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Evolving Dynamic Change and Exchange of Genotype Encoding in Genetic Algorithms for Difficult Optimization Problems

The application of genetic algorithms (GAs) to many optimization problems in organizations often results in good performance and high quality solutions. For successful and efficient use of GAs, it is not enough to simply apply simple GAs (SGAs). In addition, it is necessary to find a proper representation for the problem and to develop appropriate search operators that fit well to the properties of the genotype encoding. The representation must at least be able to encode all possible solutions of an optimization problem, and genetic operators such as crossover and mutation should be applicable to it. In this paper, serial alternation strategies between two codings are formulated in the framework of dynamic change of genotype encoding in GAs for function optimization. Likewise, a new variant of GAs for difficult optimization problems denoted Split-and-Merge GA (SM-GA) is developed using a parallel implementation of an SGA and evolving a dynamic exchange of individual representation in the context of Dual Coding concept. Numerical experiments show that the evolved SM-GA significantly outperforms an SGA with static single coding.

I. INTRODUCTION

Genetic algorithms (GAs) are search procedures based on principles derived from the dynamics of natural population genetics. These algorithms abstract some of the mechanisms found in evolution for use in searching for optimal solutions within complex "fitness landscapes" [START_REF] Gregory | Foundations of Genetic Algorithms[END_REF]. Like the natural world, GAs are forms of adaptive systems in which various chromosomes interact via sufficiently complicated elements [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF]. These elements include selection method, crossover and mutation operators, the encoding mechanism ("representation") of the problem, and many others. All of these are typically preset by the user before the actual operation of a GA begins. Many individual representations have been proposed and tested within a wide-range of evolutionary models. Maybe, an essential natural question that has to be answered in all these evolutionary models : which is the optimal genotype encoding needed to make individuals evolve better in a GA application ? To prevent approximately a bad choice of a coding that do not match to a problem fitness function, the research effort reported in this paper focused on developing strategies of sequential and parallel implementations of a simple GA (SGA) evolving the use of two codings simultaneously, having the goal to revise GAs behaviour, to probably enhance GAs performances degree, and later to refine GAs solution quality. Some previous works [START_REF] Barbulescu | Dynamic Representations and Escaping Local Optima: Improving Genetic Algorithms and Local Search[END_REF] proposed to use dynamic representations to escape local optima. Their strategies focused on parameter optimization and consisted in switching the gray representation of individuals when state-of-the-art GA has converged. In this paper, we explore different ways and diverse criteria of conversation and interaction between two representations in one SGA. The first way changes sequentially two codings according to a specific touchstone and the second way exploits in parallel two codings in a self-propelled mechanism. So currently, we focus more on the matter of exploring variant strategies of dynamic representation and we concentrate well on the topic of enhancing the basic operations and intensifying the main performances of an SGA.

The structure of our present work as follows : Section II introduces individual representation character. Section III presents a quick study about the hypothesis of GAs twofold representation in the form of diverse serial alternation strategies and section IV presents a new technique for a Split-and-Merge GA (SM-GA) as a parallel implementation of an SGA in the context of symmetric Dual Coding basic scheme. Section V introduces the protocol of our experiments including the functions utilized to test the suggested algorithms, the set of parameters used, the numerical results of our observations and the t-test results for a later judgement. Finally, section VI presents some general discussions and conclusions.

II. INDIVIDUAL REPRESENTATION

Representation is one of the key decisions to be made when applying a GA to a problem. How a problem is represented in a GA individual determines the shape of the solution space that a GA must search [START_REF] Toussaint | Compact Representations as a Search Strategy: Compression EDAs[END_REF]. For example, the choice of tree representation instead of vector representation could help according to the tested problem [START_REF] Rothlauf | Network Random Keys: a Tree Representations Scheme for Genetic and Evolutionary Algorithms[END_REF]. For any function, there are multiple representations which make optimization trivial [START_REF] Liepins | Representations Issues in Genetic Algorithms[END_REF]. However, the ensemble of all possible representations is a larger search space than that of the function being optimized. Unfortunately, practitioners often report substantial different performances of GAs by simply changing the used representation. The difficulty of a specific problem , and with it the performance of GAs, can be modified dramatically by using various types of encodings. Indeed, an encoding can perform well for many diverse test functions, but fails for the one problem which one really wants to solve [START_REF] Rothlauf | Representations for Genetic and Evolutionary Algorithms[END_REF]. These observations were confirmed by empirical and theoretical investigations. In a particular way, there are kinds of GAs, like the messy GA developed by Goldberg et al. (1989), that use an adaptive encoding that adjusts the structure of the representation to the properties of the problem. This approach, however, burdens the GA not only with the search for promising solutions, but also the search for a good representation. Generally and appending to some major studies, the use of Gray Coding (GC) has been found to enhance the performance of genetic search in some cases [START_REF] Whitley | A Free Lunch Proof for Gray versus Binary Encodings[END_REF]. However, GC produces a different function mapping that may have fewer local optima and different relative hyperplane relationships than the Standard binary Coding (SC) which sometimes has been found to complicate the search for the optimum by the fact of producing a large number of local optima [START_REF] Whitley | Representation Issues in Neighborhood Search and Evolutionary Algorithms[END_REF]. Also, GC has been shown to change the number of local optima in the search space because two successive real Gray-Coded numbers differ only by one bit. Moreover, the use of GC is based on the belief that changes introduced by mutation do not have such a disruptive effect on the chromosome as when we use SC [START_REF] Mathias | Transforming the Search Space with Gray Coding[END_REF]. Besides, we should mention that SC also seems to be effective for some classes of problems because its advantage resides by the fact that it frequently locates the optimal solution. Also, with SC the best fitness tendency to approach the global optimum is very high due to its power in discovering the search space and owing to its convergence speed to the best solution [START_REF] Caruana | Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms[END_REF]. As a result, different encodings of the same problem are essentially different problems for a GA. Selecting a representation that correlates with a problem's fitness function can make that problem much easier for a GA to solve [START_REF] Whitley | A Free Lunch Proof for Gray versus Binary Encodings[END_REF]. An interesting approach consists of incorporating good concepts about encodings and developing abstractive models which describe the influence of representations on measurements of GA performance. After that, dynamic representation strategies can be used efficiently in a theory-guided manner to achieve significant advancement over existing GAs for certain classes of optimisation problems.

III. SERIAL DUAL CODING STRATEGIES

Many optimization problems can be encoded by a variety of different representations. In addition to binary and continuous string encodings, a large number of other, often problem-specific representations have been proposed over the last few years.. As no theory of representations exists, the current design of proper representations is not based on theory, but more a result of black art [START_REF] Rothlauf | Representations for Genetic and Evolutionary Algorithms[END_REF]. Although, designing a new dynamic appropriate representation will not remain the black of art of GAs research but become a well predictable engineering task. In our study, we used to encode minimization test problems with binary strings and we referred specifically to the two most popular codings SC and GC. As has been discussed, SC has a very high tendency to converge to a local optima speedily while GC has the potential to significantly alter the number of local optima in the search space [START_REF] Mathias | Transforming the Search Space with Gray Coding[END_REF]. Therefore, the difficulty and the essential work is to discover the best strategy of alternance between SC and GC in order to improve GAs performances. At first, we studied the possibility of GAs dual chromosomal encryption using sequential alternation strategies such as Periodic-GA, APeriodic-GA, LocalOpt-GA, HomogPop-GA and SteadyGen-GA.

The idea for the Periodic-GA was to alternate between two given codings for the same number of generations (period). The parameter requires fine tuning for a given problem.

Aperiodic-GA differs from Periodic-GA by selecting, before each alternance, an arbitrary period (aperiod) from [minP : maxP ] interval. The parameter does not demand expensive tuning because an interval accommodation is more easier and less sensitive while moving from one test function to another.

LocalOpt-GA consists in changing coding when the population's best individual is a local optima. The idea was to try alternating between representations because a local optima under a coding is not necessary a local optima under the other, a fact that probably will permit to escape the obstacle created by a local optima and to achieve more better results. This proposition does not require any parameter and need any adjustment but it increases significantly the execution time by the fact of processing a huge number of function evaluations at each generation. In the framework of LocalOpt-GA, we studied the position and the number of local optima, for Schaffer function F6 (cf. section V-A) and for the two codings SC and GC, by an exhaustive exploration of the search space. A double local optima is a solution which is a local optima under two used codings. For function F6, the reported number of local optima for SC was 6652 and for GC was 7512. Thus, there was less double local optima shared between SC and GC and the reported number was 2048. The positions (x, y) of local optima are given in Fig 1.

The idea for the HomogPop-GA was to change representation when a population attains an homogeneous phase that reveals its inability to enhance more the results. Homogeneity criteria was measured by the standard deviation of fitnesses in the population in comparison with a given real number (ε). Also by alternating, this will keep some degree of diversity between individuals which will help in discovering the search space. The parameter is very sensitive and requires to be tuned for each problem.

In SteadyGen-GA, the alternance is realized when the best fitness value is not modified for a given number of generations (steadyGen), and this to keep enhanced the fitness capacity during the search. The parameter is not sensitive while tuning for a given problem.

The common main algorithm to these strategies consists in executing an SGA for one generation with a given coding.

After that, it consists in testing proposal particular condition; if true, then it belongs to alternating to the other coding and converting individuals representation to that coding. Alternance cycle continues until a given maximum number of generations maxGen are reached. To simplify serial strategies algorithms, common procedures were used. For a given population pop, given representations coding, coding1 and coding2, and given numbers steadyGen and maxGen, these procedures can be resumed as follows :

• Generate Initial Population() : generates randomly an initial population.

• Run 1 SGA(pop, coding) : executes an SGA for one generation with pop having coding as representation.

• Alternate Coding(coding1, coding2) : switches problem encoding between coding1 and coding2 and returns the coding corresponding to the last altered coding.

• Convert Population(pop, coding) : converts pop individuals representation to coding.

• Is MaxGen(maxGen) : a boolean function that returns true if an algorithm was executed entirely for maxGen generations and false otherwise. Serial Dual Coding proposals can be defined as follows :

1) Periodic-GA (cf. Algo 1) : The alternance is realized if an SGA was executed for period generations with a given coding. A boolean procedure Is Period(period) is used and returns true if an SGA was operated for period generations and false otherwise. 

IV. SM-GA TECHNIQUE

A. SM-GA Initiation

Agents (units or sub-populations) are the entities, in literal meaning, that act or have the power of the authority to act on behalf of its designer. The basic and important features of the agents can be listed as autonomy, proactivity and collaboration, especially when we are designing agents to be used for representation utility. An autonomous agent works in a way that it can have self-activation mechanism and behaviour. Collaboration is a very important feature of an agent, which also makes an agent differ from an expert system. Collaboration gives the agent to communicate with other agents in the environment for either satisfying its goals or retrieving information in the environment. It is how that we got our first idea to the new formalism called SM-GA, a new technique planned on agents function and implemented in a resurgent encoding work engine in purpose to bring some order into the unsettled situation caused by the influence of representations on the performance of GAs.

B. SM-GA Methodology of Work and Implementation

SM-GA algorithm is based on the role of double-agents (dual coding). It includes two main phases and their functions can be resumed as follows : In first phase, this technique consists in generating randomly an initial population (first agent). Then, it belongs to splitting this basic population into two sub-populations (units) and getting each a distinct representation. Primarily, two synchronous SGAs are executed with these two units for a given number of generations (startGen). At this point, steady state (state of no improvement of best fitness value for a given number of generations) value is computed automatically for each coding. Steady state measurement for each representation is taken equal to the average of all steady states encountered during SGA operation in that representation for the startGen generations. Then after the two units have achieved startGen generations, it consists in merging all individuals in one population having a best coding representation. Best coding is selected relatively to the population that has the least average fitness. Next, an SGA is processed with the united population until meeting a steady state. After estimating regular values of steady states for each representation, second phase induces a re-splitting of the whole population into two sub-populations having each a different coding. Then, the two divided units are operated in parallel with two SGAs. In this manner, SGA will benefit from the two representations at the same time by the fact that this parallel genotype's codification describes proactivity appearing on two levels and evolution occurring on two scales simultaneously. Then after each generation, a test for steady state is necessary. If at least one of the two units encounters a corresponding steady state, then agents collaboration property will help to support and preserve landscaped the fitness productivity during the inquiry process. Thus, in a global manner, a merge of the two coexistent units into one unit having a best coding representation will be an appropriate and suitable issue in intention to gather and assemble all developed data. At this level, best individuals spread within the population and exchanges realized by crossover genetic operators and minor mutational changes in chromosomes make it possible for better structures to be generated. Next, an SGA will run with the integrated population until, at any rate, it deviates to a steady state probably caused by the existence of one or more local optima and which momently reveals its inability to make individuals evolve better. In that case, it consists in re-spliting the entire agent into two sub-agents, a simple idea induced by the fact of new-created agents will have respectively sufficient autonomy to auto-reshape and invert their unvarying pattern. By this way, possibly one of the two shrunk populations will have the opportunity to withdraw and surpass the local optima, a concept that will make it survive and retrieve its accurate direction to well discover the search space. Then, split-and-merge cycle continues until a given maximum number of generations maxGen are attained (cf. Algo 6). The schema representing SM-GA whole process is shown in Fig 2 . This algorithm parameter does not require fine tuning for each problem. Just, startGen value must be large enough to be able to well estimate the steady states measurements for each coding. To optimize SM-GA algorithm, standard procedures were utilized. For given populations pop, pop1 and pop2, given representations coding, coding1 and coding2, and given numbers steadyGen and maxGen, these procedures can be summarized as follows :

• Split(pop, pop1, pop2) : takes pop and divides it into two sub-populations pop1 and pop2.

• Compute Steady State(coding, startGen) : estimates steady state value for coding corresponding to the average of all steady states encountered while executing an SGA with coding for startGen generations.

• Select Best Coding(pop1, coding1, pop2, coding2) : computes pop1 and pop2 fitness averages and returns the coding corresponding to the population that has the least average fitness.

• Merge(pop1, pop2, pop) : takes pop1 and pop2 and blends them into pop.

V. SETUP OF EXPERIMENTS

A. Test Problems

Taking the most problematic and challenging test functions under consideration and given the nature of our study, we concluded to a total of five optimization functions. the search range increase on the basis of the product, which results in the decrease of the local minimums. The more we increase the search range, the atter the function. Generally speaking, this is a very difficult but good function for testing GAs performance mainly because the product creates subpopulations strongly codependent to parallel GAs models. Griewangk F8 has the global minimum at (0, ..., 0) [START_REF] Digalakis | An Experimental Study of Benchmarking Functions for Genetic Algorithms[END_REF]. The fifth function Schwefel [F9] also is a non-linear multimodal function. It is somewhat easier than Rastrigin F7 and is characterized by a second-best minimum which is far away from the global optimum. In this function, V is the negative of the global minimum, which is added to the function so as to move the global minimum to zero, for convenience. The exact value of V depends on system precision; for our experiments V = 418.9829101. Schwefel F9 has the global minimum at (420.9687, ..., 420.9687) [START_REF] Digalakis | An Experimental Study of Benchmarking Functions for Genetic Algorithms[END_REF].

Most algorithms have difficulties to converge close to the minimum of such functions especially under high levels of dimensionality (i.e. in a black box form where the search algorithm should not necessarily assume independence of 

Name Expression Range Dimension

F2 f 2 (x i ) = 100(x 2 1 -x 2 ) 2 + (1 -x 1 ) 2 [-2.048 : 2.048] 2 F6 f 6 (x i ) = 0.5 + sin 2 ( √ x 2 +y 2 )-0.5 (1+0.001(x 2 +y 2 )) 2 [-100 : 100] 2 F7 f 7 (x i ) = 200 + 20 i=1
(x 2 i -10 cos(2πx i )) [-5.12 : 5.12] 20

F8 f 8 (x i ) = 1 + 10 i=1 ( x 2 i 4000 ) - 10 i=1 (cos( x i √ i
)) [-600 : 600] 10

F9 f 9 (x i ) = 10V + 10 i=1 (-x i sin( |x i |)) [-500 : 500] 10 
dimensions), because the probability of making progress decreases rapidly as the minimum is approached.

B. Parameter Settings

In already defined proposals, an SGA was processed and it encapsulates the standard parameter values for any GA application which is based on binary strings representation. More specifically, the main common parameters are :

• Pseudorandom generator : Uniform Generator.

• Selection mechanism : Tournament Selection.

• Crossover mechanism : 1-Point Crossover.

• Mutation mechanism : Bit-Flip Mutation.

• Replacement models : a) Generational Replacement. b) Elitism Replacement.

• Algorithm ending criteria : the executions stop after maximum number of generations are reached. The set of remaining applied parameters are shown in Table II with : maxGen for maximum number of generations before STOP, popSize for population size, vecSize for genotype size, tSize for tournament selection size, pCross for crossover rate, 1-P ointRate for 1-point crossover rate, pM ut for mutation rate, pM utP erBit for bit-flip mutation rate (1/vecSize). Besides, the values of parameters necessary to new proposals are almost near for each function with a little difference evoked by the problem complexity. Values of these specific parameters were determined recurrently within fixed intervals lengths. In Periodic-GA and Aperiodic-GA, period and aperiod ([minP : maxP ]) values changed within [25 : 100] interval with step of 5. In HomogPop-GA, ε value varied from 0.1 to 5.0 with step of 0.1. In SteadyGen-GA, steadyGen value changed within [5 : 50] interval with step of 5. In SM-GA, startGen value changed within [100 : 500] interval with step of 50. Sufficient tests were performed to be able for attributing adequate values to each specific parameter. As has been discussed and after a large number of tests, we found that modifications of these parameters values within coherent fixed intervals lengths do not affect so much the final results of each proposal which accelerated a bit our plan of action. The best parameter settings between those tested are given in Table II.

C. Testing Description and Numerical Observations 1) Real Numbers and Fitness Computation:

The real numbers are represented by binary bit strings of length n * N , where n is the problem dimension and N is the number of bits needed to represent each function parameter. N is chosen in such as to have sufficient precision on the majority of real numbers included in the specific search space. In that case, the first N bits represent the first parameter, the second N bits represent the second parameter, and so forth. Given a function parameter x represented by N binary bits, if x has an SC representation, then x real value is computed by :

x = a + b-a 2 N -1 N -1 i=0 x i 2 i
where a and b are respectively the minimum and maximum bounds of the search interval. If we write the Standard-binary-Coded value of a real x as s k-1 ...s 1 s 0 and the Gray-Coded value as g k-1 ...g 1 g 0 , then we have the relationships : g i = s i+1 ⊕ s i and s i = s i+1 ⊕ g i which allow conversion from one representation to the other (taking s k = 0). In all cases and after real numbers computation, the fitness value was taken equal to the corresponding function value which was calculated according to the function expression given in Table I.

2) Experimental Results: Testing new algorithms on objective functions, experimental results were reported in the limits to decide about the optimal proposal among all ones. Table III presents statistical results obtained over 200 runs and at the last generation (gen N b 3500). All problems are being minimized, this table shows generation number to optimum (GNTO) and succes rate (SR and SR2) results after 700000 (200 × 3500) executions for each proposal and each function, with the highest score in bold. GNTO value corresponds to the maximum number of generations needed to reach the optimum after entire process of all runs. SR value represents a percentage of the number of times the optimal solution is found after all executions. SR2 value represents a percentage of the number of times the optimal solution is found after all executions correspondingly to the minimum GNTO found for each function. For example, the minimum GNTO for function F9 was 2025 recorded for SM- LocalOpt-GA SG 7.9 4.6 1.7 2.7 5.3 4.8 3.6 3.3 3.9 1.5 LocalOpt-GA GS 7.1 5.1 1.9 2.7 3.3 2.3 3.9 5.8 3.6 2.6 HomogPop-GA SG 21 10 3. GA proposal; for Periodic-GA SG proposal, the GNTO was 3480 and the corresponding SR was 100, but if we wanted to note the SR measure of Periodic-GA SG found so far at generation numbered 2025 we would detect a value of 79 denoted SR2. In Table III : SC signifies an execution with SC, GC for an execution with GC, SG means that SC was the starter coding and GS when GC was the starter coding.

3) Student's t-test: Generally, the Student's t-test serves for comparing the means of two experiences and assesses whether they are statistically different from each other. As well in our experiments, the t-test was used to compare, across all runs, success rate (SR2) and mean best fitness (MBF) results between different proposals so it will help to judge the difference between their averages relative to the spread or variability of their scores. Regarding Table III which distinctly shows the performances of SM-GA towards other proposals, t-test results were studied in comparison between SM-GA and other algorithms. Computed results are displayed in Table IV.

VI. GENERAL DISCUSSIONS AND CONCLUSION

Genetic algorithms, as has been discussed, provide a very good conceptional framework for optimization inspired by nature, but theoretical questions and algorithmic considerations deliberated in this work suggest that an SGA with static single coding sometimes fails to converge to the desired solution in a defined number of generations, a state called GA deception in optimization task, by the fact that selecting a representation that conflicts and opposes to a problem's fitness function can make that problem much hard and difficult for a GA to solve. In this paper, we tried to make SC and GC interacts each with other to transform the binary parameter representation for the problem to avoid compromising the difficulty of the problem because both SC and GC produce all possible representations and both have quite a lot of advantages. Yet, we started by formulating Serial Dual Coding strategies in a dynamic manner to study the fundamental interaction while alternating between two representations. Likewise, we presented a new and practical Experiments were performed to search for the optimal proposal for a given set of minimization problems. Finding an appropriate best proposition is not an easy task, since each proposal has particular parameters and specific criteria so that the characteristics and typical combination of properties represented by any suggestion do not allow for generalized performance statements. In order to facilitate an empirical comparison of the performance of each proposal, we have measured the success rate progress over generations which transfers a clear view and permits a legal opinion and decision about the efficiency and the evolution of each proposition.

For Serial Dual Coding proposals, Table III introduces not bad results according to SR evaluation. Likewise, Figures positioned at the left side of Figure 3 prove that each of these proposals enhanced a little the performance of the SGA for a given problem. At least, we can say that they produced results which were best from the worst of those of executing an SGA with unchangeable representation. Thus, it means that their performances maybe were affected by attributing inexact values to their specific parameters, or probably they were affected by the choice of the initial population because this criteria's effect is sometimes dramatic.

As well, in Table III, SM-GA produced relative high results than the other algorithms according to SR measurement and this for all examined functions. The experimental data in this table also suggest that, while it is possible to each proposal to control accurately its parameters, very good performance can be obtained with a varying range of SGA control parameter settings. Figures positioned at the right side of Figure 3 show, for each exploited function, a comparison between SM-GA and SGA referring to SR activity across generations. In these figures, SM-GA graphical records illustrate how SR was progressing quickly after a small number of generations which made SGA performs better and improves its processing during the investigation for the optimum. On the other side, SM-GA shows its advancement over SM-GA SC and SM-GA GC which proves distinctly the efficacity of blending and integrating two various representations simultaneously.

Experimental results were confirmed by using the t-test results in Table IV. Entering a t-table at 398 degrees of freedom (199 for n 1 + 199 for n 2 ) for a level of significance of 95% (p = 0.05) we found a tabulated t-value of 1.96, going up to a higher level of significance of 99% (p = 0.01) we detected a tabulated t-value of 2.58. And to a greater extent, we increased the level of significance to the most higher level of 99.9% (p = 0.001) we got a tabulated t-value of 3.29. Calculated t-test values in Table IV exceeded these in most cases, so the difference between compared proposals averages is highly significant. Clearly, SM-GA SG produced significantly finer results than those of other algorithms by the fact that coexistence of dual chromosomal encryption stimulated production, multiplication and interchange of new structures concurrently between synchronized populations according to the split-and-merge life cycle and ordered functionality.

In futur works, we will use multi-coding SM-GA in the field of genetic programming, where it exists more enhanced GAs (Evoltution Strategies, state-of-the-art GAs, etc.) and different kinds of representations (tree, linear, etc.), in order to use the well-adapted representation for a specific problem.

Finally, these measurements leave us with valuable perceptions concerning the utility of compounding various coding types for individual representation in collaboration in one SGA. In purpose to ameliorate our new algorithms, we need to have a deeper apprehension of what GAs are really processing as they operate and we are due to understand advantageously and refine our knowing about the specifications of each coding and its reactions with the genetic operators which can help to enhance GAs optimal performances and provide us with more steps towards GAs evolution.
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  different degrees of complexity. Although, they were selected because of their ease of computation and widespread use, which should facilitate evaluation of the results. The first test function Rosenbrock [F2] has been proposed by De Jong. It is unimodal (i.e. containing only one optimum) and is considered to be difficult because it has a very narrow ridge. The tip of the ridge is very sharp, and it runs around a parabola. Algorithms that are not able to discover good directions underperfom in this problem. Rosenbrock F2 has the global minimum at (1, 1) [3]. The second function Schaffer [F6] has been conceived by Schaffer. It is an example of a multimodal function (i.e. containing many local optima, but only one global optimum) and is known to be a hard problem for GAs due to the number of local minima and the large search interval. Schaffer F6 has the global minimum at (0, 0) and there are many nuisance local minima around it [3]. The third function Rastrigin [F7] is a typical model of a non-linear highly multimodal function. It is a fairly difficult problem for GAs due to the wide search space and the large number of local minima. It has a complexity of O(n ln(n)), where n is the number of function parameters. This function contains millions of local optima in the interval of consideration. Rastrigin F7 has the global minimum at (0, ..., 0), i.e. in one corner of the search space [3]. The fourth function Griewangk [F8] also is a non-linear multimodal function. It has a complexity O(n ln(n)), where n is the number of function parameters. The terms of the summation produce a parabola, while the local optima are above parabola level. The dimensions of
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pop, coding) until Is MaxGen(maxGen) Algorithm 3

  

	Algorithm 1 Periodic-GA
	period ← periodV alue coding ← starterCoding pop ← Generate Initial Population() repeat
	repeat
	Run 1 SGA(pop, coding)
	until Is Period(period)
	coding ← Alternate Coding(coding1, coding2) Convert Population(pop, coding)
	until Is MaxGen(maxGen)
	Algorithm 2 Aperiodic-GA
	coding ← starterCoding pop ← Generate Initial Population() repeat
	aperiod ← Random[minP : maxP ] repeat
	Run 1 SGA(pop, coding)
	until Is Period(aperiod)
	coding ← Alternate Coding(coding1, coding2) Convert Population(Convert Population(pop, coding)
	until Is MaxGen(maxGen)
	Algorithm 4 HomogPop-GA
	ε ← epsilon coding ← starterCoding pop ← Generate

LocalOpt-GA coding ← starterCoding pop ← Generate Initial Population() repeat repeat Run 1 SGA(pop, coding) until Is Local Optima(Best Element(pop)) coding ← Alternate Coding(coding1, coding2)

Initial Population() repeat repeat Run 1 SGA(pop, coding) until Is Homogeneous Population(pop, ε) coding ← Alternate Coding(coding1, coding2) Convert Population(pop, coding) until Is MaxGen(maxGen)

  

	Algorithm 5 SteadyGen-GA
	steadyGen ← steadyGeneration coding ← starterCoding pop ← Generate Initial Population() repeat
	repeat
	Run 1 SGA(pop, coding)
	until Is Steady Generation(pop, steadyGen)
	coding ← Alternate Coding(coding1, coding2) Convert Population(pop, coding)
	until Is MaxGen(maxGen)

  Table I summarizes some of the unconstrained real-valued functions. All these routines are minimization problems and prove

	Algorithm 6 SM-GA		
	startGen ← startGeneration pop ← Generate Initial Population() Split(pop, pop1, pop2)		
	repeat			
	Run 1 SGA(pop1, coding1)		
	Run 1 SGA(pop2, coding2)		
	until Is Period(startGen)		
	steadyGen1 ← Compute Steady State(coding1, startGen) steadyGen2 ← Compute Steady State(coding2, startGen) bestCoding ← Select Best Coding(pop1, coding1, pop2, coding2) Convert Population(pop1, bestCoding)
	Convert Population(pop2, bestCoding)		
	Merge(pop1, pop2, pop)		
	repeat			
	Run 1 SGA(pop, bestCoding)		
	until Is Steady Generation(pop, steadyGenOf (bestCoding))	
	repeat			
	Split(pop, pop1, pop2)		
	Convert Population(pop1, coding1)		
	Convert Population(pop2, coding2)		
	repeat			
	Run 1 SGA(pop1, coding1)		
	Run 1 SGA(pop2, coding2)		
	until	Is Steady Generation(pop1,	steadyGen1)	or
	Is Steady Generation(pop2, steadyGen2)		
	bestCoding ← Select Best Coding(pop1, coding1, pop2, coding2) Convert Population(pop1, bestCoding)
	Convert Population(pop2, bestCoding)		
	Merge(pop1, pop2, pop)		
	repeat			
	Run 1 SGA(pop, bestCoding)		
	until Is Steady Generation(pop, steadyGenOf (bestCoding))	
	until Is MaxGen(maxGen)		

TABLE II SET

 II OF USED PARAMETERS.

	Parameters		Objective Functions	
		F2	F6	F7	F8	F9
	maxGen	3500	3500	3500	3500	3500
	popSize	100	100	100	100	100
	vecSize	40	80	200	200	150
	tSize	2	2	4	2	2
	pCross	0.6	0.6	1.0	0.75	0.6
	1-P ointRate	1.0	1.0	1.0	1.0	1.0
	pM ut	1.0	1.0	1.0	1.0	1.0
	pM utP erBit	0.025	0.0125	0.0077	0.0035	0.006
	period	50	40	25	30	10
	[minP : maxP ] [25:75]	[25:70]	[20:50]	[20:70]	[10:20]
	ε	5.0	0.1	5.0	2.5	1.0
	steadyGen	35	25	5	25	5
	startGen	250	500	100	250	250

TABLE IV T

 IV -TEST RESULTS : COMPARISON BETWEEN SM-GA AND OTHER ALGORITHMS.

	SM-GA	F2	F6	F7	F8	F9
	Compared to	SR2 MBF SR2 MBF SR2 MBF SR2 MBF SR2 MBF
	SGA SC	21 10 4.1 5.1 inf 25 3.6 11 inf 47
	SM-GA SC	21 8.7 1.9 2.6 98 24 1.8 0.5 inf 42
	SGA GC	1.5 1.1 2.9 4.5 1.5 1.1 4.8 9.3 3.6 2.5
	SM-GA GC	1.5 1.1 1.1 3.1 2.1 1.6 2.8 3.1 2.5 1.5
	Periodic-GA SG	5.8 5.1 1.3 2.1 2.1 0.3 3.9 3.9 7.3 3.2
	Periodic-GA GS	4.5 4.3 2.3 2.7 7.1 6.8 4.4 4.4 4.1 3.9
	Aperiodic-GA SG 4.8 4.2 1.3 2.1 3.9 3.2 4.8 5.1 4.9 2.2
	Aperiodic-GA GS 4.2 1.7 1.1 1.7 3.9 2.7 4.8 3.3 4.8 1.9

  SM-GA as a new symmetric Dual Coding strategy. In this purpose, we tried to improve bounds on GAs convergence by profiting from the manner of operating simultaneously two codings in two units of work to consume the majority of possible representations that can obtained by the two codifications. In this paper, SC and GC were applied to the new proposals. Although, any other coding types and any number of codings could be applied to the sequential and parallel strategies.

								TABLE III								
							EXPERIMENTAL RESULTS.							
	Proposal		F2			F6			F7			F8			F9	
		GNTO SR % SR2 % GNTO SR % SR2 % GNTO SR % SR2 % GNTO SR % SR2 % GNTO SR % SR2 %
	SGA SC	3500+	32	31	3500+	37	37	3500+	1	0	3500+	6	6	3500+	0	0
	SM-GA SC	3500+	30	30	3500+	48	48	3500+	2	2	3500+	11	11	3500+	0	0
	SGA GC	3500+	99	99	3500+	43	43	2957	100	99	3500+	3	3	2395	100	94
	SM-GA GC	3256	100	99	3500+	52	52	3362	100	98	3500+	8	8	2413	100	97
	SM-GA	3139	100	100	3500+	57	57	2940	100	100	3500+	17	17	2025	100	100
	Periodic-GA SG	3500+	87	86	3500+	51	51	3191	100	98	3500+	5	5	3480	100	79
	Periodic-GA GS	3500+	91	91	3500+	46	46	3500+	99	80	3500+	4	4	2279	100	92
	Aperiodic-GA SG	3500+	90	90	3500+	51	51	3500+	99	93	3500+	3	3	3009	100	89
	Aperiodic-GA GS	3500+	93	92	3500+	52	52	3230	100	93	3500+	3	3	2818	100	90
	LocalOpt-GA SG	3500+	78	76	3500+	49	49	3500+	96	88	3500+	6	6	2480	100	93
	LocalOpt-GA GS	3500+	81	80	3500+	48	48	3491	100	95	3500+	5	5	2480	100	94
	HomogPop-GA SG 3500+	32	31	3500+	41	41	3500+	1	0	3500+	2	2	3500+	0	0
	HomogPop-GA GS 3500+	99	99	3500+	38	38	3001	100	95	3500+	3	3	2395	100	94
	SteadyGen-GA SG 3500+	88	87	3500+	46	46	3381	100	95	3500+	7	7	2453	100	86
	SteadyGen-GA GS	3500+	89	88	3500+	51	51	3254	100	98	3500+	4	4	2894	100	82
	implementation of GAs for a