ H⊙q verifying

lim
n→∞

q!‖fn‖2
H⊗q = lim

n→∞
E
[
Iq(fn)2

]
= 2ν,

the following six conditions are equivalent:

(i) as n → ∞, the sequence {Iq(fn)}n>1 converges in distribution to Rν;

(ii) limn→∞ E[Iq(fn)3] = E[R3
ν ] = 8ν and limn→∞ E[Iq(fn)4] = E[R4

ν ] = 48ν + 12ν2;

(iii) limn→∞ E[Iq(fn)4] − 12E[Iq(fn)3] = 12ν2 − 48ν;

(iv) limn→∞ ‖fn⊗̃q/2fn − cq × fn‖H⊗q = 0 and limn→∞ ‖fn⊗̃rfn‖H⊗2(q−r) = 0, for every
r = 1, ..., q − 1 such that r 6= q/2;

(v) limn→∞ ‖fn⊗̃q/2fn − cq × fn‖H⊗q = 0 and limn→∞ ‖fn ⊗r fn‖H⊗2(q−r) = 0, for every
r = 1, ..., q − 1 such that r 6= q/2;

(vi) as n → ∞, ‖D[Iq(fn)]‖2
H − 2qIq(fn) −→ 2qν in L2.

Observe that the limit random variable Rν appearing in formula (1.5) is such that

Rν
Law
= 2 Gν/2 − ν, where Gν/2 has a Gamma law with parameter ν/2, that is Gν/2 admits

g(x) =
x

ν
2
−1e−x

Γ(ν/2)
1(0,∞)(x)

for density, where Γ is the usual Gamma function. Thus, when ν > 1 is an integer, Rν has
a centered χ2 law with ν degrees of freedom. Let us also mention that, in [15], Nourdin
and Peccati associated bounds with the convergence (i) in the previous theorem, see also
(1.3).

For a fixed q > 1, suppose now that Fn is a sequence of random variables of the
form Fn = δq(un), for some random variables un with values in H⊗q and measurable with
respect to X. Can we exhibit condition(s) on the Malliavin derivative of Fn ensuring that
Fn converges towards mixtures of Gaussian random variables? This question should be
compared with the work by Peccati and Taqqu [22], see (1) above. In the present paper,
we show the following result:
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Theorem 1.5 For a fixed q > 1, suppose that Fn is a sequence of random variables of the
form Fn = δq(un), for some random variables un with values in H⊗q and measurable with
respect to X. Suppose moreover that the sequence Fn is bounded in L1, and that:

(i)
〈
un, (DFn)⊗k1⊗̃ . . . ⊗̃(Dq−1Fn)⊗kq−1⊗̃f1⊗̃ . . . ⊗̃fr

〉
H⊗q converges to zero in L1, for all

integers r, k1, . . . , kq−1 > 0 such that k1 + 2k2 + . . . + (q − 1)kq−1 + r = q, and all
functions f1, . . . , fr ∈ H;

(ii) 〈un, D
qFn 〉

H⊗q converges in L1 to a nonnegative random variable S2.

Then, Fn converges stably to a random variable with characteristic function E
(
e−

λ2

2
S2
)
.

Remark 1.6 When q = 1, condition (i) of the theorem is that 〈un, h〉H converges to zero in
L1, for each h ∈ H. When q = 2, condition (i) means that 〈un, h ⊗ g〉H⊗2, 〈un, h⊗̃DFn〉H⊗2

and 〈un, DFn ⊗ DFn〉H⊗2 converge to zero in L1, for each h, g ∈ H. And so on.

In the statement of Theorem 1.5, we use the notion of stable convergence for random
variables, so let us recall its definition (see for instance, the original paper [25], or the book
[8] for an exhaustive discussion of stable convergence). Let F ⊂ F be two σ-fields. A
sequence of F -measurable random variables (Fn) converges F -stably to a F -measurable
random variable F if, for any continuous bounded function f : R → R and any bounded
F -measurable random variable Z, we have, as n → ∞,

E
(
f(Fn)Z

)
→ E

(
f(F )Z

)
. (1.6)

Here, it is implicitly used that F is the σ-field generated by X, and that the limit is
measurable with respect to a certain σ-field F containing F .

We develop some particular applications of Theorem 1.5 in the following directions:

(a) Consider first a sequence of multiple stochastic integrals of the form Fn = Iq(gn),
where gn ∈ H⊙q. In this case we can apply Theorem 1.5 in different ways. We can
assume, for instance, that q = j, and un = Iq−j(gn), for any j = 1, . . . , q. Some
examples of non Gaussian criteria in the cases q = 1, q = 2 are given. If we take
j = q, we recover the implication (iii)→(i) in Theorem 1.1.

(b) We give a new proof of the following stable convergence result, proved by Nourdin,
Nualart and Tudor in [16]. Let B be a fractional Brownian motion with Hurst index
H ∈ (1

4
, 1

2
), and f : R → R be a real function verifying hypothesis (H) (see below).

Then

1√
n

n−1∑

k=0

f(Bk/n)
(
n2H

(
B(k+1)/n − Bk/n

)2 − 1
)

converges stably towards σH

∫ 1

0
f(Bs)dWs, where W is a standard Brownian motion

independent of B and σH is an (explicit) constant depending only on H .
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The paper is organized as follows. In Section 2 we present some preliminary results
about Malliavin calculus and fractional Brownian motion. Section 3 contains the proof of
Theorem 1.5, while Section 4 focuses on examples (a) and (b) above.

2 Preliminaries

We follow Nualart [18]. Let H be a real separable Hilbert space. As in formula (1.1), we
denote by X an isonormal Gaussian process over H. Recall that, by definition, X is a
collection of centered and jointly Gaussian random variables indexed by the elements of H,
defined on some probability space (Ω, F , P ) and such that, for every h, g ∈ H,

E
[
X(h)X(g)

]
= 〈h, g〉H. (2.7)

We will systematically assume that F is generated by X. It is well-known that any random
variable F belonging to L2(Ω, F , P ) admits the following chaotic expansion:

F =

∞∑

q=0

Iq(fq), (2.8)

where I0(f0) := E[F ], the series converges in L2 and the kernels fq ∈ H⊙q, q > 1,
are uniquely determined by F . As already pointed out, in the particular case where
H = L2(A, A , µ), where (A, A ) is a measurable space and µ is a σ-finite and non-atomic
measure, one has that H⊙q = L2

s(A
q, A ⊗q, µ⊗q) is the space of symmetric and square in-

tegrable functions on Aq. Moreover, for every f ∈ H⊙q, Iq(f) coincides with the multiple
Wiener-Itô integral (of order q) of f with respect to X. For every q > 0, we write Jq to
indicate the orthogonal projection operator on the qth Wiener chaos associated with X.
In particular, if F ∈ L2(Ω, F , P ) is as in (2.8), then JqF = Iq(fq) for every q > 0.

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H⊙p and g ∈ H⊙q,
for every r = 0, . . . , p∧q, the rth contraction of f and g is the element of H⊗(p+q−2r) defined
as

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . . ⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ . . . ⊗ eir〉H⊗r . (2.9)

Note that, in the particular case where H = L2(A, A , µ) (with µ non-atomic), one has that

f ⊗r g =

∫

Ar

f(t1, . . . , tp−r, s1, . . . , sr) g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr)dµ(s1) . . . dµ(sr).

Moreover, f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗q g =
〈f, g〉H⊗q . Note that, in general (and except for trivial cases), the contraction f ⊗r g is
not a symmetric element of H⊗(p+q−2r). As indicated in the Introduction, the canonical
symmetrization of f ⊗r g is written f⊗̃rg.
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Let S be the set of all smooth cylindrical random variables of the form

F = g
(
X(φ1), . . . , X(φn)

)

where n > 1, g : R
n → R is a smooth function with compact support and φi ∈ H. The

Malliavin derivative of F with respect to X is the element of L2(Ω, H) defined as

DF =

n∑

i=1

∂g

∂xi

(
X(φ1), . . . , X(φn)

)
φi.

In particular, DX(h) = h for every h ∈ H. By iteration, one can define the qth derivative
DqF (which is an element of L2(Ω, H⊗q)) for every q > 2.

As usual, for q ≥ 1, D
q,2 denotes the closure of S with respect to the norm ‖ · ‖q,2,

defined by the relation

‖F‖2
q,2 = E

[
F 2
]
+

q∑

i=1

E
[
‖DiF‖2

H⊗i

]
.

The Malliavin derivative D verifies the following chain rule: if ϕ : R
n → R is in C 1

b and if
{Fi}i=1,...,n is a vector of elements of D

1,2, then ϕ(F1, . . . , Fn) ∈ D
1,2 and

D ϕ(F1, . . . , Fn) =

n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.

We denote by δ the adjoint of the operator D, also called the divergence operator. A
random element u ∈ L2(Ω, H) belongs to the domain of δ, noted Domδ, if and only if it
verifies

|E〈DF, u〉H| ≤ cu ‖F‖L2 for any F ∈ S ,

where cu is a constant depending uniquely on u. If u ∈ Domδ, then the random variable
δ(u) is defined by the duality relationship (called “integration by parts formula”):

E(Fδ(u)) = E〈DF, u〉H, (2.10)

which holds for every F ∈ D
1,2. We will moreover need the following property: for every

F ∈ D
1,2 and every u ∈ Domδ such that Fu and Fδ(u) + 〈DF, u〉H are square integrable,

one has that Fu ∈ Domδ and

δ(Fu) = Fδ(u) − 〈DF, u〉H. (2.11)

For every q > 1, let Hq be the qth Wiener chaos of X, that is, the closed linear subspace
of L2 (Ω, F , P ) generated by the random variables {Hq (X (h)) , h ∈ H, |h|

H
= 1}, where

Hq is the qth Hermite polynomial. The mapping Iq(h
⊗q) = q!Hq (X (h)) provides a linear

isometry between the symmetric tensor product H⊙q and Hq.
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The duality formula (2.10) extends to the iterated divergence operator and we have

E (Fδq(u)) = E
(
〈DqF, h〉

H⊗q

)
(2.12)

for any element u in the domain of δq and any random variable F ∈ D
q,2. Notice that

δq(h) = Iq(h) for any h ∈ H⊙q.
The operator L is defined through the projection operators {Jq}q>0 as L =

∑∞

q=0 −qJq,
and is called the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. It verifies
the following crucial property: a random variable F is an element of DomL (= D

2,2) if and
only if F ∈ DomδD (i.e. F ∈ D

1,2 and DF ∈ Domδ), and in this case:

δDF = −LF.

Note that a random variable F as in (2.8) is in D
1,2 if, and only if,

∞∑

q=1

q‖fq‖2
H⊙q < ∞,

and, in this case, E
[
‖DF‖2

H

]
=
∑

q≥1 q‖fq‖2
H⊙q . If H = L2(A, A , µ) (with µ non-atomic),

then the derivative of a random variable F as in (2.8) can be identified with the element
of L2(A × Ω) given by

DaF =
∞∑

q=1

qIq−1

(
fq(·, a)

)
, a ∈ A. (2.13)

3 Proof of Theorem 1.5

We need to show that for any h1, . . . , hm ∈ H, the sequence ξn := (Fn, X(h1), . . . , X(hm))
converges in distribution to a vector (F∞, X(h1), . . . , X(hm)), where F∞ satisfies

E(eiλF∞|X(h1), . . . , X(hm)) = e−
λ2

2
S2

(3.14)

for any λ ∈ R. Since the sequence Fn is bounded in L1, the sequence ξn is tight. As-
sume that (F∞, X(h1), . . . , X(hm)) denotes the limit in law of a certain subsequence of ξn,
denoted again by ξn.

Let Y = φ(X(h1), . . . , X(hm)), with φ ∈ C ∞
b (Rm), and consider φn(λ) = E

(
eiλFnY

)

for λ ∈ R. The convergence in law of ξn, and the fact that Fn is bounded in L1 imply that

lim
n→∞

φ′
n(λ) = lim

n→∞
iE
(
Fne

iλFnY
)

= iE(F∞eiλF∞Y ). (3.15)
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On the other hand, by the duality relationship (2.12) between the iterated derivative and
divergence operators we obtain

φ′
n(λ) = iE(FneiλFnY ) = iE

(
δq(un)eiλFnY

)
= iE

(〈
un, Dq

(
eiλFnY

)〉
H⊗q

)

= i

q∑

a=0

(
q

a

)
E
(〈

un, D
a
(
eiλFn

)
⊗̃Dq−aY

〉
H⊗q

)

= i

q∑

a=0

(
q

a

)∑ a!

k1! . . . ka!
(iλ)k1+···+ka

×E
(
eiλFn

〈
un, (DFn)

⊗k1⊗̃ . . . ⊗̃(DaFn)⊗ka⊗̃Dq−aY
〉

H⊗q

)
,

where the second sum in the last equality runs over all sequences of integers (k1, . . . , ka)
such that k1 + 2k2 + . . . + aka = a by the Faá di Bruno’s formula. By condition (i), this
yields that

φ′
n(λ) = −λE

(
eiλFn 〈un, D

qFn〉H⊗q Y
)

+ Rn,

with Rn converging to zero as n → ∞. Using condition (ii) and (3.15), we obtain that

iE(F∞eiλF∞Y ) = −λE
(
eiλF∞S2Y

)
.

Since S2 is defined through condition (ii), it is in particular measurable with respect to
B. Thus, the following linear differential equation verified by the conditional characteristic
function of F∞ holds:

∂

∂λ
E(eiλF∞|X(h1), . . . , X(hm)) = −λ S2 E(eiλF∞|X(h1), . . . , X(hm)).

By solving it, we obtain (3.14), which yields the desired conclusion.

The next corollary provides stronger but easier conditions for the convergence in law.

Corollary 3.1 For a fixed q > 1, suppose that Fn is a sequence of random variables of the
form Fn = δq(un), for some random variables un with values in H⊗q and measurable with
respect to X. Suppose moreover that the sequence Fn is bounded in D

q,p, for all p > 2, and
that:

(i’) 〈un, h〉H⊗q converges to zero in L1, for all h ∈ H⊗q; and un ⊗ℓ DℓFn converges to zero
in L2(Ω; H⊗(q−ℓ)), for all ℓ = 1, . . . , q − 1;

(ii) 〈un, D
qFn 〉

H⊗q converges in L1 to a nonnegative random variable S2.

Then, Fn converges stably to a random variable with characteristic function E
(
e−

λ2

2
S2
)
.
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Proof It suffices to show that condition (i’) implies condition (i) in Theorem 1.5. When
ka 6= 0 we have

∣∣∣
〈
un, (DFn)⊗k1⊗̃ . . . ⊗̃(DaFn)⊗ka⊗̃h

〉
H⊗q

∣∣∣

≤ ‖un ⊗a DaFn‖H⊗(q−a)

∥∥(DFn)
⊗k1 ⊗ . . . ⊗ (DaFn)⊗(ka−1) ⊗ h

∥∥
H⊗(q−a) .

The second factor is bounded in L2, and the first factor converges to zero in L2, for all
a = 1, . . . , q − 1. In the case a = 0 we have that 〈un, h〉H⊗q converges to zero in L1, for all
h ∈ H⊗q, by condition (i’). This completes the proof.

4 Examples and applications

In this section, we will consider several examples of application of Theorem 1.5.

4.1 Multiple stochastic integrals

Fix an integer q > 2, and consider the sequence of multiple stochastic integrals Fn = Iq(gn)
with gn ∈ H⊙q. We have DFn = qIq−1(gn), and Fn = −1

q
LFn = 1

q
δ(DFn). Applying

Theorem 1.5 with q = 1 and un = 1
q
DFn = Iq−1(gn) yields:

Proposition 4.1 For a fixed q > 2, suppose that Fn is a sequence of random variables of
the form Fn = Iq(gn), with gn ∈ H⊙q. Suppose moreover that the sequence gn is bounded in
H⊙q, and that:

(a) 〈gn ⊗q−1 gn, h
⊗2〉H⊗2 converges to zero for all h ∈ H;

(b) 1
q
‖DFn‖2

H converges in L1 to a nonnegative random variable S2.

Then, Fn converges stably to a random variable with characteristic function E
(
e−

λ2

2
S2
)
.

Proof It suffices to apply Theorem 1.5 to un = Iq−1(gn). We have

E
(
〈un, h〉2H

)
= E

(
〈Iq−1(gn), h〉2

H

)
= E

(
Iq−1(gn ⊗1 h)2

)
= (q − 1)! ‖gn ⊗1 h‖2

H⊗(q−1)

= (q − 1)! (gn ⊗1 h) ⊗q−1 (gn ⊗1 h)

= (q − 1)!
〈
gn ⊗q−1 gn, h

⊗2
〉

H⊗2 → 0,

which implies condition (i) in Theorem 1.5, see Remark 1.6. Condition (ii) in Theorem 1.5
follows from (b) and the equality 〈un, DFn〉H = 1

q
‖DFn‖2

H.

If S2 is deterministic, equal to 1, then condition (b) coincides with condition (iv) in
Theorem 1.1. In this case, Theorem 1.1 combined with Lemma 6 in [19] tells us that if the
variances converge to one, then, condition (a) is automatically satisfied.

On the other hand, we can also apply Theorem 1.5 with un = gn. In this way, applying
Corollary 3.1, we obtain that the following conditions imply that Fn converges to a normal
random variable N(0, 1) independent of X:
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(α) gn is bounded in H⊙q and it converges weakly to zero,

(β) ‖gn ⊗ℓ gn‖H⊗2(q−ℓ) converges to zero for all ℓ = 1, . . . , q − 1;

(γ) q!‖gn‖2
H⊗q converges to 1.

In fact, notice that whenever Fn is bounded in all the Sobolev spaces D
q,p, condition (ii)

in Corollary 3.1 follows from (γ) and the equality Dq (Iq(gn)) = q!gn, and, finally, condition
(i’) in Corollary 3.1 follows from (ii) and

E
[∥∥gn ⊗ℓ DℓFn

∥∥2

H⊗(q−ℓ)

]
=

q!2

(q − ℓ)!2
E
[
‖gn ⊗ℓ Iq−ℓ(gn)‖2

H⊗(q−ℓ)

]

=
q!2

(q − ℓ)!2
E
[
‖Iq−ℓ(gn ⊗ℓ gn)‖2

H⊗(q−ℓ)

]

=
q!2

(q − ℓ)!
‖gn ⊗ℓ gn‖2

H⊗2(q−ℓ) .

In this way we recover the implication “(iii) implies (i)” in Theorem 1.1.

4.2 Weighted quadratic variation of the fractional Brownian mo-
tion

Let B = (Bt)t∈[0,1] be a fractional Brownian motion with Hurst parameter H ∈ (0, 1
2
)

defined on a probability space (Ω,A, P ). We mean that B is a centered Gaussian process
with the covariance function E(BsBt) = RH(s, t), where

RH(s, t) =
1

2

(
t2H + s2H − |t − s|2H

)
.

We denote by E the set of step functions on [0, T ]. Then H is the Hilbert space defined as
the closure of E with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H

= RH(t, s).

It coincides with I
H− 1

2
0+ (L2[0, T ]), where

I
H− 1

2
0+ f(x) ,

1

Γ(H − 1
2
)

∫ x

0

(x − y)H− 3
2 f(y)dy.

We refer the reader to [17] for additional details.
Consider the sequence

Gn =
1√
n

n−1∑

k=0

f(Bk/n)
(
n2H(∆Bk/n)2 − 1

)
, n > 1.

Notice that n2H(∆Bk/n)2 − 1 = n2HI2(∂
⊗2
k/n), where ∂k/n = 1[k/n,(k+1)/n]. We will make use

of the following technical lemma.
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Lemma 4.2 Let s < t and r belong to [0, 1]. Then

|E(Br(Bt − Bs))| 6 (t − s)2H .

Proof We have

E(Br(Bt − Bs)) =
1

2

(
r2H + t2H − |t − r|2H

)
− 1

2

(
r2H + s2H − |s − r|2H

)

=
1

2
(t2H − s2H) +

1

2

(
|s − r|2H − |t − r|2H

)
.

We have |b2H − a2H | 6 |b − a|2H for any a, b ∈ [0, 1], because H < 1
2
. The desired result

follows.
In the sequel, we will also make use of the following hypothesis on f : R → R:

(H) f belongs to C6 and
∣∣f (6)(x)

∣∣ 6 kecx2
for some constants k > 0 and 0 < c < 1

12
.

Notice that (H) implies

sup
t∈[0,1]

E(|f (i)(Bt)|p) < ∞,

for all 1 6 p 6 6, and i = 1, . . . , 6. The following result holds.

Theorem 4.3 Let f : R → R satisfy (H). Suppose that H ∈
(

1
4
, 1

2

)
. We have

1√
n

n−1∑

k=0

f(Bk/n)
(
n2H(∆Bk/n)2 − 1

) Stably−→ σH

∫ 1

0

f(Bs)dWs, (4.16)

as n tends to infinity, where W is a Brownian motion independent of B, and

σH =

√√√√1

2

∞∑

p=−∞

(|p + 1|2H + |p − 1|2H − 2|p|2H)2. (4.17)

Proof We can write

Gn = n2H− 1
2

n−1∑

k=0

f(Bk/n)I2(∂
⊗2
k/n), n > 1.

The proof will be done in several steps. We denote by C a generic constant that may vary
from one formula to another one.

Step 1. We are going to decompose Gn as the sum of a sequence of the form δ2(un)
plus other terms which converge to zero in L2 as n tends to zero. To do this we write,
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using (2.11) repeatedly,

f(Bk/n)I2(∂
⊗2
k/n) = f(Bk/n)δ(∆Bk/n∂k/n)

= δ(f(Bk/n)∆Bk/n∂k/n) + f ′(Bk/n)∆Bk/n

〈
εk/n, ∂k/n

〉
H

= δ(f(Bk/n)δ(∂k/n)∂k/n) + f ′(Bk/n)∆Bk/n

〈
εk/n, ∂k/n

〉
H

= δ2(f(Bk/n)∂⊗2
k/n) + δ(f ′(Bk/n)∂k/n)

〈
εk/n, ∂k/n

〉
H

+f ′(Bk/n)∆Bk/n

〈
εk/n, ∂k/n

〉
H

= δ2(f(Bk/n)∂⊗2
k/n) + 2f ′(Bk/n)∆Bk/n

〈
εk/n, ∂k/n

〉
H

−f ′′(Bk/n)
〈
εk/n, ∂k/n

〉2
,

where εk/n = 1[0,k/n]. As a consequence,

Gn = δ2(un) − An − Bn,

where

un = n2H− 1
2

n−1∑

k=0

f(Bk/n)∂
⊗2
k/n,

An = 2n2H− 1
2

n−1∑

k=0

f ′(Bk/n)∆Bk/n

〈
εk/n, ∂k/n

〉
H

,

and

Bn = −n2H− 1
2

n−1∑

k=0

f ′′(Bk/n)
〈
εk/n, ∂k/n

〉2
H

.

Notice that

E
[
A2

n

]
= 4n4H−1

n−1∑

k,l=0

E
[
f ′(Bk/n)f ′(Bl/n)∆Bk/n∆Bl/n

] 〈
εk/n, ∂k/n

〉
H

〈
εl/n, ∂l/n

〉
H

,

which converges to zero as n tends to infinity. Indeed, using the notation

αk,l =
〈
εk/n, ∂l/n

〉
H

,

and

βk,l =
〈
∂k/n, ∂l/n

〉
H

,
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we can write

E
[
A2

n

]
= 4n4H−1

n−1∑

k,l=0

E
[
f ′(Bk/n)f ′(Bl/n)

]
βk,lαk,kαl,l

+4n4H−1
n−1∑

k,l=0

E
[
f ′′(Bk/n)f ′′(Bl/n)

]
αk,lαl,kαk,kαl,l

+4n4H−1
n−1∑

k,l=0

E
[
f ′′(Bk/n)f ′′(Bl/n)

]
α2

k,l α2
l,l

+4n4H−1

n−1∑

k,l=0

E
[
f ′′′(Bk/n)f ′(Bl/n)

]
α2

k,kαl,lαk,l

+4n4H−1

n−1∑

k,l=0

E
[
f ′(Bk/n)f

′′′(Bl/n)
]
α2

l,lαk,kαl,k.

Hence, by Lemma 4.2 and hypothesis (H):

E
[
A2

n

]
6 Cn−1

n−1∑

k,l=0

|βk,l| + Cn1−4H ,

which converges to zero as n tends to infinity, because we have

n−1

n−1∑

k,l=0

|βk,l| =
n−1−2H

2

n−1∑

k,l=0

∣∣|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H
∣∣

6 Cn−2H

∞∑

p=−∞

∣∣|p + 1|2H + |p − 1|2H − 2|p|2H
∣∣ ,

and this series is convergent.
On the other hand, still by Lemma 4.2 and hypothesis (H):

E
[
B2

n

]
6 Cn1−4H ,

which also converges to zero as n tends to infinity.
Step 2. It suffices to show that the sequence Fn = δ2(un) satisfies the conditions of

Theorem 1.5 with q = 2. Let us show first that Fn is bounded in L2. This follows from the
fact that un is bounded in D

2,2. In fact, we have

Dun = n2H− 1
2

n−1∑

k=0

f ′(Bk/n)εk/n ⊗ ∂⊗2
k/n,

D2un = n2H− 1
2

n−1∑

k=0

f ′′(Bk/n)ε⊗2
k/n ⊗ ∂⊗2

k/n,
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and

E
(
‖Dun‖2

H⊗3

)
= n4H−1

n−1∑

k,l=0

E
(
f ′(Bk/n)f ′(Bl/n)

) 〈
εk/n, εl/n

〉 〈
∂k/n, ∂l/n

〉2

6 Cn4H−1
n−1∑

k,l=0

〈
∂k/n, ∂k/n

〉2

6 C
∞∑

p=−∞

(
|p + 1|2H + |p − 1|2H − 2|p|2H

)2
< ∞.

In the same way, we can show that supn E
(
‖D2un‖2

H⊗4

)
< ∞.

Step 3. Let us show condition (i) (see also Remark 1.6). Notice that it suffices to show
this condition for elements fj belonging to a total subset of H. Taking f1 = 1[0,t], and f2 =
1[0,s] we have

E
(∣∣〈un, f1 ⊗ f2〉H⊗2

∣∣) 6 n2H− 1
2

n−1∑

k=0

E
(∣∣f(Bk/n)

∣∣)
∣∣∣
〈
∂k/n, f1

〉
H

〈
∂k/n, f2

〉
H

∣∣∣

6 Cn
1
2
−2H , by Lemma 4.2,

which converges to zero as n tends to infinity. On the other hand,

E
∣∣〈un, f1 ⊗ DFn〉H⊗2

∣∣ 6 n2H− 1
2

n−1∑

k=0

E
(∣∣∣f(Bk/n)

〈
∂k/n, DFn

〉
H

∣∣∣
) ∣∣∣
〈
∂k/n, f1

〉
H

∣∣∣

6 Cn
1
2 sup

k=0,...,n−1

[
E
(〈

∂k/n, DFn

〉2
H

)] 1
2
, (4.18)

and

E
(∣∣〈un, , DFn ⊗ DFn〉H⊗2

∣∣) 6 n2H− 1
2

n−1∑

k=0

E
(
(1 + f 2(Bk/n))

〈
∂k/n, DFn

〉2
H

)
, (4.19)

because |x| 6 1 + x2. Set Hk/n = 1 + f 2(Bk/n). We claim that

E
(
Hk/n

〈
DFn, ∂k/n

〉2
H

)
6 Cn−4H , (4.20)

and this would imply that (4.18) and (4.19) tend to zero as n tends to infinity. Using
Dδ(u) = u + δ(Du) repeatedly, we have

〈
DFn, ∂k/n

〉
H

= 2δ(
〈
un, ∂k/n

〉
H
) + δ2(D

〈
un, ∂k/n

〉
H
).
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We need to show that

E

(
Hk/n

[
δ(
〈
un, ∂k/n

〉
H
)
]2)

6 Cn−4H , (4.21)

E

(
Hk/n

[
δ2(D

〈
un, ∂k/n

〉
H
)
]2)

6 Cn−4H . (4.22)

We will only prove (4.21), the proof of (4.22) being similar. Set

µk,n = E
(
Hk/n

[
δ(
〈
un, ∂k/n

〉
)
]2)

,

νk,n =
〈
un, ∂k/n

〉
H

.

Applying (2.11) yields

µk,n = 2
〈
νk,n ⊗ DHk/n, Dνk,n

〉
H⊗2 +

〈
νk,n ⊗ νk,n, D

2Hk/n

〉
H⊗2

+Hk/n 〈νk,n, νk,n〉H + Hk/nTr
(
Dνk,n ◦ (Dνk,n)

T
)

.

This implies

µk,n = 2n4H−1
n−1∑

h,l=0

E
(〈

DHk/n, ∂l/n

〉
f(Bh/n)f ′(Bl/n)βk,lβk,hαl,h

)

+n4H−1

n−1∑

h,l=0

E
(
f(Bh/n)f(Bl/n)βk,lβk,h

〈
∂h/n ⊗ ∂l/n, D2Hk/n

〉
H⊗2

)

+n4H−1

n−1∑

h,l=0

E
(
Hk/nf(Bh/n)f(Bl/n)

)
βk,lβk,hβh,l

+n4H−1

n−1∑

h,l=0

E
(
Hk/nf ′(Bh/n)f ′(Bl/n)

)
βk,lβk,hαl,hαh,l.

which converges to zero as n tends to infinity.
Step 5. Let us show condition (ii). Using Dδ(u) = u + δ(Du) repeatedly, we have

D2Fn = 2un + 4δ(Dun) + δ2(D2un).

Hence,

〈
un, D

2Fn

〉
H⊗2 = 2n4H−1

n−1∑

k,l=0

f(Bk/n) f(Bl/n)
〈
∂k/n, ∂l/n

〉2
H

+4 〈un, δ(Dun)〉H⊗2 +
〈
un, δ

2(D2un)
〉

H⊗2 .

The first term converges to a nonnegative square integrable random variable:
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2n4H−1
n−1∑

k,l=0

f(Bk/n) f(Bl/n)
〈
∂k/n, ∂l/n

〉2
H

=
1

2n

n−1∑

k,l=0

f(Bk/n)f(Bl/n)
(
|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H

)2

=
1

2n

∞∑

p=−∞

(n−1)∧(n−1−p)∑

j=0∨−p

f(Bj/n)f(B(j+p)/n)
(
|p + 1|2H + |p − 1|2H − 2|p|2H

)2
,

which converges to

1

2

(
∞∑

p=−∞

(
|p + 1|2H + |p − 1|2H − 2|p|2H

)2
)∫ 1

0

f(Bs)
2ds .

The remaining terms converges to zero. We will discuss only the first one:

〈un, δ(Dun)〉H⊗2 = n4H−1
n−1∑

k,l=0

δ
(
f(Bk/n) f ′(Bl/n)∂l/n

) 〈
∂k/n, ∂l/n

〉
H

〈
∂k/n, εl/n

〉
H

= n4H−1
n−1∑

k,l=0

f(Bk/n) f ′(Bl/n)∆Bl,nβk,lαl,k

−n4H−1
n−1∑

k,l=0

f ′(Bk/n) f ′(Bl/n)β2
k,lαl,k

−n4H−1
n−1∑

k,l=0

f ′(Bk/n) f ′′(Bl/n)βl,kβl,lαl,k,

and this tends to zero as n tends to infinity.
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