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Convergence in law for certain weighted quadratic variations of
fractional Brownian motion
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Abstract: By means of Malliavin calculus, we prove the convergence in law for certain weighted

quadratic variations of a fractional Brownian motion B with Hurst index H ∈ (1
4 , 1

2 ].
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1 Introduction

The purpose of this paper is to study the asymptotic behavior of the sequence of random
variables

Gn(f) =
1√
n

n−1∑

k=0

f(Bk/n)
(
n2H(∆Bk/n)2 − 1

)
, n ≥ 1,

where B is a fractional Brownian motion of index H ∈ (0, 1), f : R → R and ∆Bk/n

denotes the increment B(k+1)/n − Bk/n.
The case f ≡ 1 is classical (see, e.g., Breuer and Major [1] or Giraitis and Surgailis [4]),

and for any H ∈ (0, 3
4
) we have

Gn(1) =⇒ N (0, σ2
H), as n → ∞, (1.1)

for a certain (explicit) constant σH , and, where, as usual, de denote by ” =⇒ ” the
convergence in law. When H ∈ [3

4
, 1), non-central limit theorems appear (see Taqqu [10]

or Dobrushin and Major [3]).
If H ∈ (1

2
, 3

4
), and f is a continuously differentiable function such that f and f ′ have

subexponential growth, then by Theorem 2 in León and Ludeña [7] we have that

Gn(f) =⇒ σH

∫ 1

0

f(Bs)dWs, (1.2)

as n tends to infinity, where W is a standard Brownian motion independent of B. We
refer to [2] for related results on the asymptotic behavior of the p-variation of stochastic
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integrals with respect to the fractional Brownian motion. When H = 1
2
, (1.2) is still true,

and is in fact a very particular case of a more general result by Jacod [6]. On the other
hand, when H ∈ (0, 1

4
), the first-named author [8] proved that if f belongs to C

2
b , then

n2H−
1

2 Gn(f)
L2

−→ 1

4

∫ 1

0

f ′′(Bs)ds, as n → ∞. (1.3)

In (1.3), the condition H ∈ (0, 1
4
) is necessary: compare indeed with (1.1).

What happens for H between 1
4

and 1
2
? This question is natural in view of (1.2) and

(1.3). In [8], it was conjectured that we still have (1.2) and not (1.3). The aim of this note
is to prove this last fact.

Before going into details, let us describe briefly our approach. Assume that H ∈
(

1
4
, 1

2

]
.

By means of Malliavin calculus, we will prove, as n → ∞:

E
(
Gn(f)

)
−→ 0 and E

(
G2

n(f)
)
−→ σ2

H

∫ 1

0

E
(
f 2(Bs)

)
ds.

In particular, the sequence (Gn, (Bt)t∈[0,1]) is tight in R × C ([0, 1]). Let (G∞, (Bt)t∈[0,1])
denote the limit in law of a certain subsequence of (Gn, (Bt)t∈[0,1]). We will show that the
conditional characteristic function of G∞ solves the following linear differential equation:

∂

∂λ
E
(
eiλG∞| (Bt)t∈[0,1]

)
= −λ

2
σ2

H

∫ 1

0

f 2(Bs)ds E
(
eiλG∞ | (Bt)t∈[0,1]

)
.

Consequently, we deduce

E
(
eiλG∞| (Bt)t∈[0,1]

)
= exp

(
−σ2

Hλ2

2

∫ 1

0

f 2(Bs)ds

)
,

and (1.2) follows.
The case H = 1

4
is not covered by our method, and the asymptotic behavior of Gn(f) in

this case is unknown. Our approach could be applied to other types of weighted Riemann
sums, replacing (∆Bk/n)2 by by higher powers of the increment. For instance, when H ∈
(0, 1

6
) and f ∈ C 3

b , one proves in [8] that

n3H−1
n−1∑

k=0

(
f(Bk/n)n3H(∆Bk/n)3 +

3

2
f ′(Bk/n)n−H

)
L2

−→ − 1

8

∫ 1

0

f ′′′(Bs)ds,

as n → ∞. Using the ideas contained in the current paper, we could prove that the
following convergence holds, when H ∈

(
1
6
, 1

2

)
:

1√
n

n−1∑

k=0

(
f(Bk/n)n

3H(∆Bk/n)3 +
3

2
f ′(Bk/n)n−H

)
=⇒ σ̂H

∫ 1

0

f(Bs)dWs,

as n → ∞, for a certain constant σ̂H and a standard Brownian motion W independent of
B.

The paper is organized as follows. In section 2, we introduce some notations and
preliminary results. In section 3, we state and prove the main result of the paper.
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2 Preliminaries and notations

We begin by briefly recalling some basic facts about stochastic calculus with respect to a
fractional Brownian motion. We refer to [9] for further details. Let B = (Bt)t∈[0,1] be a
fractional Brownian motion with Hurst parameter H ∈ (0, 1

2
) defined on a probability space

(Ω,A, P ). We mean that B is a centered Gaussian process with the covariance function
E(BsBt) = RH(s, t), where

RH(s, t) =
1

2

(
t2H + s2H − |t − s|2H

)
.

We denote by E the set of step R−valued functions on [0, 1]. Let H be the Hilbert space
defined as the closure of E with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H

= RH(t, s).

We denote by | · |H the associate norm. The mapping 1[0,t] 7→ Bt can be extended to
an isometry between H and the Gaussian space H1 associated with B. We denote this

isometry by ϕ 7→ B(ϕ). The space H coincides with I
H−

1

2

0+ (L2([0, 1])), where

I
H−

1

2

0+ f(x) ,
1

Γ(H − 1
2
)

∫ x

0

(x − y)H−
3

2 f(y)dy.

Let S be the set of all smooth cylindrical random variables, i.e. of the form

F = φ(Bt1 , . . . , Btm)

where m ≥ 1, φ : R
m → R ∈ C ∞

b and 0 ≤ t1 < . . . < tm ≤ 1. The Malliavin derivative of
F with respect to B is the element of L2(Ω, H) defined by

DsF =
m∑

i=1

∂φ

∂xi

(Bt1 , . . . , Btm)1[0,ti](s), s ∈ [0, 1].

In particular DsBt = 1[0,t](s). For any integer k ≥ 1, we denote by D
k,2 the closure of the

set of smooth random variables with respect to the norm

‖F‖2
k,2 = E

[
F 2
]
+

k∑

j=1

E
[
|DjF |2

H⊗j

]
.

The Malliavin derivative D verifies the chain rule: if ϕ : R
n → R is C 1

b and if (Fi)i=1,...,n is
a sequence of elements of D

1,2 then ϕ(F1, . . . , Fn) ∈ D
1,2 and we have, for any s ∈ [0, 1]:

Ds ϕ(F1, . . . , Fn) =

n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DsFi.
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The divergence operator I = I1 is the adjoint of the derivative operator D. If a random
variable u ∈ L2(Ω, H) belongs to the domain of the divergence operator, that is if it verifies

|E〈DF, u〉H| ≤ cu ‖F‖L2 for any F ∈ S ,

then I(u) is defined by the duality relationship

E
(
FI(u)

)
= E

(
〈DF, u〉H

)
,

for every F ∈ D
1,2.

For every n ≥ 1, let Hn be the nth Wiener chaos of B, that is, the closed linear subspace
of L2 (Ω,A, P ) generated by the random variables {Hn (B (h)) , h ∈ H, |h|

H
= 1}, where

Hn is the nth Hermite polynomial. The mapping In(h⊗n) = n!Hn (B (h)) provides a linear
isometry between the symmetric tensor product H⊙n and Hn. For H = 1

2
, In coincides

with the multiple stochastic integral. The following duality formula holds

E (FIn(h)) = E
(
〈DnF, h〉

H⊗n

)
, (2.4)

for any element h ∈ H⊙n and any random variable F ∈ D
n,2.

3 Main result

In the sequel, we will make use of the following hypothesis on f : R → R:

(H) f belongs to C 6 and
∣∣f (6)(x)

∣∣ ≤ ecx2

for some constant c < 1
12

.

Notice that (H) implies
sup

t∈[0,1]

E(|f (i)(Bt)|p) < ∞,

for all 1 ≤ p ≤ 6, and i = 1, . . . , 6. We also note Gn instead of Gn(f) for simplicity. Notice
that n2H(∆Bk/n)2−1 = n2HI2(δ

⊗2
k/n), where δk/n = 1[k/n,(k+1)/n], and I2 denotes the double

stochastic integral. We will make use of the following technical lemma.

Lemma 1 Let s < t and r belong to [0, 1]. Then

|E(Br(Bt − Bs))| ≤ (t − s)2H .

Proof. We have

E(Br(Bt − Bs)) =
1

2

(
r2H + t2H − |t − r|2H

)

−1

2

(
r2H + s2H − |s − r|2H

)

=
1

2
(t2H − s2H) +

1

2

(
|s − r|2H − |t − r|2H

)
.

We have |b2H − a2H | ≤ |b − a|2H for any a, b ∈ [0, 1], because H < 1
2
. The desired result

follows.
Our aim is to show the following result.
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Theorem 2 Let f : R → R satisfy (H). We have

1√
n

n−1∑

k=0

f(Bk/n)
(
n2H(∆Bk/n)2 − 1

)
=⇒ σH

∫ 1

0

f(Bs)dWs, as n → ∞, (3.5)

where W is a Brownian motion independent of B. Moreover σ 1

2

=
√

2 while, for H ∈
(

1
4
, 1

2

)
:

σH =

√√√√1

2

∞∑

p=−∞

(|p + 1|2H + |p − 1|2H − 2|p|2H)2
. (3.6)

Proof. The proof will be done in several steps. We will denote by C a generic constant
that can be different from line to line.

Step 1.- We will first show that limn→∞ E(Gn) = 0. In the case H = 1
2

we actually
have E(Gn) = 0. Suppose H < 1

2
. By the duality formula between the iterated derivative

and double stochastic integrals we have

E
[
f(Bk/n)I2(δ

⊗2
k/n)

]
=

〈
E(D2f(Bk/n)), δ⊗2

k/n

〉

H⊗2

= E(f ′′(Bk/n))
〈
ε⊗2

k/n, δ⊗2
k/n

〉

H⊗2

,

where εk/n = 1[0,k/n]. Hence, by Lemma 1

|E(Gn)| ≤ n−
1

2
+2H

n−1∑

k=0

∣∣E
(
f ′′(Bk/n)

)∣∣ 〈εk/n, δk/n

〉2
H

≤ Cn
1

2
−2H ,

which converges to zero as n tends to infinity because H > 1
4
.

Step 2.- We claim that limn→∞ E(G2
n) = σ2

H

∫ 1

0
E(f(Bs)

2)ds. We have

E(G2
n) = n4H−1

n−1∑

j,k=0

E
(
f(Bj/n)I2(δ

⊗2
j/n)f(Bk/n)I2(δ

⊗2
k/n)

)
.

The product formula for multiple stochastic integrals yields

I2(δ
⊗2
j/n)I2(δ

⊗2
k/n) =

2∑

r=0

r!

(
2

r

)2

I4−2r(δ
⊗2
j/n ⊗r δ⊗2

k/n)

= I4(δ
⊗2
j/n⊗̃δ⊗2

k/n) + 4I2(δj/n⊗̃δk/n)
〈
δj/n, δk/n

〉
H

+2
〈
δ⊗2
j/n, δ

⊗2
k/n

〉

H⊗2

,
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and, as a consequence,

E(G2
n) = n4H−1

n−1∑

j,k=0

E
[
f(Bj/n)f(Bk/n)I4(δ

⊗2
j/n⊗̃δ⊗2

k/n)
]

+4n4H−1
n−1∑

j,k=0

E
[
f(Bj/n)f(Bk/n)I2(δj/n⊗̃δk/n)

] 〈
δj/n, δk/n

〉
H

+2n4H−1
n−1∑

j,k=0

E
[
f(Bj/n)f(Bk/n)

] 〈
δ⊗2
j/n, δ

⊗2
k/n

〉
H⊗2

= A1,n + B1,n + C1,n.

The term A1,n makes no contribution in the limit as n tends to infinity because by the
duality formula (2.4) we have

A1,n = n4H−1

n−1∑

j,k=0

〈
E
[
D4
(
f(Bj/n)f(Bk/n)

)]
, δ⊗2

j/n⊗̃δ⊗2
k/n

〉

H⊗4

= n4H−1

n−1∑

j,k=0

∑

a+b=4

E
(
f (a)(Bj/n)f (b)(Bk/n)

) 〈
ε⊗a

j/n ⊗ ε⊗b
k/n, δ

⊗2
j/n⊗̃δ⊗2

k/n

〉

H⊗4

,

and by Lemma 1 we obtain
|A1,n| ≤ Cn1−4H .

In the same way,

B1,n = 4n4H−1
n−1∑

j,k=0

E
[〈

D2
(
f(Bj/n)f(Bk/n)

)
, δj/n⊗̃δk/n

〉
H⊗2

] 〈
δj/n, δk/n

〉
H

= 4n4H−1
n−1∑

j,k=0

∑

a+b=2

E
(
f (a)(Bj/n)f

(b)(Bk/n)
) 〈

ε⊗a
j/n ⊗ ε⊗b

k/n, δj/n⊗̃δk/n

〉
H⊗2

×
〈
δj/n, δk/n

〉
H

,

and by Lemma 1 we obtain

|B1,n| ≤ Cn−1
n−1∑

j,k=0

∣∣∣
〈
δj/n, δk/n

〉
H

∣∣∣ ,

which tends to zero as n tends to infinity. In fact, this is clear for H = 1
2
, and for H < 1

2

we have

n−1
n−1∑

j,k=0

∣∣∣
〈
δj/n, δk/n

〉
H

∣∣∣ =
n−1−2H

2

n−1∑

j,k=0

∣∣|k − j + 1|2H + |k − j − 1|2H − 2|k − j|2H
∣∣

≤ Cn−2H
∞∑

p=−∞

∣∣|p + 1|2H + |p − 1|2H − 2|p|2H
∣∣ ,
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and this series is convergent. Finally,

C1,n = 2n4H−1
n−1∑

j,k=0

E
[
f(Bj/n)f(Bk/n)

] 〈
δj/n, δk/n

〉2
H

=
1

2n

n−1∑

j,k=0

E
[
f(Bj/n)f(Bk/n)

] (
|k − j + 1|2H + |k − j − 1|2H − 2|k − j|2H

)2

=
1

2n

∞∑

p=−∞

(n−1)∧(n−1−p)∑

j=0∨−p

E
[
f(Bj/n)f(B(j+p)/n)

]

×
(
|p + 1|2H + |p − 1|2H − 2|p|2H

)2
.

This converges to

1

2

(
∞∑

p=−∞

(
|p + 1|2H + |p − 1|2H − 2|p|2H

)2
)∫ 1

0

E
[
f(Bs)

2
]
ds .

This gives us the value (3.6).
Step 3.- By step 2, the sequence (Gn, (Bt)t∈[0,1]) is tight in R×C ([0, 1]). Assume that

(G∞, (Bt)t∈[0,1]) denotes the limit in law of a certain subsequence of (Gn, (Bt)t∈[0,1]). In
order to show that (3.5) holds, we have to prove that

G∞

L
= σH

∫ 1

0

f(Bs)dWs

for a standard Brownian motion W independent of B. Let H = φ(Bt1 , . . . , Btm), with
φ ∈ C ∞

b (Rm) and 0 ≤ t1 < . . . < tm ≤ 1, be a smooth random variable and consider
φn(λ) , E

(
eiλGnH

)
for λ ∈ R. We have

φ′
n(λ) = iE

(
GneiλGnH

)
= in2H−

1

2

n−1∑

k=0

E
(
f(Bk/n)I2(δ

⊗2
k/n)eiλGnH

)
. (3.7)

Our next step is to analyze the asymptotic behavior of φ′
n(λ), as n tends to infinity. To do

this we will compute the right-hand side of Equation (3.7) using the duality relationship
(2.4).

Step 4.- We claim that

φ′
n(λ) = −2λn4H−1

n−1∑

k,ℓ=0

E
(
f(Bk/n)f(Bℓ/n)eiλGnH

) 〈
δℓ/n, δk/n

〉2
H

+in2H−
1

2

n−1∑

k=0

rk,n, (3.8)

7



where
sup

k
|rk,n| ≤ Cn−4H . (3.9)

The proof of the equality (3.8) and and the estimate (3.9) is rather involved. By the duality
between the derivative and divergence operators we have

E
(
f(Bk/n)I2(δ

⊗2
k/n)eiλGnH

)
=
〈
E
(
D2
(
f(Bk/n)eiλGnH

))
, δ⊗2

k/n

〉

H⊗2

. (3.10)

The first and second derivatives of f(Bk/n)e
iλGnH are given by

D
(
f(Bk/n)e

iλGnH
)

= f ′(Bk/n)e
iλGnHεk/n

+iλf(Bk/n)eiλGnHDGn + f(Bk/n)eiλGnDH

and

D2
(
f(Bk/n)eiλGnH

)
= f ′′(Bk/n)eiλGnH

(
εk/n ⊗ εk/n

)

+2iλf ′(Bk/n)eiλGnH
(
εk/n⊗̃DGn

)

+2f ′(Bk/n)e
iλGn

(
εk/n⊗̃DH

)

−λ2f(Bk/n)e
iλGnH (DGn ⊗ DGn)

+2iλf(Bk/n)e
iλGn

(
DGn⊗̃DH

)

+iλf(Bk/n)eiλGnHD2Gn + f(Bk/n)eiλGnD2H.

Hence, taking expectation and multiplying by δ⊗2
k/n yields

〈
E
(
D2
(
f(Bk/n)e

iλGnH
))

, δ⊗2
k/n

〉
H⊗2

= E
(
f ′′(Bk/n)e

iλGnH
) 〈

εk/n, δk/n

〉2
H

+2iλE
(
f ′(Bk/n)eiλGnH

〈
DGn, δk/n

〉
H

) 〈
εk/n, δk/n

〉
H

+2E
(
f ′(Bk/n)eiλGn

〈
DH, δk/n

〉
H

) 〈
εk/n, δk/n

〉
H

−λ2E
(
f(Bk/n)eiλGnH

〈
DGn, δk/n

〉2
H

)

+2iλE
(
f(Bk/n)eiλGn

〈
DH, δk/n

〉
H

〈
DGn, δk/n

〉
H

)

+iλE
(
f(Bk/n)eiλGnH

〈
D2Gn, δ

⊗2
k/n

〉

H⊗2

)

+E
(
f(Bk/n)eiλGn

〈
D2H, δ⊗2

k/n

〉

H⊗2

)
. (3.11)

We also need explicit expressions for
〈
DGn, δk/n

〉
H

and for
〈
D2Gn, δ

⊗2
k/n

〉

H⊗2

. Differentiat-

ing Gn we obtain

DGn = n2H−
1

2

n−1∑

ℓ=0

[
f ′(Bℓ/n)I2(δ

⊗2
ℓ/n)εℓ/n + 2f(Bℓ/n)∆Bℓ/nδℓ/n

]

8



and, as a consequence,

〈
DGn, δk/n

〉
H

= n2H−
1

2

n−1∑

ℓ=0

f ′(Bℓ/n)I2(δ
⊗2
ℓ/n)

〈
εℓ/n, δk/n

〉
H

+2n2H−
1

2

n−1∑

ℓ=0

f(Bℓ/n)∆Bℓ/n

〈
δℓ/n, δk/n

〉
H

. (3.12)

Also

D2Gn = n2H−
1

2

n−1∑

ℓ=0

[
f ′′(Bℓ/n)I2(δ

⊗2
ℓ/n)ε⊗2

ℓ/n

+4f ′(Bℓ/n) ∆Bℓ/n

(
εℓ/n⊗̃δℓ/n

)
+ 2f(Bℓ/n)δ

⊗2
ℓ/n

]
,

and, as a consequence,

〈
D2Gn, δ

⊗2
k/n

〉

H⊗2

= n2H−
1

2

n−1∑

ℓ=0

[
f ′′(Bℓ/n)I2(δ

⊗2
ℓ/n)

〈
εℓ/n, δk/n

〉2
H

+4f ′(Bℓ/n) ∆Bℓ/n

〈
εℓ/n, δk/n

〉
H

〈
δℓ/n, δk/n

〉
H

+2f(Bℓ/n)
〈
δℓ/n, δk/n

〉2
H

]
. (3.13)

Substituting (3.13) into (3.11) yields

〈
E
(
D2
(
f(Bk/n)eiλGnH

))
, δ⊗2

k/n

〉
H⊗2

= 2iλn2H−
1

2

n−1∑

ℓ=0

E
(
f(Bk/n)f(Bℓ/n)e

iλGnH
) 〈

δℓ/n, δk/n

〉2
H

+ rk,n, (3.14)

9



where

rk,n = E
(
f ′′(Bk/n)eiλGnH

) 〈
εk/n, δk/n

〉2
H

+2iλE
(
f ′(Bk/n)eiλGnH

〈
DGn, δk/n

〉
H

) 〈
εk/n, δk/n

〉
H

+2E
(
f ′(Bk/n)eiλGn

〈
DH, δk/n

〉
H

) 〈
εk/n, δk/n

〉
H

−λ2E
(
f(Bk/n)e

iλGnH
〈
DGn, δk/n

〉2
H

)

+2iλE
(
f(Bk/n)e

iλGn
〈
DH, δk/n

〉
H

〈
DGn, δk/n

〉
H

)

+iλn2H−
1

2

n−1∑

ℓ=0

E
(
f(Bk/n)eiλGnH f ′′(Bℓ/n)I2(δ

⊗2
ℓ/n)

) 〈
εℓ/n, δk/n

〉2
H

+4iλn2H−
1

2

n−1∑

ℓ=0

E
(
f(Bk/n)eiλGnHf ′(Bℓ/n) ∆Bℓ/n

) 〈
εℓ/n, δk/n

〉
H

〈
δℓ/n, δk/n

〉
H

+E
(
f(Bk/n)eiλGn

〈
D2H, δ⊗2

k/n

〉
H⊗2

)

=
8∑

j=1

R
j
k,n.

Then, substituting (3.14) into (3.10) and using (3.7) yields (3.8). To complete the proof
of this step we need to show the estimate (3.9). For this we will get estimates of the
form Cn−4H for each of the eight terms in the above expression. Clearly, by Lemma 1
we obtain |R1

k,n| ≤ Cn−4H . On the other hand, since H is a random variable of the form
φ(Bt1 , . . . , Btm) with φ ∈ C ∞

b (Rm), we also have |R8
k,n| ≤ Cn−4H , and |R3

k,n| ≤ Cn−4H . For
the other terms we have

|R2
k,n| + |R5

k,n| ≤ Cn−2H
∥∥∥
〈
DGn, δk/n

〉
H

∥∥∥
2
, (3.15)

|R4
k,n| ≤ CE

(
(1 + f 2(Bk/n))

〈
DGn, δk/n

〉2
H

)
,

|R6
k,n| ≤ Cn−2H−

1

2

n−1∑

ℓ=0

∣∣∣E
(
f(Bk/n)e

iλGnH f ′′(Bℓ/n)I2(δ
⊗2
ℓ/n)

)∣∣∣ ,

|R7
k,n| ≤ Cn−

1

2

n−1∑

ℓ=0

∣∣E
(
f(Bk/n)eiλGnHf ′(Bℓ/n) ∆Bℓ/n

)∣∣
∣∣∣
〈
δℓ/n, δk/n

〉
H

∣∣∣ .

Step 5.- Set Hk/n = 1 + f 2(Bk/n). We claim that

E
(
Hk/n

〈
DGn, δk/n

〉2
H

)
≤ Cn−4H ,

and substituting this estimate in (3.15) we will get the desired estimate for R2
k,n, R4

k,n and
R5

k,n. We have

E
(
Hk/n

〈
DGn, δk/n

〉2
H

)
≤ Mk,n + Nk,n,

10



where

Mk,n = 2n4H−1
n−1∑

ℓ,j=0

E(Hk/nf
′(Bℓ/n)I2(δ

⊗2
ℓ/n)f ′(Bj/n)I2(δ

⊗2
j/n)

〈
εℓ/n, δk/n

〉
H

〈
εj/n, δk/n

〉
H

and

Nk,n = 8n4H−1

n−1∑

ℓ,j=0

E
(
Hk/nf(Bℓ/n)∆Bℓ/nf(Bj/n)∆Bj/n

) 〈
δℓ/n, δk/n

〉
H

〈
δj/n, δk/n

〉
H

.

Notice that Mk,n has an expression similar to that of E(G2
n), but replacing f by f ′, and

adding the factors Hk/n and
〈
εℓ/n, δk/n

〉
H

〈
εj/n, δk/n

〉
H
, and we have

∣∣∣
〈
εℓ/n, δk/n

〉
H

〈
εj/n, δk/n

〉
H

∣∣∣ ≤ n−4H .

As a consequence, estimations similar to those of Step 2 lead to

|Mk,n| ≤ Cn−4H .

The term Nk,n is treated in a similar way. In fact, by the duality relation

∣∣E
(
Hk/nf(Bℓ/n)f(Bj/n)∆Bℓ/n∆Bj/n

)∣∣
≤

∣∣E
(
Hk/nf ′′(Bℓ/n)f(Bj/n)

)
〈εℓ/n, δℓ/n〉H〈εℓ/n, δj/n〉H

∣∣
+2
∣∣E
(
Hk/nf ′(Bℓ/n)f ′(Bj/n)

)
〈εℓ/n, δℓ/n〉H〈εj/n, δj/n〉H

∣∣
+
∣∣E
(
Hk/nf(Bℓ/n)f ′′(Bj/n)

)
〈εj/n, δℓ/n〉H〈εj/n, δj/n〉H

∣∣
+
∣∣E
(
Hk/nf(Bℓ/n)f(Bj/n)

)
〈δℓ/n, δj/n〉H

∣∣
+2E

(
〈D2Hk/n, δℓ/n ⊗ δjn〉H⊗2f(Bℓ/n)f(Bj/n)

)

≤ Cn−2H (3.16)

Thus

Nk,n ≤ Cn−1+2H

(
n−1∑

ℓ=0

∣∣〈δℓ/n, δk/n〉H
∣∣
)2

(3.17)

≤ Cn−1−2H

(
∞∑

p=−∞

∣∣∣|p + 1|2H + |p − 1|2H − 2 |p|2H
∣∣∣
)2

= Cn−1−2H ≤ Cn−4H ,

since H < 1
2
, and we get the desired estimate.
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Step 6.- Estimation of the term |R6
k,n|. Applying the duality formula yields

E
(
f(Bk/n)e

iλGnH f ′′(Bℓ/n)I2(δ
⊗2
ℓ/n)

)

=
〈
E
(
D2
(
f(Bk/n)eiλGnHf ′′(Bℓ/n)

))
, δ⊗2

ℓ/n

〉

H⊗2

= E
(
f ′′(Bk/n)eiλGnHf ′′(Bℓ/n)

) 〈
εk/n, δℓ/n

〉2
H

+2iλE
(
f ′(Bk/n)e

iλGnHf ′′(Bℓ/n)
〈
DGn, δℓ/n

〉
H

) 〈
εk/n, δℓ/n

〉
H

+2E
(
f ′(Bk/n)eiλGnf ′′(Bℓ/n)

〈
DH, δℓ/n

〉
H

) 〈
εk/n, δℓ/n

〉
H

+2E
(
f ′(Bk/n)e

iλGnHf ′′′(Bℓ/n)
) 〈

εℓ/n, δℓ/n

〉
H

〈
εk/n, δℓ/n

〉
H

−λ2E
(
f(Bk/n)e

iλGnHf ′′(Bℓ/n)
〈
DGn, δℓ/n

〉2
H

)

+2iλE
(
f(Bk/n)e

iλGnf ′′(Bℓ/n)
〈
DH, δℓ/n

〉
H

〈
DGn, δℓ/n

〉
H

)

+2iλE
(
f(Bk/n)e

iλGnf ′′′(Bℓ/n)
〈
DGn, δℓ/n

〉
H

) 〈
εℓ/n, δℓ/n

〉
H

+iλE
(
f(Bk/n)e

iλGnHf ′′(Bℓ/n)
〈
D2Gn, δ

⊗2
ℓ/n

〉
H⊗2

)

+2λE
(
f(Bk/n)eiλGnf ′′′(Bℓ/n)

〈
DH, δℓ/n

〉
H

) 〈
εℓ/n, δℓ/n

〉
H

+E
(
f(Bk/n)e

iλGnf ′′(Bℓ/n)
〈
D2H, δ⊗2

ℓ/n

〉

H⊗2

)

+E
(
f(Bk/n)e

iλGnHf (4)(Bℓ/n)
) 〈

εℓ/n, δℓ/n

〉2
H

.

By Lemma 1 we have that
∣∣∣
〈
εk/n, δℓ/n

〉
H

∣∣∣,
∣∣∣
〈
εℓ/n, δℓ/n

〉
H

∣∣∣, and
∥∥∥
〈
DH, δℓ/n

〉
H

∥∥∥
2

are bounded

by Cn−2H while
∥∥∥
〈
D2H, δ⊗2

ℓ/n

〉

H⊗2

∥∥∥
2

is bounded by Cn−4H . On the other hand, as in Step

5, and taking into account hypothesis (H), we can show that

E
(
Ĥk/n

〈
DGn, δk/n

〉
H

)
≤ Cn−4H ,

where Ĥk/n = 1 + (f(Bk/n)f
′′(Bℓ/n))2. As a consequence,

|R6
k,n| ≤ Cn−2H−

1

2

[
n1−4H +

n−1∑

ℓ=0

∥∥∥
〈
D2Gn, δ

⊗2
ℓ/n

〉

H⊗2

∥∥∥
2

]
.

Then, since H > 1
4
, it suffices to show that

∥∥∥
〈
D2Gn, δ

⊗2
ℓ/n

〉
H⊗2

∥∥∥
2
≤ Cn−2H−

1

2 . (3.18)
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We have

〈
D2Gn, δ

⊗2
k/n

〉
H⊗2

= n2H−
1

2

n−1∑

ℓ=0

[
f ′′(Bℓ/n)I2(δ

⊗2
ℓ/n)

〈
εℓ/n, δk/n

〉2
H

+4f ′(Bℓ/n) ∆Bℓ/n

〈
εℓ/n, δk/n

〉
H

〈
δℓ/n, δk/n

〉
H

+2f(Bℓ/n)
〈
δℓ/n, δk/n

〉2
H

]
. (3.19)

E

(〈
D2Gn, δ

⊗2
ℓ/n

〉2

H⊗2

)

≤ 3n4H−1
n−1∑

ℓ,j=0

E
(
f ′′(Bℓ/n)I2(δ

⊗2
ℓ/n)f ′′(Bj/n)I2(δ

⊗2
j/n)
)

×
〈
εℓ/n, δk/n

〉2
H

〈
εj/n, δk/n

〉2
H

+48n4H−1

n−1∑

ℓ,j=0

E
(
f ′(Bℓ/n) ∆Bℓ/nf ′(Bj/n) ∆Bj/n

)

×
〈
εℓ/n, δk/n

〉
H

〈
δℓ/n, δk/n

〉
H

〈
εj/n, δk/n

〉
H

〈
δj/n, δk/n

〉
H

+12n4H−1

n−1∑

ℓ,j=0

E
(
f(Bℓ/n)f(Bj/n)

) 〈
δℓ/n, δk/n

〉2
H

〈
δj/n, δk/n

〉2
H

= R1,n + S1,n + T1,n.

The term R1,n has an expression similar to that of E(G2
n), but replacing f by f ′′, and

adding the factor
〈
εℓ/n, δk/n

〉2
H

〈
εj/n, δk/n

〉2
H
. As a consequence, we obtain

R1,n ≤ Cn−8H .

For the term S1,n, using (3.16) yields

S1,n ≤ Cn−2H−1

(
n−1∑

ℓ=0

∣∣∣
〈
δℓ/n, δk/n

〉
H

∣∣∣
)2

≤ Cn−6H−1

(
∞∑

p=−∞

∣∣∣|p + 1|2H + |p − 1|2H − 2 |p|2H
∣∣∣
)2

.

Finally,

T1,n ≤ Cn4H−1

(
n−1∑

ℓ=0

〈
δℓ/n, δk/n

〉2
H

)2

≤ Cn−4H−1

(
∞∑

p=−∞

∣∣∣|p + 1|2H + |p − 1|2H − 2 |p|2H
∣∣∣
2
)2

.
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Step 7.- Estimation of the term |R7
k,n|. We have

E
(
f(Bk/n)eiλGnHf ′(Bℓ/n)∆Bℓ/n

)

= E
(
f ′(Bk/n)eiλGnHf ′(Bℓ/n)

) 〈
εk/n, δℓ/n

〉
H

+iλE
(
f(Bk/n)e

iλGnHf ′(Bℓ/n)
〈
DGn, δℓ/n

〉
H

)

+E
(
f(Bk/n)e

iλGnf ′(Bℓ/n)
〈
DH, δℓ/n

〉
H

)

+E
(
f(Bk/n)e

iλGnHf ′′(Bℓ/n)
) 〈

εℓ/n, δℓ/n

〉
H

.

We deduce, using also Step 5 and (3.17):

|R7
k,n| ≤ Cn2H−

1

2

n−1∑

ℓ=0

∣∣∣
〈
δℓ/n, δk/n

〉
H

∣∣∣ ≤ Cn−4H−
1

2 .

Step 8.- ¿From (3.8), taking the limit as n → ∞, we obtain

lim
n→∞

φ′
n(λ) = −2λ lim

n→∞
n4H−1

n−1∑

k,ℓ=0

E
(
f(Bk/n)f(Bℓ/n)eiλGnH

) 〈
δℓ/n, δk/n

〉2
H

= −λ2σ2
H

∫ 1

0

E
(
f 2(Bs)HeiλG∞

)
ds.

This limit requires some justification. A way to prove it consists to use the Skorohod
almost sure representation theorem (see, e.g., [5, p. 281]). Indeed, by using the fact that,
on an auxiliary space, there exists a fractional Brownian motion B such that, with obvious
notations, Gn

a.s.−→ G∞, we easily obtain the desired convergence by bounded convergence.
On the other hand, due to the definition of φn, we also have:

φ′
n(λ) −→ iE

(
G∞HeiλG∞

)
=

∂

∂λ
E
(
HeiλG∞

)
.

Since this result is valid for any smooth (with respect to the σ-field generated by (Bt)t∈[0,1])
random variable H , we have proved:

∂

∂λ
E
(
eiλG∞| (Bt)t∈[0,1]

)
= −1

2
σ2

Hλ

∫ 1

0

f 2(Bs)ds E
(
eiλG∞| (Bt)t∈[0,1]

)
.

In other words, λ 7→ E
(
eiλG∞| (Bt)t∈[0,1]

)
solves a linear differential equation, and we

deduce:

E
(
eiλG∞ | (Bt)t∈[0,1]

)
= e−

σ2
Hλ2

2

∫
1

0
f2(Bs)ds,

which proves the desired result.
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