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On the influence of selection operators on
performances in cellular Genetic Algorithms

D. Simoncini, P. Collard, S. Verel, M. Clergue

Abstract— In this paper, we study the influence of the selective
pressure on the performance of cellular genetic algorithms.
Cellular genetic algorithms are genetic algorithms where the
population is embedded on a toroidal grid. This structure makes
the propagation of the best so far individual slow down, and
allows to keep in the population potentially good solutions.
We present two selective pressure reducing strategies in order
to slow down even more the best solution propagation. We
experiment these strategies on a hard optimization problem,
the Quadratic Assignment Problem, and we show that there
is a threshold value of the control parameter for both which
gives the best performance. This optimal value does not find
explanation on the selective pressure only, measured either
by takeover time or diversity evolution. This study makes
us conclude that we need other tools than the sole selective
pressure measures to explain the performance of cellular genetic
algorithms.

INTRODUCTION

The selective pressure can be seen as the ability for
solutions to survive in the population. When the selective
pressure is high, only the best solutions survive and colonize
the population, allowing less time for the algorithm to
explore the search space. Thus, the selective pressure has
an impact on the exploration/exploitation trade-off: Whenit
is too low, good solutions’ influence on the population is
so weak that the algorithm can’t converge and behave as a
random search in the search space. When it is too strong, the
algorithm converges quickly and as soon as it is stuck in a
local optimum it won’t be able to find better solutions.

Cellular Genetic Algorithms (cGA) are a subclass of Evo-
lutionary Algorithms in which the population is embedded on
a bidimensional toroidal grid. Each cell of the grid contains
one individual (solution) and the stochastic operators are
applied within the neighborhoods of each cell. The existence
of such small overlapped neighborhoods guarantee the prop-
agation of solutions through the grid and enhance exploration
and population diversity [13]. Such a kind of algorithms is
especially well suited for complex problems with multiple
local optima [6]. To avoid the algorithm to converge toward
one local optimum, one should apply the right selective
pressure on the population and find the best balance between
exploitation of good solutions and exploration of the search
space.

Section 1 presents a state of the art on selective pressure in
cGAs and introduces two selection operators. Section 2 com-
pares the influence of the selection operators on the selective
pressure. Section 3 gives a description of the benchmark used
to analyze the algorithms. Section 4 presents a comparative
study of performance of the algorithms. Section 5 is a study
on the evolution of the genotypic diversity in the populations.

Finally in section 6 we summarize and discuss the results of
the paper.

I. CELLULAR GENETIC ALGORITHMS AND SELECTIVE

PRESSURE

Several methods have been proposed to tune the selective
pressure and deal with the exploration/exploitation trade-off
in cGA. For instance, the size and shape of the cells neigh-
borhoods in which the evolutionary operators are applied,
has some influence. A bigger neighborhood will induce a
stronger selective pressure on the population [10]. When
trying to solve complex problems, with numerous local
optima, one would try to slow down the convergence of
the population. That is why we use in our algorithm a
Von Neumann neighborhood which is the smallest symetric
neighborhood that allows the convergence of the population.

The shape of the grid also has an impact on the selective
pressure [1], [3], [4]: thinner grids give a weaker selective
pressure on the population. This solution’s weakness is that
there are not enough grid shapes for a fixed size of population
to allow an accurate control of the selective pressure.

The selective pressure can also be monitored by choosing
an adequate selection operator.

A. Stochastic tournament selection

The stochastic tournament selection proposed by Goldberg
is a binary tournament selection that doesn’t guarantee the
best solution to be selected. The stochastic tournament of
rater chooses two solutions from the neighborhood of a cell
and selects the best one with probability1−r (the worst one
with probability r). Real parameterr should be in[0; 1].

Given the definition of selective pressure, this selection
operator explicitely gives a weaker selective pressure for
increasingr values. As r is getting closer to1, worse
solutions increase their chances to be maintained in the
population, which means the selective pressure is getting
weaker.

B. Anisotropic selection

The Anisotropic selection is a selection method in which
the neighbors of a cell may have different probabilities to
be selected [12]. The Von Neumann neighborhood of a
cell C is defined as the sphere of radius1 centered atC
in manhattan distance. The Anisotropic selection assigns
different probabilities to be selected to the cells of the Von
Neumann neighborhood according to their position. The
probability pc to choose the center cellC remains fixed at
1
5 . Let us callpns the probability of choosing the cells North



(N ) or South (S) and pew the probability of choosing the
cells East (E) or West (W ). Let α ∈ [−1; 1] be the control
parameter that will determine the probabilitiespns andpew.
This parameter will be called theanisotropic degree. The
probabilitiespns andpew can be described as:

pns =
(1 − pc)

2
(1 + α)

pew =
(1 − pc)

2
(1 − α)

Thus, whenα = −1 we havepew = 1 − pc and pns = 0.
Whenα = 0, we havepns = pew and whenα = 1, we have
pns = 1 − pc andpew = 0. In the following, the probability
pc remains fixed at15 .
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Fig. 1

VON NEUMANN NEIGHBORHOOD WITH PROBABILITIES TO CHOOSE

EACH NEIGHBOR

Figure 1 shows a Von Neumann Neighborhood with the
probabilities to select each cell as a function ofα.

The Anisotropic Selection operator works as follows. For
each cell it selectsk individuals in its neighborhood (k ∈
[1; 5]). The k individuals participate to a tournament and
the winner replaces the old individual if it has a better
fitness or with probability0.5 if the fitnesses are equal.
When α = 0, the anisotropic selection is equivalent to a
standard tournament selection and whenα = 1 or α = −1
the anisotropy is maximal and we have an uni-dimensional
neighborhood with three neighbors only. In the following,
considering the grid symmetry, we will considerα ∈ [0; 1]
only: whenα is in the range [-1;0] making a rotation of90◦

of the grid is equivalent to consideringα in the range [0;1].

II. TAKEOVER TIME

A common analytical approach to measure the selective
pressure is the computation of the takeover time [9] [14].
It is the time needed for the best solution to colonize the
whole population when the only active evolutionary operator
is selection [5]. When the takeover time is short, it means
that the best solution’s propagation speed in the population
is high. So, worse solutions’ life time in the population is
short and thus the selective pressure is strong. On the other
hand, when the takeover time is high, it means that the best
solution colonizes slowly the population, giving a longer
lifetime to worse solutions. In that case, the selective pressure
is low. So the selective pressure in the population is inversely
proportionnal to the takeover time.

In order to measure the takeover time, we place one
solution of fitness1 on a20×20 grid. All the other solutions
have a null fitness. Then we run the process and measure the
time needed for the solution of fitness1 to spread over the
whole grid.

We measured average takeover times over1000 simula-
tions for a cGA using a stochastic tournament selection,
and for one using the anisotropic selection. The simulations
are made on square grids of side20. Figure 2 shows the
results of these simulations. The takeover time increases
whenα increases in the case of a cGA using the anisotropic
selection (figure 2(a)). So the selective pressure is inversely
proportional toα. On figure 2(b) we can see that the takeover
time increases as long as the probabilityr to select the worst
solution in the stochastic tournament grows. This means
that the selective pressure in the population is inversely
proportional tor for a cGA using a stochastic tournament
selection.

The slope of the curve representing the takeover time as
a function of α (fig. 2(a)) for values close to1 is more
important than the one of the curve representing the takeover
time as a function ofr (fig. 2(b)). We can also notice that
in the case of a cGA using stochastic tournament selection,
the takeover time is defined when the probability to select
the best solution is0. The best solution still can colonize
the population in this case since the two candidates for the
tournament are selected by a random draw with replacement.
In the case of a cGA using anisotropic selection, the takeover
time is not defined forα = 1.The anisotropic degreeα is a
continuous parameter and the curve representing the takeover
time as a function ofα is not bounded.

III. T HE QUADRATIC ASSIGNMENT PROBLEM

This section presents the Quadratic Assignment Problem
(QAP) which is known to be difficult to optimize. The QAP
is an important problem in theory and practice as well. It
was introduced by Koopmans and Beckmann in 1957 and is
a model for many practical problems [7]. The QAP can be
described as the problem of assigning a set of facilities to a
set of locations with given distances between the locations
and given flows between the facilities. The goal is to place
the facilities on locations in such a way that the sum
of the products between flows and distances is minimal.
Given n facilities and n locations, two n × n matrices
D = [dij ] andF = [fkl] wheredij is the distance between
locationsi and j and fkl the flow between facilitiesk and
l, the objective function is:

Φ =
∑

i

∑

j

dp(i)p(j)fij

where p(i) gives the location of fa-
cility i in the current permutation p.
Nugent, Vollman and Ruml proposed a set of problem
instances of different sizes noted for their difficulty [2].
The instances they proposed are known to have multiple
local optima, so they are difficult for a genetic algorithm.
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Fig. 2

AVERAGE TAKEOVER TIMES FOR A CGA USING ANISOTROPIC

SELECTION(A) AND STOCHASTIC TOURNAMENT SELECTION(B)

We experiment our algorithm on the instances nug30 (30
variables), tho40 (40 variables) and sko49 (49 variables)
from QAPLIB.

Set up

We use a population of 400 individuals placed on a
square grid (20 × 20). Each individual is reprensented by a
permutation ofN whereN is the size of an individual. The
algorithm uses a crossover that preserves the permutations:

• Select two individualsp1 andp2 as genitors.
• Choose a random positioni.
• Find j andk so thatp1(i) = p2(j) andp2(i) = p1(k).
• exchange positionsi andj from p1 and positionsi and

k from p2.
• repeatN/3 times this procedure whereN is the size of

an individual.

This crossover is an extended version of the UPMX
crossover proposed in [8]. The mutation operator consist in
randomly selecting two positions from the individual and

TABLE I

AVERAGE PERFORMANCE ANDTAKEOVER TIMES FORαo AND ro

Anisotropic selection Stochastic tournament selection
Instance Perf Val TO Perf Val TO

Nug30 6156.318.6 0.92 65.7 6152.618.5 0.85 79.6

Tho40 242788988.4 0.94 75.3 2431151177.2 0.8 70.4

Sko49 23537.255.5 0.92 65.7 23550.358 0.8 70.4

exchanging those positions. The crossover rate is 1 and we
do a mutation per individual. We perform 200 runs for each
tuning of the two selection operators. An elitism replacement
procedure guarantees the individuals to stay on the grid if
they are fitter than their offspring. Each run stops after 2000
generations for nug30 and tho40, and after 3000 generations
for sko49.

IV. PERFORMANCES

In this section we present performance results on the
Quadratic Assignment Problem for a cGA using stochastic
tournament and anisotropic selection operators. In [11] the
authors show that there is an optimal value ofα parameter
for the anisotropic selection that gives optimal performance.
We want to see if the same behaviour is observed with
the stochastic tournament selection and then to compare the
performance obtained for these two operators.

Figures 3, 4 and 5 show performance obtained with
the anisotropic and the stochastic selection operator on the
QAP instances nug30, tho40 and sko49. We measure the
performance by averaging the best solution found on each
run for each value of anisotropy degree and stochastic rate.

When the rate of the stochastic tournament selection and
the anisotropic degree are null, the two algorithms are the
same : A standard cGA with binary tournament selection.
The selective pressure drops when the values of the control
parameters of the two algorithms increase. In both cases
we see that as the selective pressure drops, performance
increases until a threshold value. Once this value is reached,
the performance decreases. These threshold values give the
best exploration/exploitation trade-off for this problem. In
the following, the threshold values of parametersα and r
are denotedαo andro.

Table 1 givesαo and ro for each instance of QAP and
their corresponding takeover times (TO). Best performances
are in bold and differences between performances of the
two algorithms are statistically significant for each instance
according to the Student’s t-test. Differences in takeover
times are also statistically significant. The algorithm using
stochastic tournament selection is the best for nug30, and
the one using anisotropic selection is the best for tho40
and sko49. The threshold values stand in the same ranges
for all instances:αo ∈ {0.92, 0.94} and ro ∈ {0.8, 0.85}.
The differences in takeover times indicate that the selective
pressure on the population is different for the two methods
for the settings that give the best average performance.
These differences can be explained by the way the algorithm
explores the search space and exploits good solutions.
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Fig. 3

PERFORMANCE OF CGA WITH ANISOTROPIC SELECTION FOR DIFFERENT

ANISOTROPY DEGREES(A) AND WITH STOCHASTIC TOURNAMENT FOR

DIFFERENT RATES(B) ON INSTANCE NUG30

V. D IVERSITY

In this section, we present statistic measures on the evolu-
tion of the genotypic diversity in the population. Three kinds
of measures are performed : The global average diversity,
the vertical/horizontal diversity and the local diversity. The
global average diversity measure is made on a set of50 runs
of one instance of QAP for each kind of algorithm. It consists
in computing the genotypic diversity between each solutions
generation after generation.

gD = (
1

♯r♯c
)2

∑

r1,r2

∑

c1,c2

d(xr1c1
, xr2c2

)

whered(x1, x2) is the distance between solutionsx1 andx2.
The distance used is inspired from the Hamming distance: It
is the number of locations that differ between two solutions
divided by their lengthn.

The results for each generation are averaged on50 runs.
We obtain a curve representing the evolution of the global
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PERFORMANCE OF CGA WITH ANISOTROPIC SELECTION FOR DIFFERENT

ANISOTROPY DEGREES(A) AND WITH STOCHASTIC TOURNAMENT FOR

DIFFERENT RATES(B) ON INSTANCE THO40

diversity in the population through2000 generations.
The vertical/horizontal diversity measures the average di-

versity in the columns and in the rows of the grid. The
vertical (resp. horizontal) diversity is the sum of the average
distance between all solutions in the same column (resp. row)
divided by the number of columns (resp. rows):

vD =
1

♯r

1

♯c2

∑

r

∑

c1,c2

d(xrc1
, xrc2

)

hD =
1

♯c

1

♯r2

∑

c

∑

r1,r2

d(xr1c, xr2c)

where♯r and ♯c are the number of rows and columns in
the grid.

This measure is only made for the cGA with anisotropic
selection. As the stochastic tournament selection provides
an isotropic diffusion of solutions, the difference between
horizontal and vertical diversities is null.
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PERFORMANCE OF CGA WITH ANISOTROPIC SELECTION FOR DIFFERENT

ANISOTROPY DEGREES(A) AND WITH STOCHASTIC TOURNAMENT FOR

DIFFERENT RATES(B) ON INSTANCE SKO49

Figure 6 shows the evolution of global diversity for
different settings of the anisotropic selection (fig 6(a)) and
the stochastic tournament selection (fig 6(b)). Curves on
figure 6(a) represent diversity for increasing values ofα from
bottom to top. These curves show that the moreα is high, the
more the diversity is maintained in the population. Similar
results are obtained in the case of the stochastic tournament
on figure 6(b). These curves represent diversity for increasing
values ofr from bottom to top. The shape of the curves are
different for the two methods: For the stochastic tournament,
the curves are concave in a first time and then become
convex. For high values ofr, the concave phase is longer
and it is not finished at generation2000 for values above0.8.
For the anisotropic selection, the convexity does not change,
the curves are convex.

The differences in the evolution of genotypic diversity are
shown on figure 7. This figure present the evolution of the di-
versity for the threshold values of the two algorithms:αo and
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EVOLUTION OF GLOBAL DIVERSITY FOR A CGA USING ANISOTROPIC

SELECTION(A) AND STOCHASTIC TOURNAMENT SELETION(B) ON

INSTANCE NUG30

ro. We can see that the diversity is higher for the algorithm
using the stochastic tournament selection. Nevertheless,since
the curve of the stochastic tournament is concave and the
curve of the anisotropic selection convex, the difference of
diversity starts to decrease around generation1000 and at
generation2000 the algorithm using anisotropic selection has
preserved more diversity.

On figure 8, the horizontal diversity is plotted as a function
of the vertical diversity for different settings of anisotropic
selection. The straight line is the curve obtained forα = 0
andα is increasing on curves from the left to the right. Asα
increases, the algorithm favors the propagation of solutions
in the columns of the grid and the vertical diversity decreases
quicker. On the other hand the horizontal diversity decreases
slower, and is constant for the limit caseα = 1. In the
latter case, there are no interactions between the columns
of the grid and the algorithm behave as several independant
algorithms executing in parallel. These algorithms run on
grids of width 1 and with 3 solutions in the “vertical”
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neighborhoods.
The local diversity measure is computed on one single

run for each kind of algorithm. It is the genotypic diversity
observed in the neighborhood of each cell of the grid.
It is represented as “snapshots” of the population, where
a dark point represents a high degree of diversity in the
neighborhood, and a clear point represents a low degree of
diversity in the neighborhood.

Figure 9 represents the local diversity along generations
for a cGA with standard binary tournament selection. We can
see on snapshots of generations300 and500 the formation of
circles. Each circle contains copies of good solutions found
locally. The frontier between the areas from which good
solutions colonize the grid are the only sites on the grid
where the crossover operator still can have some effect. At

generation1000 the genotypic diversity on the grid is null
, the population has been colonized by one solution, and
performance will not improve anymore.

Figure 10 represents the local diversity along generations
for a cGA with stochastic tournament selection. The prob-
ability of selecting the best participant to the tournamentis
decreasing from top to bottom. The first thing we notice is
that the propagation mode of good solutions is the same as
for the cGA using a standard binary tournament selection.
The only difference is the speed of propagation of good
solutions monitored by ther parameter. As long as we
give less chances to the best solution in the neighborhood
to be selected, it will take more time before the algorithm
converges. The areas where crossovers can help to explore
the search space and to improve performance are bigger
when r increases. The crossover operator does not have
any effect in the white zones of the grid since there is no
more genotypic diversity in such areas. Forr = 1, we see
that at generation1500 the diversity is still very high and
the algorithm does not exploit good solutions because the
selective pressure on the population is too low.

Figure 11 represents the local diversity along generations
for a cGA with anisotropic selection. Values ofα increase
from top to bottom. By monitoring the anisotropy degree,
we can influence on the dynamics of propagation of good
solutions. For low values ofα, good solutions roughly
propagate in circles as for a cGA using binary tournament
selection. Whenα reaches values close to1, the good
solutions tend to colonize the columns of the grid. The
diversity is conserved between the columns, which indicate
that the algorithm converge toward different solutions in each
columns. Thus, the anisotropic selection favors the formation
of subpopulations in the columns of the grid [11]. Crossovers
between subpopulations then allow the algorithm to explore
the search space, as long as the probability of selecting
participants from different columns for the tournament is
not too low (i.e.α is not too high). Whenα is too high, the
selective pressure on the population is too low and negatively
affects performance.

VI. D ISCUSSION

In this section we summarize and discuss the results on
takeover time, performance and genotypic diversity and we
compare the cGAs using anisotropic selection and stochastic
tournament selection. Two cGAs using different selection
operators have been tested on instances of QAP. The two
selection operators allow to control the selective pressure on
the population. The analysis of takeover time and genotypic
diversity show the influence of the two operators on the
selective pressure.

When looking at the performance on QAP, we can see that
on each instance and for both methods, the performance in-
creases as the selective pressure drops down until a threshold
value of the control parameter. After this value, the perfor-
mance decreases as the selective pressure continue to drop
down. The threshold values of the control parameter stand
in the same range on all instances for both of the methods.



Nevertheless, we notice from table 1 that the takeover times
are not similar forαo and ro. Consequently, the selective
pressure induced on the population is different for the two
algorithms. The observations on figure 7 are in adequation
with this: The algorithm with stochastic tournament preserves
more genotypic diversity for the threshold value than the one
with anisotropic selection. The genotypic diversity measures
were made on instance nug30 for which the cGA with
stochastic tournament selection obtains the best performance.
However, results on diversity put in evidence properties ofthe
selection operators which are independant from the instance
tested.

The selective pressure is related to the explo-
ration/exploitation trade-off. We conclude from the
results presented in table 1 and figure 6 that studying the
exploration/exploitation trade-off is insufficient to explain
performance of cellular genetic algorithms. In cGAs, the
grid topology structures the search dynamic.
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The overlapped neighborhoods allow to control the diffu-
sion of phenotypic and genotypic informations through the
population.

Figures 10 and 11 show that the algorithm with stochastic
tournament or anisotropic selection exploit differently the
structure of the grid. When using the anisotropic selec-
tion, the algorithm can favor the propagation of solutions
vertically. This structuration creates subpopulations inthe
columns of the grid, and solutions can occasionally share
information with adjacent subpopulations. On the other side,
the stochastic tournament selection provides an isotropic
propagation of solutions. The algorithm can control the speed
of the propagation by decreasing the probability to select the
best participant to the tournament as genitor. The snapshots
and the figures 6 and 7 show that the genotypic diversity in
the population is influenced by the exploitation of the grid
structure.

The selection operator plays an important role in the explo-
ration of the search space and in the exploitation of solutions.
The two operators we compare allow to control the selective
pressure. Forro and αo the selective pressure induced on
the population gives the best ratio between exploration and
exploitation. But this ratio is dependant of the exploration
and exploitation dynamics of the algorithm. Thus, it is
dependant of the selection operator used. The measures on
genotypic diversity and the snapshots show these differences
whether the algorithm uses the stochastic tournament or the
anisotropic selection. Thus, the selective pressure needed to
find the best exploration/exploitation trade-off is dependant
of the transmission mode of information through the grid.
Furthermore, the existence of a threshold value for the
parameter which controls the selective pressure do not find
explanation in the statistic measures on genotypic diversity
and takeover time.

A study of the relations between topologic, phenotypic
and genotypic distances should give a better explanation
of performance and as a consequence should explain the
takeover time and diversity during the search process. In
order to explain performance of cGAs, we need to study
the transmission mode of the informations through the grid
since the ratio between exploration and exploitation seems
to rely on it.

CONCLUSION AND PERSPECTIVES

This paper presents a comparative study of two selection
operators, the anisotropic selection and the stochastic tour-
nament selection, that allow a cellular Genetic Algorithm
to control the selective pressure on the population. A study
on the influence of the selection operators on the selective
pressure is made by measuring the takeover time and the
genotypic diversity. We analyse the average performance
obtained on three instances of the well-known Quadratic
Assignment Problem. A threshold value for the parameters
of both of the selection operators that gives optimal per-
formance has been put in evidence. These threshold values
give the adequate selective pressure on the population for
the QAP. However, the selective pressure is different for

the two methods. A study on the genotypic diversity shows
that the dynamic of diffusion of informations through the
grid is different when using the stochastic tournament or
the anisotropic selection operator. The anisotropic selection
favors the formation of subpopulations in the columns of the
grid, whereas the stochastic tournament selection slows down
the propagation speed of the good solutions. The selection
operator have some influence on the dynamic of transmission
of the information through the grid and the ratio between
exploration and exploitation is not sufficient to explain the
performance of a cGA.

Nevertheless, we show that even if it is different for the
anisotropic selection and the stochastic tournament selection,
the selective pressure has some influence on performances.
Further works will analyze the dynamic of diffusion of the
information through the grid and explain the existence of
a threshold value for the two cGAs by studying statistic
measures on the relations between topologic, genotypic and
phenotypic distances.
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