Convergence in law for certain weighted quadratic variations of fractional Brownian motion

Ivan Nourdin, David Nualart

To cite this version:

Ivan Nourdin, David Nualart. Convergence in law for certain weighted quadratic variations of fractional Brownian motion. 2007. hal-00164821v1

HAL Id: hal-00164821
 https://hal.science/hal-00164821v1

Preprint submitted on 23 Jul 2007 (v1), last revised 2 Sep 2009 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Convergence in law for certain weighted quadratic variations of fractional Brownian motion

Ivan Nourdin ${ }^{1}$ and David Nualart ${ }^{2}$

Abstract

By means of Malliavin calculus，we prove the convergence in law for certain weighted quadratic variations of a fractional Brownian motion B with Hurst index $H \in\left(\frac{1}{4}, \frac{1}{2}\right]$ ．

Key words：Fractional Brownian motion－weighted quadratic variations－Malliavin calculus－ weak convergence．

Actual version：July 2007

1 Introduction

The purpose of this paper is to study the asymptotic behavior of the sequence of random variables

$$
G_{n}(f)=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f\left(B_{k / n}\right)\left(n^{2 H}\left(\Delta B_{k / n}\right)^{2}-1\right), \quad n \geq 1,
$$

where B is a fractional Brownian motion of index $H \in(0,1), f: \mathbb{R} \rightarrow \mathbb{R}$ and $\Delta B_{k / n}$ denotes the increment $B_{(k+1) / n}-B_{k / n}$ ．

The case $f \equiv 1$ is classical（see，e．g．，Breuer and Major（1］or Giraitis and Surgailis［⿴囗十二）$)$ ， and for any $H \in\left(0, \frac{3}{4}\right)$ we have

$$
\begin{equation*}
G_{n}(\mathbf{1}) \Longrightarrow \mathscr{N}\left(0, \sigma_{H}^{2}\right), \quad \text { as } n \rightarrow \infty, \tag{1.1}
\end{equation*}
$$

for a certain（explicit）constant σ_{H} ，and，where，as usual，de denote by＂\Longrightarrow＂the convergence in law．When $H \in\left[\frac{3}{4}, 1\right.$ ），non－central limit theorems appear（see Taqqu［10］ or Dobrushin and Major［3］）．

If $H \in\left(\frac{1}{2}, \frac{3}{4}\right)$ ，and f is a continuously differentiable function such that f and f^{\prime} have subexponential growth，then by Theorem 2 in León and Ludeña（7］we have that

$$
\begin{equation*}
G_{n}(f) \Longrightarrow \sigma_{H} \int_{0}^{1} f\left(B_{s}\right) d W_{s} \tag{1.2}
\end{equation*}
$$

as n tends to infinity，where W is a standard Brownian motion independent of B ．We refer to［2］for related results on the asymptotic behavior of the p－variation of stochastic

[^0]integrals with respect to the fractional Brownian motion. When $H=\frac{1}{2}$, (1.2) is still true, and is in fact a very particular case of a more general result by Jacod [6]. On the other hand, when $H \in\left(0, \frac{1}{4}\right)$, the first-named author [8] proved that if f belongs to \mathscr{C}_{b}^{2}, then
\[

$$
\begin{equation*}
n^{2 H-\frac{1}{2}} G_{n}(f) \xrightarrow{\mathrm{L}^{2}} \frac{1}{4} \int_{0}^{1} f^{\prime \prime}\left(B_{s}\right) d s, \quad \text { as } n \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

\]

In (1.3), the condition $H \in\left(0, \frac{1}{4}\right)$ is necessary: compare indeed with (1.1).
What happens for H between $\frac{1}{4}$ and $\frac{1}{2}$? This question is natural in view of (1.2) and (1.3). In [8], it was conjectured that we still have (1.2) and not (1.3). The aim of this note is to prove this last fact.

Before going into details, let us describe briefly our approach. Assume that $H \in\left(\frac{1}{4}, \frac{1}{2}\right]$. By means of Malliavin calculus, we will prove, as $n \rightarrow \infty$:

$$
E\left(G_{n}(f)\right) \longrightarrow 0 \quad \text { and } \quad E\left(G_{n}^{2}(f)\right) \longrightarrow \sigma_{H}^{2} \int_{0}^{1} E\left(f^{2}\left(B_{s}\right)\right) d s
$$

In particular, the sequence $\left(G_{n},\left(B_{t}\right)_{t \in[0,1]}\right)$ is tight in $\mathbb{R} \times \mathscr{C}([0,1])$. Let $\left(G_{\infty},\left(B_{t}\right)_{t \in[0,1]}\right)$ denote the limit in law of a certain subsequence of $\left(G_{n},\left(B_{t}\right)_{t \in[0,1]}\right)$. We will show that the conditional characteristic function of G_{∞} solves the following linear differential equation:

$$
\frac{\partial}{\partial \lambda} E\left(e^{i \lambda G_{\infty}} \mid\left(B_{t}\right)_{t \in[0,1]}\right)=-\frac{\lambda}{2} \sigma_{H}^{2} \int_{0}^{1} f^{2}\left(B_{s}\right) d s E\left(e^{i \lambda G_{\infty}} \mid\left(B_{t}\right)_{t \in[0,1]}\right)
$$

Consequently, we deduce

$$
E\left(e^{i \lambda G_{\infty}} \mid\left(B_{t}\right)_{t \in[0,1]}\right)=\exp \left(-\frac{\sigma_{H}^{2} \lambda^{2}}{2} \int_{0}^{1} f^{2}\left(B_{s}\right) d s\right)
$$

and (1.2) follows.
The case $H=\frac{1}{4}$ is not covered by our method, and the asymptotic behavior of $G_{n}(f)$ in this case is unknown. Our approach could be applied to other types of weighted Riemann sums, replacing $\left(\Delta B_{k / n}\right)^{2}$ by by higher powers of the increment. For instance, when $H \in$ $\left(0, \frac{1}{6}\right)$ and $f \in \mathscr{C}_{b}^{3}$, one proves in [甘] that

$$
n^{3 H-1} \sum_{k=0}^{n-1}\left(f\left(B_{k / n}\right) n^{3 H}\left(\Delta B_{k / n}\right)^{3}+\frac{3}{2} f^{\prime}\left(B_{k / n}\right) n^{-H}\right) \xrightarrow{\mathrm{L}^{2}}-\frac{1}{8} \int_{0}^{1} f^{\prime \prime \prime}\left(B_{s}\right) d s
$$

as $n \rightarrow \infty$. Using the ideas contained in the current paper, we could prove that the following convergence holds, when $H \in\left(\frac{1}{6}, \frac{1}{2}\right)$:

$$
\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1}\left(f\left(B_{k / n}\right) n^{3 H}\left(\Delta B_{k / n}\right)^{3}+\frac{3}{2} f^{\prime}\left(B_{k / n}\right) n^{-H}\right) \Longrightarrow \widehat{\sigma}_{H} \int_{0}^{1} f\left(B_{s}\right) d W_{s}
$$

as $n \rightarrow \infty$, for a certain constant $\widehat{\sigma}_{H}$ and a standard Brownian motion W independent of B.

The paper is organized as follows. In section 2, we introduce some notations and preliminary results. In section 3, we state and prove the main result of the paper.

2 Preliminaries and notations

We begin by briefly recalling some basic facts about stochastic calculus with respect to a fractional Brownian motion. We refer to [9] for further details. Let $B=\left(B_{t}\right)_{t \in[0,1]}$ be a fractional Brownian motion with Hurst parameter $H \in\left(0, \frac{1}{2}\right)$ defined on a probability space (Ω, \mathcal{A}, P). We mean that B is a centered Gaussian process with the covariance function $\mathrm{E}\left(B_{s} B_{t}\right)=R_{H}(s, t)$, where

$$
R_{H}(s, t)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

We denote by \mathscr{E} the set of step \mathbb{R}-valued functions on $[0,1]$. Let \mathfrak{H} be the Hilbert space defined as the closure of \mathscr{E} with respect to the scalar product

$$
\left\langle\mathbf{1}_{[0, t]}, \mathbf{1}_{[0, s]}\right\rangle_{\mathfrak{H}}=R_{H}(t, s) .
$$

We denote by $|\cdot|_{\mathfrak{H}}$ the associate norm. The mapping $\mathbf{1}_{[0, t]} \mapsto B_{t}$ can be extended to an isometry between \mathfrak{H} and the Gaussian space \mathcal{H}_{1} associated with B. We denote this isometry by $\varphi \mapsto B(\varphi)$. The space \mathfrak{H} coincides with $I_{0+}^{H-\frac{1}{2}}\left(L^{2}([0,1])\right)$, where

$$
I_{0+}^{H-\frac{1}{2}} f(x) \triangleq \frac{1}{\Gamma\left(H-\frac{1}{2}\right)} \int_{0}^{x}(x-y)^{H-\frac{3}{2}} f(y) d y
$$

Let \mathscr{S} be the set of all smooth cylindrical random variables, i.e. of the form

$$
F=\phi\left(B_{t_{1}}, \ldots, B_{t_{m}}\right)
$$

where $m \geq 1, \phi: \mathbb{R}^{m} \rightarrow \mathbb{R} \in \mathscr{C}_{b}^{\infty}$ and $0 \leq t_{1}<\ldots<t_{m} \leq 1$. The Malliavin derivative of F with respect to B is the element of $\mathrm{L}^{2}(\Omega, \mathfrak{H})$ defined by

$$
D_{s} F=\sum_{i=1}^{m} \frac{\partial \phi}{\partial x_{i}}\left(B_{t_{1}}, \ldots, B_{t_{m}}\right) \mathbf{1}_{\left[0, t_{i}\right]}(s), \quad s \in[0,1] .
$$

In particular $D_{s} B_{t}=\mathbf{1}_{[0, t]}(s)$. For any integer $k \geq 1$, we denote by $\mathbb{D}^{k, 2}$ the closure of the set of smooth random variables with respect to the norm

$$
\|F\|_{k, 2}^{2}=\mathrm{E}\left[F^{2}\right]+\sum_{j=1}^{k} \mathrm{E}\left[\left|D^{j} F\right|_{\mathfrak{H} \otimes j}^{2}\right]
$$

The Malliavin derivative D verifies the chain rule: if $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathscr{C}_{b}^{1} and if $\left(F_{i}\right)_{i=1, \ldots, n}$ is a sequence of elements of $\mathbb{D}^{1,2}$ then $\varphi\left(F_{1}, \ldots, F_{n}\right) \in \mathbb{D}^{1,2}$ and we have, for any $s \in[0,1]$:

$$
D_{s} \varphi\left(F_{1}, \ldots, F_{n}\right)=\sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}}\left(F_{1}, \ldots, F_{n}\right) D_{s} F_{i} .
$$

The divergence operator $I=I_{1}$ is the adjoint of the derivative operator D. If a random variable $u \in \mathrm{~L}^{2}(\Omega, \mathfrak{H})$ belongs to the domain of the divergence operator, that is if it verifies

$$
\left|\mathrm{E}\langle D F, u\rangle_{\mathfrak{H}}\right| \leq c_{u}\|F\|_{\mathrm{L}^{2}} \quad \text { for any } F \in \mathscr{S},
$$

then $I(u)$ is defined by the duality relationship

$$
\mathrm{E}(F I(u))=\mathrm{E}\left(\langle D F, u\rangle_{\mathfrak{H}}\right),
$$

for every $F \in \mathbb{D}^{1,2}$.
For every $n \geq 1$, let \mathcal{H}_{n} be the nth Wiener chaos of B, that is, the closed linear subspace of $L^{2}(\Omega, \mathcal{A}, P)$ generated by the random variables $\left\{H_{n}(B(h)), h \in H,|h|_{\mathfrak{H}}=1\right\}$, where H_{n} is the nth Hermite polynomial. The mapping $I_{n}\left(h^{\otimes n}\right)=n!H_{n}(B(h))$ provides a linear isometry between the symmetric tensor product $\mathfrak{H}^{\odot n}$ and \mathcal{H}_{n}. For $H=\frac{1}{2}, I_{n}$ coincides with the multiple stochastic integral. The following duality formula holds

$$
\begin{equation*}
E\left(F I_{n}(h)\right)=E\left(\left\langle D^{n} F, h\right\rangle_{\mathfrak{G}^{\otimes n}}\right), \tag{2.4}
\end{equation*}
$$

for any element $h \in \mathfrak{H}^{\odot n}$ and any random variable $F \in \mathbb{D}^{n, 2}$.

3 Main result

In the sequel, we will make use of the following hypothesis on $f: \mathbb{R} \rightarrow \mathbb{R}$:
(H) f belongs to \mathscr{C}^{6} and $\left|f^{(6)}(x)\right| \leq e^{c x^{2}}$ for some constant $c<\frac{1}{12}$.

Notice that (H) implies

$$
\sup _{t \in[0,1]} E\left(\left|f^{(i)}\left(B_{t}\right)\right|^{p}\right)<\infty,
$$

for all $1 \leq p \leq 6$, and $i=1, \ldots, 6$. We also note G_{n} instead of $G_{n}(f)$ for simplicity. Notice that $n^{2 H}\left(\Delta B_{k / n}\right)^{2}-1=n^{2 H} I_{2}\left(\delta_{k / n}^{\otimes 2}\right)$, where $\delta_{k / n}=\mathbf{1}_{[k / n,(k+1) / n]}$, and I_{2} denotes the double stochastic integral. We will make use of the following technical lemma.

Lemma 1 Let $s<t$ and r belong to $[0,1]$. Then

$$
\left|E\left(B_{r}\left(B_{t}-B_{s}\right)\right)\right| \leq(t-s)^{2 H}
$$

Proof. We have

$$
\begin{aligned}
E\left(B_{r}\left(B_{t}-B_{s}\right)\right)= & \frac{1}{2}\left(r^{2 H}+t^{2 H}-|t-r|^{2 H}\right) \\
& -\frac{1}{2}\left(r^{2 H}+s^{2 H}-|s-r|^{2 H}\right) \\
= & \frac{1}{2}\left(t^{2 H}-s^{2 H}\right)+\frac{1}{2}\left(|s-r|^{2 H}-|t-r|^{2 H}\right) .
\end{aligned}
$$

We have $\left|b^{2 H}-a^{2 H}\right| \leq|b-a|^{2 H}$ for any $a, b \in[0,1]$, because $H<\frac{1}{2}$. The desired result follows.

Our aim is to show the following result.

Theorem $\mathbf{2}$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy (H). We have

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f\left(B_{k / n}\right)\left(n^{2 H}\left(\Delta B_{k / n}\right)^{2}-1\right) \Longrightarrow \sigma_{H} \int_{0}^{1} f\left(B_{s}\right) d W_{s}, \quad \text { as } n \rightarrow \infty \tag{3.5}
\end{equation*}
$$

where W is a Brownian motion independent of B. Moreover $\sigma_{\frac{1}{2}}=\sqrt{2}$ while, for $H \in\left(\frac{1}{4}, \frac{1}{2}\right)$:

$$
\begin{equation*}
\sigma_{H}=\sqrt{\frac{1}{2} \sum_{p=-\infty}^{\infty}\left(|p+1|^{2 H}+|p-1|^{2 H}-2|p|^{2 H}\right)^{2}} \tag{3.6}
\end{equation*}
$$

Proof. The proof will be done in several steps. We will denote by C a generic constant that can be different from line to line.

Step 1.- We will first show that $\lim _{n \rightarrow \infty} E\left(G_{n}\right)=0$. In the case $H=\frac{1}{2}$ we actually have $E\left(G_{n}\right)=0$. Suppose $H<\frac{1}{2}$. By the duality formula between the iterated derivative and double stochastic integrals we have

$$
\begin{aligned}
E\left[f\left(B_{k / n}\right) I_{2}\left(\delta_{k / n}^{\otimes 2}\right)\right] & =\left\langle E\left(D^{2} f\left(B_{k / n}\right)\right), \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}} \\
& =E\left(f^{\prime \prime}\left(B_{k / n}\right)\right)\left\langle\varepsilon_{k / n}^{\otimes 2}, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}}
\end{aligned}
$$

where $\varepsilon_{k / n}=\mathbf{1}_{[0, k / n]}$. Hence, by Lemma []

$$
\begin{aligned}
\left|E\left(G_{n}\right)\right| & \leq n^{-\frac{1}{2}+2 H} \sum_{k=0}^{n-1}\left|E\left(f^{\prime \prime}\left(B_{k / n}\right)\right)\right|\left\langle\varepsilon_{k / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2} \\
& \leq C n^{\frac{1}{2}-2 H}
\end{aligned}
$$

which converges to zero as n tends to infinity because $H>\frac{1}{4}$.
Step 2.- We claim that $\lim _{n \rightarrow \infty} E\left(G_{n}^{2}\right)=\sigma_{H}^{2} \int_{0}^{1} E\left(f\left(B_{s}\right)^{2}\right) d s$. We have

$$
E\left(G_{n}^{2}\right)=n^{4 H-1} \sum_{j, k=0}^{n-1} E\left(f\left(B_{j / n}\right) I_{2}\left(\delta_{j / n}^{\otimes 2}\right) f\left(B_{k / n}\right) I_{2}\left(\delta_{k / n}^{\otimes 2}\right)\right)
$$

The product formula for multiple stochastic integrals yields

$$
\begin{aligned}
I_{2}\left(\delta_{j / n}^{\otimes 2}\right) I_{2}\left(\delta_{k / n}^{\otimes 2}\right)= & \sum_{r=0}^{2} r!\binom{2}{r}^{2} I_{4-2 r}\left(\delta_{j / n}^{\otimes 2} \otimes_{r} \delta_{k / n}^{\otimes 2}\right) \\
= & I_{4}\left(\delta_{j / n}^{\otimes 2} \widetilde{\otimes} \delta_{k / n}^{\otimes 2}\right)+4 I_{2}\left(\delta_{j / n} \widetilde{\otimes} \delta_{k / n}\right)\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& +2\left\langle\delta_{j / n}^{\otimes 2}, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}}
\end{aligned}
$$

and, as a consequence,

$$
\begin{aligned}
E\left(G_{n}^{2}\right)= & n^{4 H-1} \sum_{j, k=0}^{n-1} E\left[f\left(B_{j / n}\right) f\left(B_{k / n}\right) I_{4}\left(\delta_{j / n}^{\otimes 2} \widetilde{\otimes} \delta_{k / n}^{\otimes 2}\right)\right] \\
& +4 n^{4 H-1} \sum_{j, k=0}^{n-1} E\left[f\left(B_{j / n}\right) f\left(B_{k / n}\right) I_{2}\left(\delta_{j / n} \widetilde{\otimes} \delta_{k / n}\right)\right]\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& +2 n^{4 H-1} \sum_{j, k=0}^{n-1} E\left[f\left(B_{j / n}\right) f\left(B_{k / n}\right)\right]\left\langle\delta_{j / n}^{\otimes 2}, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{s} \otimes 2} \\
= & A_{1, n}+B_{1, n}+C_{1, n} .
\end{aligned}
$$

The term $A_{1, n}$ makes no contribution in the limit as n tends to infinity because by the duality formula (2.4) we have

$$
\begin{aligned}
A_{1, n} & =n^{4 H-1} \sum_{j, k=0}^{n-1}\left\langle E\left[D^{4}\left(f\left(B_{j / n}\right) f\left(B_{k / n}\right)\right)\right], \delta_{j / n}^{\otimes 2} \widetilde{\otimes} \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 4}} \\
& =n^{4 H-1} \sum_{j, k=0}^{n-1} \sum_{a+b=4} E\left(f^{(a)}\left(B_{j / n}\right) f^{(b)}\left(B_{k / n}\right)\right)\left\langle\varepsilon_{j / n}^{\otimes a} \otimes \varepsilon_{k / n}^{\otimes b}, \delta_{j / n}^{\otimes 2} \widetilde{\otimes} \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 4}},
\end{aligned}
$$

and by Lemma 1 we obtain

$$
\left|A_{1, n}\right| \leq C n^{1-4 H} .
$$

In the same way,

$$
\begin{aligned}
B_{1, n}= & 4 n^{4 H-1} \sum_{j, k=0}^{n-1} E\left[\left\langle D^{2}\left(f\left(B_{j / n}\right) f\left(B_{k / n}\right)\right), \delta_{j / n} \widetilde{\otimes} \delta_{k / n}\right\rangle_{\mathfrak{H}^{\otimes 2}}\right]\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
= & 4 n^{4 H-1} \sum_{j, k=0}^{n-1} \sum_{a+b=2} E\left(f^{(a)}\left(B_{j / n}\right) f^{(b)}\left(B_{k / n}\right)\right)\left\langle\varepsilon_{j / n}^{\otimes a} \otimes \varepsilon_{k / n}^{\otimes b}, \delta_{j / n} \widetilde{\otimes} \delta_{k / n}\right\rangle_{\mathfrak{H}^{\otimes 2}} \\
& \times\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}},
\end{aligned}
$$

and by Lemma we obtain

$$
\left|B_{1, n}\right| \leq C n^{-1} \sum_{j, k=0}^{n-1}\left|\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right|,
$$

which tends to zero as n tends to infinity. In fact, this is clear for $H=\frac{1}{2}$, and for $H<\frac{1}{2}$ we have

$$
\begin{aligned}
n^{-1} \sum_{j, k=0}^{n-1}\left|\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right| & \left.=\frac{n^{-1-2 H}}{2} \sum_{j, k=0}^{n-1}| | k-j+\left.1\right|^{2 H}+|k-j-1|^{2 H}-2|k-j|^{2 H} \right\rvert\, \\
& \leq C n^{-2 H} \sum_{p=-\infty}^{\infty}| | p+\left.1\right|^{2 H}+|p-1|^{2 H}-2|p|^{2 H} \mid
\end{aligned}
$$

and this series is convergent. Finally,

$$
\begin{aligned}
C_{1, n}= & 2 n^{4 H-1} \sum_{j, k=0}^{n-1} E\left[f\left(B_{j / n}\right) f\left(B_{k / n}\right)\right]\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2} \\
= & \frac{1}{2 n} \sum_{j, k=0}^{n-1} E\left[f\left(B_{j / n}\right) f\left(B_{k / n}\right)\right]\left(|k-j+1|^{2 H}+|k-j-1|^{2 H}-2|k-j|^{2 H}\right)^{2} \\
= & \frac{1}{2 n} \sum_{p=-\infty}^{\infty} \sum_{j=0 \vee-p}^{(n-1) \wedge(n-1-p)} E\left[f\left(B_{j / n}\right) f\left(B_{(j+p) / n}\right)\right] \\
& \times\left(|p+1|^{2 H}+|p-1|^{2 H}-2|p|^{2 H}\right)^{2}
\end{aligned}
$$

This converges to

$$
\frac{1}{2}\left(\sum_{p=-\infty}^{\infty}\left(|p+1|^{2 H}+|p-1|^{2 H}-2|p|^{2 H}\right)^{2}\right) \int_{0}^{1} E\left[f\left(B_{s}\right)^{2}\right] d s
$$

This gives us the value (3.6).
Step 3.- By step 2, the sequence $\left(G_{n},\left(B_{t}\right)_{t \in[0,1]}\right)$ is tight in $\mathbb{R} \times \mathscr{C}([0,1])$. Assume that $\left(G_{\infty},\left(B_{t}\right)_{t \in[0,1]}\right)$ denotes the limit in law of a certain subsequence of $\left(G_{n},\left(B_{t}\right)_{t \in[0,1]}\right)$. In order to show that (3.5) holds, we have to prove that

$$
G_{\infty} \stackrel{\mathcal{L}}{=} \sigma_{H} \int_{0}^{1} f\left(B_{s}\right) d W_{s}
$$

for a standard Brownian motion W independent of B. Let $H=\phi\left(B_{t_{1}}, \ldots, B_{t_{m}}\right)$, with $\phi \in \mathscr{C}_{b}^{\infty}\left(\mathbb{R}^{m}\right)$ and $0 \leq t_{1}<\ldots<t_{m} \leq 1$, be a smooth random variable and consider $\phi_{n}(\lambda) \triangleq E\left(e^{i \lambda G_{n}} H\right)$ for $\lambda \in \mathbb{R}$. We have

$$
\begin{equation*}
\phi_{n}^{\prime}(\lambda)=i E\left(G_{n} e^{i \lambda G_{n}} H\right)=i n^{2 H-\frac{1}{2}} \sum_{k=0}^{n-1} E\left(f\left(B_{k / n}\right) I_{2}\left(\delta_{k / n}^{\otimes 2}\right) e^{i \lambda G_{n}} H\right) . \tag{3.7}
\end{equation*}
$$

Our next step is to analyze the asymptotic behavior of $\phi_{n}^{\prime}(\lambda)$, as n tends to infinity. To do this we will compute the right-hand side of Equation (3.7) using the duality relationship (2.4).

Step 4.- We claim that

$$
\begin{align*}
\phi_{n}^{\prime}(\lambda)= & -2 \lambda n^{4 H-1} \sum_{k, \ell=0}^{n-1} E\left(f\left(B_{k / n}\right) f\left(B_{\ell / n}\right) e^{i \lambda G_{n}} H\right)\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2} \\
& +i n^{2 H-\frac{1}{2}} \sum_{k=0}^{n-1} r_{k, n}, \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
\sup _{k}\left|r_{k, n}\right| \leq C n^{-4 H} \tag{3.9}
\end{equation*}
$$

The proof of the equality (3.8) and and the estimate (3.9) is rather involved. By the duality between the derivative and divergence operators we have

$$
\begin{equation*}
E\left(f\left(B_{k / n}\right) I_{2}\left(\delta_{k / n}^{\otimes 2}\right) e^{i \lambda G_{n}} H\right)=\left\langle E\left(D^{2}\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\right)\right), \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}} . \tag{3.10}
\end{equation*}
$$

The first and second derivatives of $f\left(B_{k / n}\right) e^{i \lambda G_{n}} H$ are given by

$$
\begin{aligned}
D\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\right)= & f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H \varepsilon_{k / n} \\
& +i \lambda f\left(B_{k / n}\right) e^{i \lambda G_{n}} H D G_{n}+f\left(B_{k / n}\right) e^{i \lambda G_{n}} D H
\end{aligned}
$$

and

$$
\begin{aligned}
D^{2}\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\right)= & f^{\prime \prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left(\varepsilon_{k / n} \otimes \varepsilon_{k / n}\right) \\
& +2 i \lambda f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left(\varepsilon_{k / n} \widetilde{\otimes} D G_{n}\right) \\
& +2 f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}}\left(\varepsilon_{k / n} \widetilde{\otimes} D H\right) \\
& -\lambda^{2} f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left(D G_{n} \otimes D G_{n}\right) \\
& +2 i \lambda f\left(B_{k / n}\right) e^{i \lambda G_{n}}\left(D G_{n} \widetilde{\otimes} D H\right) \\
& +i \lambda f\left(B_{k / n}\right) e^{i \lambda G_{n}} H D^{2} G_{n}+f\left(B_{k / n}\right) e^{i \lambda G_{n}} D^{2} H .
\end{aligned}
$$

Hence, taking expectation and multiplying by $\delta_{k / n}^{\otimes 2}$ yields

$$
\begin{align*}
& \left\langle E\left(D^{2}\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\right)\right), \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{S}} \otimes 2 \\
= & E\left(f^{\prime \prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H\right)\left\langle\varepsilon_{k / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2} \\
& +2 i \lambda E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{k / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& +2 E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}}\left\langle D H, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{k / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& -\lambda^{2} E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right) \\
& +2 i \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}}\left\langle D H, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right) \\
& +i \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left\langle D^{2} G_{n}, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H} \otimes 2}\right) \\
& +E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}}\left\langle D^{2} H, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H} \otimes 2}\right) . \tag{3.11}
\end{align*}
$$

We also need explicit expressions for $\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}$ and for $\left\langle D^{2} G_{n}, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H} \otimes 2}$. Differentiat$\operatorname{ing} G_{n}$ we obtain

$$
D G_{n}=n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1}\left[f^{\prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right) \varepsilon_{\ell / n}+2 f\left(B_{\ell / n}\right) \Delta B_{\ell / n} \delta_{\ell / n}\right]
$$

and, as a consequence,

$$
\begin{align*}
\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}= & n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1} f^{\prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right)\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& +2 n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1} f\left(B_{\ell / n}\right) \Delta B_{\ell / n}\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} . \tag{3.12}
\end{align*}
$$

Also

$$
\begin{aligned}
D^{2} G_{n}= & n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1}\left[f^{\prime \prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right) \varepsilon_{\ell / n}^{\otimes 2}\right. \\
& \left.+4 f^{\prime}\left(B_{\ell / n}\right) \Delta B_{\ell / n}\left(\varepsilon_{\ell / n} \widetilde{\otimes} \delta_{\ell / n}\right)+2 f\left(B_{\ell / n}\right) \delta_{\ell / n}^{\otimes 2}\right]
\end{aligned}
$$

and, as a consequence,

$$
\begin{align*}
\left\langle D^{2} G_{n}, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}}= & n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1}\left[f^{\prime \prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right)\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right. \\
& +4 f^{\prime}\left(B_{\ell / n}\right) \Delta B_{\ell / n}\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& \left.+2 f\left(B_{\ell / n}\right)\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right] . \tag{3.13}
\end{align*}
$$

Substituting (3.13) into (3.11) yields

$$
\begin{align*}
& \left\langle E\left(D^{2}\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\right)\right), \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}} \\
= & 2 i \lambda n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1} E\left(f\left(B_{k / n}\right) f\left(B_{\ell / n}\right) e^{i \lambda G_{n}} H\right)\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}+r_{k, n}, \tag{3.14}
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
r_{k, n}= & E\left(f^{\prime \prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H\right)\left\langle\varepsilon_{k / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2} \\
& +2 i \lambda E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{k / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& +2 E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}}\left\langle D H, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{k / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& -\lambda^{2} E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right) \\
& +2 i \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}}\left\langle D H, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right) \\
& +i \lambda n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1} E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right)\right)\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2} \\
& +4 i \lambda n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1} E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime}\left(B_{\ell / n}\right) \Delta B_{\ell / n}\right)\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}} \\
& +E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}}\left\langle D^{2} H, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H} \otimes 2}\right.
\end{array}\right) \quad \begin{aligned}
& 8 \\
& =
\end{aligned}
$$

Then, substituting (3.14) into (3.10) and using (3.7) yields (3.8). To complete the proof of this step we need to show the estimate (3.9). For this we will get estimates of the form $C n^{-4 H}$ for each of the eight terms in the above expression. Clearly, by Lemma 1 we obtain $\left|R_{k, n}^{1}\right| \leq C n^{-4 H}$. On the other hand, since H is a random variable of the form $\phi\left(B_{t_{1}}, \ldots, B_{t_{m}}\right)$ with $\phi \in \mathscr{C}_{b}^{\infty}\left(\mathbb{R}^{m}\right)$, we also have $\left|R_{k, n}^{8}\right| \leq C n^{-4 H}$, and $\left|R_{k, n}^{3}\right| \leq C n^{-4 H}$. For the other terms we have

$$
\begin{align*}
\left|R_{k, n}^{2}\right|+\left|R_{k, n}^{5}\right| & \leq C n^{-2 H}\left\|\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right\|_{2} \tag{3.15}\\
\left|R_{k, n}^{4}\right| & \leq C E\left(\left(1+f^{2}\left(B_{k / n}\right)\right)\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right) \\
\left|R_{k, n}^{6}\right| & \leq C n^{-2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1}\left|E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H \quad f^{\prime \prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right)\right)\right| \\
\left|R_{k, n}^{7}\right| & \leq C n^{-\frac{1}{2}} \sum_{\ell=0}^{n-1}\left|E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime}\left(B_{\ell / n}\right) \Delta B_{\ell / n}\right)\right|\left|\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right| .
\end{align*}
$$

Step 5.- Set $H_{k / n}=1+f^{2}\left(B_{k / n}\right)$. We claim that

$$
E\left(H_{k / n}\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right) \leq C n^{-4 H}
$$

and substituting this estimate in (3.15) we will get the desired estimate for $R_{k, n}^{2}, R_{k, n}^{4}$ and $R_{k, n}^{5}$. We have

$$
E\left(H_{k / n}\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right) \leq M_{k, n}+N_{k, n}
$$

where

$$
M_{k, n}=2 n^{4 H-1} \quad \sum_{\ell, j=0}^{n-1} E\left(H_{k / n} f^{\prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right) f^{\prime}\left(B_{j / n}\right) I_{2}\left(\delta_{j / n}^{\otimes 2}\right)\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle\varepsilon_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right.
$$

and

$$
N_{k, n}=8 n^{4 H-1} \sum_{\ell, j=0}^{n-1} E\left(H_{k / n} f\left(B_{\ell / n}\right) \Delta B_{\ell / n} f\left(B_{j / n}\right) \Delta B_{j / n}\right)\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle\delta_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}
$$

Notice that $M_{k, n}$ has an expression similar to that of $E\left(G_{n}^{2}\right)$, but replacing f by f^{\prime}, and adding the factors $H_{k / n}$ and $\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle\varepsilon_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}$, and we have

$$
\left|\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\left\langle\varepsilon_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right| \leq n^{-4 H} .
$$

As a consequence, estimations similar to those of Step 2 lead to

$$
\left|M_{k, n}\right| \leq C n^{-4 H} .
$$

The term $N_{k, n}$ is treated in a similar way. In fact, by the duality relation

$$
\begin{align*}
& \left|E\left(H_{k / n} f\left(B_{\ell / n}\right) f\left(B_{j / n}\right) \Delta B_{\ell / n} \Delta B_{j / n}\right)\right| \\
\leq & \left|E\left(H_{k / n} f^{\prime \prime}\left(B_{\ell / n}\right) f\left(B_{j / n}\right)\right)\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\left\langle\varepsilon_{\ell / n}, \delta_{j / n}\right\rangle_{\mathfrak{H}}\right| \\
& +2\left|E\left(H_{k / n} f^{\prime}\left(B_{\ell / n}\right) f^{\prime}\left(B_{j / n}\right)\right)\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{F}}\left\langle\varepsilon_{j / n}, \delta_{j / n}\right\rangle_{\mathfrak{H}}\right| \\
& +\left|E\left(H_{k / n} f\left(B_{\ell / n}\right) f^{\prime \prime}\left(B_{j / n}\right)\right)\left\langle\varepsilon_{j / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\left\langle\varepsilon_{j / n}, \delta_{j / n}\right\rangle_{\mathfrak{H}}\right| \\
& +\left|E\left(H_{k / n} f\left(B_{\ell / n}\right) f\left(B_{j / n}\right)\right)\left\langle\delta_{\ell / n}, \delta_{j / n}\right\rangle_{\mathfrak{H}}\right| \\
& +2 E\left(\left\langle D^{2} H_{k / n}, \delta_{\ell / n} \otimes \delta_{j n}\right\rangle_{\mathfrak{H}}^{\otimes 2} f\left(B_{\ell / n}\right) f\left(B_{j / n}\right)\right) \\
\leq & C n^{-2 H} \tag{3.16}
\end{align*}
$$

Thus

$$
\begin{align*}
N_{k, n} & \leq C n^{-1+2 H}\left(\sum_{\ell=0}^{n-1}\left|\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right|\right)^{2} \tag{3.17}\\
& \leq C n^{-1-2 H}\left(\sum_{p=-\infty}^{\infty}| | p+\left.1\right|^{2 H}+|p-1|^{2 H}-2|p|^{2 H} \mid\right)^{2}=C n^{-1-2 H} \leq C n^{-4 H}
\end{align*}
$$

since $H<\frac{1}{2}$, and we get the desired estimate.

Step 6.- Estimation of the term $\left|R_{k, n}^{6}\right|$. Applying the duality formula yields

$$
\begin{aligned}
& E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H \quad f^{\prime \prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right)\right) \\
= & \left\langle E\left(D^{2}\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime}\left(B_{\ell / n}\right)\right)\right), \delta_{\ell / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}} \\
= & E\left(f^{\prime \prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime}\left(B_{\ell / n}\right)\right)\left\langle\varepsilon_{k / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}^{2} \\
& +2 i \lambda E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime}\left(B_{\ell / n}\right)\left\langle D G_{n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{k / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}} \\
& +2 E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} f^{\prime \prime}\left(B_{\ell / n}\right)\left\langle D H, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{k / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}} \\
& +2 E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime \prime}\left(B_{\ell / n}\right)\right)\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\left\langle\varepsilon_{k / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}} \\
& -\lambda^{2} E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime}\left(B_{\ell / n}\right)\left\langle D G_{n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}^{2}\right) \\
& +2 i \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} f^{\prime \prime}\left(B_{\ell / n}\right)\left\langle D H, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\left\langle D G_{n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right) \\
& +2 i \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} f^{\prime \prime \prime}\left(B_{\ell / n}\right)\left\langle D G_{n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}} \\
& +i \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime}\left(B_{\ell / n}\right)\left\langle D^{2} G_{n}, \delta_{\ell / n}^{\otimes 2}\right\rangle_{\mathfrak{5} \otimes 2}\right) \\
& +2 \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} f^{\prime \prime \prime \prime}\left(B_{\ell / n}\right)\left\langle D H, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right)\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}} \\
& +E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} f^{\prime \prime}\left(B_{\ell / n}\right)\left\langle D^{2} H, \delta_{\ell / n}^{\otimes 2}\right\rangle_{\mathfrak{H}}^{\otimes 2}\right) \\
& +E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{(4)}\left(B_{\ell / n}\right)\right)\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}^{2} .
\end{aligned}
$$

By Lemma 1 we have that $\left|\left\langle\varepsilon_{k / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right|,\left|\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right|$, and $\left\|\left\langle D H, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right\|_{2}$ are bounded by $C n^{-2 H}$ while $\left\|\left\langle D^{2} H, \delta_{\ell / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}}\right\|_{2}$ is bounded by $C n^{-4 H}$. On the other hand, as in Step 5 , and taking into account hypothesis (\mathbf{H}), we can show that

$$
E\left(\widehat{H}_{k / n}\left\langle D G_{n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right) \leq C n^{-4 H},
$$

where $\widehat{H}_{k / n}=1+\left(f\left(B_{k / n}\right) f^{\prime \prime}\left(B_{\ell / n}\right)\right)^{2}$. As a consequence,

$$
\left|R_{k, n}^{6}\right| \leq C n^{-2 H-\frac{1}{2}}\left[n^{1-4 H}+\sum_{\ell=0}^{n-1}\left\|\left\langle D^{2} G_{n}, \delta_{\ell / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}}\right\|_{2}\right] .
$$

Then, since $H>\frac{1}{4}$, it suffices to show that

$$
\begin{equation*}
\left\|\left\langle D^{2} G_{n}, \delta_{\ell / n}^{\otimes 2}\right\rangle_{\mathfrak{H}^{\otimes 2}}\right\|_{2} \leq C n^{-2 H-\frac{1}{2}} . \tag{3.18}
\end{equation*}
$$

We have

$$
\begin{align*}
\left\langle D^{2} G_{n}, \delta_{k / n}^{\otimes 2}\right\rangle_{\mathfrak{H}}^{\otimes 2}
\end{align*}=n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1}\left[f^{\prime \prime}\left(B_{\ell / n}\right) I_{2}\left(\delta_{\ell / n}^{\otimes 2}\right)\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right)
$$

The term $R_{1, n}$ has an expression similar to that of $E\left(G_{n}^{2}\right)$, but replacing f by $f^{\prime \prime}$, and adding the factor $\left\langle\varepsilon_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\left\langle\varepsilon_{j / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}$. As a consequence, we obtain

$$
R_{1, n} \leq C n^{-8 H}
$$

For the term $S_{1, n}$, using (3.16) yields

$$
\begin{aligned}
S_{1, n} & \leq C n^{-2 H-1}\left(\sum_{\ell=0}^{n-1}\left|\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right|\right)^{2} \\
& \leq C n^{-6 H-1}\left(\sum_{p=-\infty}^{\infty}| | p+\left.1\right|^{2 H}+|p-1|^{2 H}-2|p|^{2 H} \mid\right)^{2} .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
T_{1, n} & \leq C n^{4 H-1}\left(\sum_{\ell=0}^{n-1}\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2}\right)^{2} \\
& \leq C n^{-4 H-1}\left(\sum_{p=-\infty}^{\infty}| | p+\left.1\right|^{2 H}+|p-1|^{2 H}-\left.2|p|^{2 H}\right|^{2}\right)^{2} .
\end{aligned}
$$

Step 7.- Estimation of the term $\left|R_{k, n}^{7}\right|$. We have

$$
\begin{aligned}
& E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime}\left(B_{\ell / n}\right) \Delta B_{\ell / n}\right) \\
= & E\left(f^{\prime}\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime}\left(B_{\ell / n}\right)\right)\left\langle\varepsilon_{k / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}} \\
& +i \lambda E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime}\left(B_{\ell / n}\right)\left\langle D G_{n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right) \\
& +E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} f^{\prime}\left(B_{\ell / n}\right)\left\langle D H, \delta_{\ell / n}\right\rangle_{\mathfrak{H}}\right) \\
& +E\left(f\left(B_{k / n}\right) e^{i \lambda G_{n}} H f^{\prime \prime}\left(B_{\ell / n}\right)\right)\left\langle\varepsilon_{\ell / n}, \delta_{\ell / n}\right\rangle_{\mathfrak{H}} .
\end{aligned}
$$

We deduce, using also Step 5 and (3.17):

$$
\left|R_{k, n}^{7}\right| \leq C n^{2 H-\frac{1}{2}} \sum_{\ell=0}^{n-1}\left|\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}\right| \leq C n^{-4 H-\frac{1}{2}}
$$

Step 8.- ¿From (3.8), taking the limit as $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \phi_{n}^{\prime}(\lambda) & =-2 \lambda \lim _{n \rightarrow \infty} n^{4 H-1} \sum_{k, \ell=0}^{n-1} E\left(f\left(B_{k / n}\right) f\left(B_{\ell / n}\right) e^{i \lambda G_{n}} H\right)\left\langle\delta_{\ell / n}, \delta_{k / n}\right\rangle_{\mathfrak{H}}^{2} \\
& =-\lambda 2 \sigma_{H}^{2} \int_{0}^{1} E\left(f^{2}\left(B_{s}\right) H e^{i \lambda G_{\infty}}\right) d s
\end{aligned}
$$

This limit requires some justification. A way to prove it consists to use the Skorohod almost sure representation theorem (see, e.g., [55, p. 281]). Indeed, by using the fact that, on an auxiliary space, there exists a fractional Brownian motion \bar{B} such that, with obvious notations, $\bar{G}_{n} \xrightarrow{\text { a.s. }} \bar{G}_{\infty}$, we easily obtain the desired convergence by bounded convergence.

On the other hand, due to the definition of ϕ_{n}, we also have:

$$
\phi_{n}^{\prime}(\lambda) \longrightarrow i E\left(G_{\infty} H e^{i \lambda G_{\infty}}\right)=\frac{\partial}{\partial \lambda} E\left(H e^{i \lambda G_{\infty}}\right)
$$

Since this result is valid for any smooth (with respect to the σ-field generated by $\left.\left(B_{t}\right)_{t \in[0,1]}\right)$ random variable H, we have proved:

$$
\frac{\partial}{\partial \lambda} E\left(e^{i \lambda G_{\infty}} \mid\left(B_{t}\right)_{t \in[0,1]}\right)=-\frac{1}{2} \sigma_{H}^{2} \lambda \int_{0}^{1} f^{2}\left(B_{s}\right) d s E\left(e^{i \lambda G_{\infty}} \mid\left(B_{t}\right)_{t \in[0,1]}\right) .
$$

In other words, $\lambda \mapsto E\left(e^{i \lambda G_{\infty}} \mid\left(B_{t}\right)_{t \in[0,1]}\right)$ solves a linear differential equation, and we deduce:

$$
E\left(e^{i \lambda G_{\infty}} \mid\left(B_{t}\right)_{t \in[0,1]}\right)=e^{-\frac{\sigma_{H}^{2} \lambda^{2}}{2} \int_{0}^{1} f^{2}\left(B_{s}\right) d s}
$$

which proves the desired result.

Acknowledgment. This work was initiated while both authors were attending the conference "Stochastic Analysis and Related Fields" during June 20-21, 2007, at Toulouse, France. We thank the organizers, especially Fabrice Baudoin, for their invitation and hospitality. The work of David Nualart has been supported by the NSF Grant No. DMS0604207.

References

[1] P. Breuer and P. Major (1983): Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 (3), 425-441.
[2] J.M. Corcuera, D. Nualart and J.H.C. Woerner (2006): Power variation of some integral fractional processes. Bernoulli 12, 713-735.
[3] R.L. Dobrushin and P. Major (1979): Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27-52.
[4] L. Giraitis and D. Surgailis (1985): CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. verw. Geb. 70, 191-212.
[5] G.R. Grimmet and D.R. Stirzaker (1992): Probability and Random Processes. Oxford Science Publications. Oxford.
[6] J. Jacod (1994): Limit of random measures associated with the increments of a Brownian semimartingale. Preprint University Paris VI (revised version, unpublished work).
[7] J. León and C. Ludeña (2006): Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stoch. Proc. Appl. 117 (3), 271-296.
[8] I. Nourdin (2007): Asymptotic behavior of some weighted quadratic and cubic variations of the fractional Brownian motion. Preprint University Paris VI.
[9] D. Nualart (2003): Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336, 3-39.
[10] M. Taqqu (1979): Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 53-83.

[^0]: ${ }^{1}$ Université Pierre et Marie Curie Paris VI，Laboratoire de Probabilités et Modèles Aléatoires，Boite courrier 188， 4 place Jussieu， 75252 Paris Cedex 05，France，nourdin＠ccr．jussieu．fr
 ${ }^{2}$ Department of Mathematics，University of Kansas， 405 Snow Hall，Lawrence，Kansas 66045－2142， nualart＠math．ku．edu

