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Abstract— The application of genetic algorithms (GAs) to two codings simultaneously, having the goal to revise GAs
many optimization problems in organizations often resultsin  pehaviour, to probably enhance GAs performances degree,
good performance and high quality solutions. For successfu and later to refine GAs solution quality.

and efficient use of GAs, it is not enough to simply apply ) .
simple GAs (SGAs). In addition, it is necessary to find a prope Some_ previous WorkSEILO] pro_posed tQ use dynamlc rep-
representation for the problem and to develop appropriate resentations to escape local optima. Their strategiessémtu
search operators that fit well to the properties of the genotpe on parameter optimization and consisted in switching the
encoding. The representation must at least be able to encode gray representation of individuals when state-of-theGt

all possible solutions of an optimization problem, and ger& has converged. In this paper, we explore different ways

operators such as crossover and mutation should be applicéd d di iteria of fi d int tion betw
to it. In this paper, serial alternation strategies betweentwo and diverse criteria ot conversation and Interaction betwe

codings are formulated in the framework of dynamic change of two representations in one SGA. The first way changes
genotype encoding in GAs for function optimization. Likewse, a sequentially two codings according to a specific touchstone

new variant of GAs for difficult optimization problems denoted  and the second way exploits in parallel two codings in a
Split-and-Merge GA (SM-GA is developed using a parallel ~ geif nronelled mechanism. So currently, we focus more on
implementation of an SGA and evolving a dynamic exchange . . . .
of individual representation in the context of Dual Coding the mgtter of exploring variant strategies of f?'ynam'c repr.e
concept. Numerical experiments show that the evolve®M-GA ~ Sentation and we concentrate well on the topic of enhancing
significantly outperforms an SGA with static single coding. the basic operations and intensifying the main performance
of an SGA.

The structure of our present work as follows : Section

Genetic algorithms (GAs) are search procedures based ﬂrintroduces individual representation character.
principles derived from the dynamics of natural populatiopresents a quick study about the hypothesis of GAs twofold
genetics. These algorithms abstract some of the mechanisrapresentation in the form of diverse serial alternatioatst
found in evolution for use in searching for optimal soluson gies and sectioEIV presents a new technique fBpht-and-
within complex "fitness landscapes[] [1]. Like the naturalMergeGA (SM-GA as a parallel implementation of an SGA
world, GAs are forms of adaptive systems in which various the context of symmetric Dual Coding basic scheme. Sec-
chromosomes interact via sufficiently complicated elemention M introduces the protocol of our experiments including
[]. These elements include selection method, crossower athe functions utilized to test the suggested algorithies st
mutation operators, the encoding mechanism ("represent#-parameters used, the numerical results of our obsenstio
tion”) of the problem, and many others. All of these areand the t-test results for a later judgement. Finally, secti
typically preset by the user before the actual operation @ presents some general discussions and conclusions.
a GA begins. Many individual representations have been
proposed and tested within a wide-range of evolutionary
models. Maybe, an essential natural question that has toRepresentation is one of the key decisions to be made
be answered in all these evolutionary models : which iwhen applying a GA to a problem. How a problem is
the optimal genotype encoding needed to make individuatepresented in a GA individual determines the shape of the
evolve better in a GA application ? To prevent approximatelgolution space that a GA must sear [11]. For example,
a bad choice of a coding that do not match to a problettme choice of tree representation instead of vector repre-
fithess function, the research effort reported in this papeentation could help according to the tested probl@ [12].
focused on developing strategies of sequential and phralleor any function, there are multiple representations which
implementations of a simple GA (SGA) evolving the use ofnake optimization trivial [1]3]. However, the ensemble df al

I. INTRODUCTION

Il. INDIVIDUAL REPRESENTATION



possible representations is a larger search space than thatell predictable engineering task. In our study, we used to
of the function being optimized. Unfortunately, practite¥s encode minimization test problems with binary strings and
often report substantial different performances of GAs bwe referred specifically to the two most popular codings SC
simply changing the used representation. The difficulty of and GC. As has been discussed, SC has a very high tendency
specific problem , and with it the performance of GAs, can b® converge to a local optima speedily while GC has the
modified dramatically by using various types of encodinggotential to significantly alter the number of local optima
Indeed, an encoding can perform well for many diverse test the search space[| [7]. Therefore, the difficulty and the
functions, but fails for the one problem which one reallyessential work is to discover the best strategy of alter@anc
wants to solve |]|2]. These observations were confirmed Hyetween SC and GC in order to improve GAs performances.
empirical and theoretical investigations. In a particvay, At first, we studied the possibility of GAs dual chromosomal
there are kinds of GAs, like the messy GA developed bgncryption using sequential alternation strategies such a
Goldberg et al. (1989), that use an adaptive encoding thBeriodic-GA APeriodic-GA LocalOpt-GA HomogPop-GA
adjusts the structure of the representation to the prasertiand SteadyGen-GA
of the problem. This approach, however, burdens the GA not The idea for thdPeriodic-GAwas to alternate between two
only with the search for promising solutions, but also thgiven codings for the same number of generatigrsipd).
search for a good representation. Generally and appendifibe parameter requires fine tuning for a given problem.
to some major studies, the use of Gray Coding (GC) has Aperiodic-GAdiffers from Periodic-GAby selecting, be-
been found to enhance the performance of genetic searchfime each alternance, an arbitrary periathdriod) from
some cased][8]. However, GC produces a different functidm:inP : maxP] interval. The parameter does not demand
mapping that may have fewer local optima and differergéxpensive tuning because an interval accommodation is more
relative hyperplane relationships than the Standard pinaeasier and less sensitive while moving from one test functio
Coding (SC) which sometimes has been found to complicate another.
the search for the optimum by the fact of producing a large LocalOpt-GAconsists in changing coding when the popu-
number of local optima[]9]. Also, GC has been shown tdation’s best individual is a local optima. The idea was to tr
change the number of local optima in the search spaedternating between representations because a local @ptim
because two successive real Gray-Coded numbers differ onigder a coding is not necessary a local optima under the
by one bit. Moreover, the use of GC is based on the belief thather, a fact that probably will permit to escape the obstacl
changes introduced by mutation do not have such a disruptieeeated by a local optima and to achieve more better results.
effect on the chromosome as when we use BC [7]. Besidé&his proposition does not require any parameter and need any
we should mention that SC also seems to be effective fadjustment but it increases significantly the executior tim
some classes of problems because its advantage resideghgyfact of processing a huge number of function evaluations
the fact that it frequently locates the optimal solutions@yl at each generation. In the framework lofcalOpt-GA we
with SC the best fitness tendency to approach the globsiiudied the position and the number of local optima, for
optimum is very high due to its power in discovering theSchaffer function F6 (cf. sectioh VA) and for the two
search space and owing to its convergence speed to the bamlings SC and GC, by an exhaustive exploration of the
solution [§]. As a result, different encodings of the samesearch space. A double local optima is a solution which is
problem are essentially different problems for a GA. Select local optima under two used codings. For function F6, the
ing a representation that correlates with a problem’s fitneseported number of local optima for SC w@52 and for GC
function can make that problem much easier for a GA twas 7512. Thus, there was less double local optima shared
solve @]. An interesting approach consists of incorpaigati between SC and GC and the reported number20d8. The
good concepts about encodings and developing abstractjwesitions(z, y) of local optima are given in Fiff 1.
models which describe the influence of representations onThe idea for theHomogPop-GAwas to change represen-
measurements of GA performance. After that, dynamic repréation when a population attains an homogeneous phase that
sentation strategies can be used efficiently in a theorgleglii reveals its inability to enhance more the results. Homoiggne
manner to achieve significant advancement over existing GAsiteria was measured by the standard deviation of fitnesses
for certain classes of optimisation problems. in the population in comparison with a given real numiagr (
Also by alternating, this will keep some degree of diversity
between individuals which will help in discovering the sgar
Many optimization problems can be encoded by a varspace. The parameter is very sensitive and requires to be
ety of different representations. In addition to binary anduned for each problem.
continuous string encodings, a large number of other, oftenIn SteadyGen-GAthe alternance is realized when the
problem-specific representations have been proposed owest fitness value is not modified for a given number of
the last few years.. As no theory of representations existgenerations fteadyGen), and this to keep enhanced the
the current design of proper representations is not baséthess capacity during the search. The parameter is not
on theory, but more a result of black aﬂ [2]. Although,sensitive while tuning for a given problem.
designing a new dynamic appropriate representation will The common main algorithm to these strategies consists
not remain the black of art of GAs research but becomia executing an SGA for one generation with a given coding.

IIl. SERIAL DUAL CODING STRATEGIES



After that, it consists in testing proposal particular citiod;

if true, then it belongs to alternating to the other codinglgorithm 1 Periodic-GA

and converting individuals representation to that coding. P¢"iod — periodValue
coding < starterCoding

Alternance cycle continues until a given maximum number pop « Generate Initial _Population()
of generationsmaxGen are reached. To simplify serial repeat

. . repeaI
st.rategles alg_orlthms,.common procedures 'were u;ed. Fora "rin1sc Apop, coding)
given populatiorpop, given representationsding, codingl until Is_Period(period)
andcoding2, and given numbersteadyGen andmaxzGen, coding < Alternate_Coding(codingl, coding?2)

Convert_Population(pop, coding)

these procedures can be resumed as follows : until Is_MaxGen(mazGen)

« Generatelnitial _Population() : generates randomly an
initial population.
o Run_1.SGA(pop, coding) : executes an SGA for one

generation withpop having coding as representation.  g--mr > g oA

« Alternate_Coding(codingl, coding?2) : switches prob- ™ coding — starterCoding
lem encoding betweetvdingl andcoding2 and returns  pop — Generate Initial _Population()

the coding corresponding to the last altered coding. re‘;‘ﬁmd  Random[minP : mazP)]

« Convert_Population(pop, coding) : convertspop indi- repeat
viduals representation teding. Rlu?-ll;SGg((pop, coj)mg)
. . until Is_Period(aperio
. Is_ngGen(ma_:z:Gen) : a boolean fun<_:t|on that returns coding — Alternate.Coding(coding, coding?2)
true if an algorithm was executed entirely foazGen Convert_Population(pop, coding)
generations and false otherwise. until Is_MaxGen(mazGen)

Serial Dual Coding proposals can be defined as follows :
1) Periodic-GA(cf. Algo 1) : The alternance is realized

if an SGA was executed fgreriod generations with a
Algorithm 3 LocalOpt-GA

given coding. A boolean procedulg Period(period) oding - starterCoding
is used and returns true if an SGA was operated for ., . Generate Initial .Population()

period generations and false otherwise. repeat
i ) . ; repeat
2) Aper|0(_:hc GA(cf. Algo 2) : Same a®eriodic GAW|th RUN_1.SGA(pop, coding)
an arbitrary numbemperiod chosen from[minP : until Is_Local_Optima(Best Element(pop))
mazxP] interval before each alternance. coding — Altemnate_Coding(codingl, coding2)
3) Local Optima GA (LocalOpt-GA)cf. Algo 3) : Convert_Population(pop, coding)

until Is_MaxGen(maxGen)

The alternance is realized if the population’s best
individual is a local optima. A boolean procedure
Is_Local_Optima(BestElement(pop)) is used and re-

turns true if pop best individual is a local op- i
Algorithm 4 HomogPop-GA

tima and false otherwise. A predifined subroutine = epsilon
Best Element(pop) is utilized to get thepop best coding — starterCoding

individual. pop < Generatelnitial _Population()
4) Homogeneous Population GA (HomogPop-G(a}. re‘:‘;teat
Algo 4) : The alternance is realized if the population’s RUN_1.SGA(pop, coding)
standard deviation is less or equaktoA boolean pro- until Is_.HomogeneousPopulation(pop, ¢)

: : coding — Alternate _Coding(coding1, coding2)
cedurels_HomogeneousPopulation(pop, ¢) is used Convert_Population(pop, coding)

and returns true ifpop standard deviation is less or untl Is.MaxGen(mazGen)

equal toe and false otherwise.
5) Steady Generation GA (SteadyGen-G&f. Algo
5) : The alternance is realized if the popula-

tion's best fitness value has not been changelyoithm 5 SweadyGen-GA

for steadyGen generations. A boolean procedure steadyGen — steadyGeneration
Is_Steady Generation(pop, steadyGen) is used and  coding — starterCoding

. . : Initial _Populati
returns true ifpop best fitness value has not been im- fg&a‘t— GenerateInitial -Population()
proved forsteadyGen generations and false otherwise.  repeat

Run_1_SGA(pop, coding)

V. SM-GATECHNIQUE until I1s_Steady Generation(pop, steadyGen)
coding < Alternate _Coding(coding1, coding2)
A. SM-GA Initiation Convert_Population(pop, coding)

. . .. . until Is_MaxGen G
Agents (units or sub-populations) are the entities, indite (mazGen)

meaning, that act or have the power of the authority to act



and evolution occurring on two scales simultaneously. Then
after each generation, a test for steady state is necessary.
If at least one of the two units encounters a corresponding
steady state, then agents collaboration property will help
to support and preserve landscaped the fitness productivity
during the inquiry process. Thus, in a global manner, a
merge of the two coexistent units into one unit having a

HoCAL OFTINA FOR SC HOCAL OFTIMA FoR GC POURLE LocAL oFTIA best coding representation will be an appropriate andislaita
Fig. 1 issue in intention to gather and assemble all developed data
POSITIONS OFLOCAL OPTIMA. At this level, best individuals spread within the populatio

and exchanges realized by crossover genetic operators and
minor mutational changes in chromosomes make it possible

. ) ) . for better structures to be generated. Next, an SGA will
on behalf of its designer. The basic and important featureg,, with the integrated population until, at any rate, it

of the ag_ents can _be listed as autonon_1y, _proactlvny aNfhviates to a steady state probably caused by the existence
collaboration, especially when we are designing agent&to B¢ 5ne or more local optima and which momently reveals
used for representation utility. An autonomous agent workg inapility to make individuals evolve better. In that eas

in a way that it can have self-activation mechanism angl - qists in re-spliting the entire agent into two subrege
behaV|our..CoIIaborat|on is a very important feature of ag simple idea induced by the fact of new-created agents
agent, which also_mak_es an agent differ from an expeli have respectively sufficient autonomy to auto-reshape
system. Collaboration gives the agent to communicate Witlh,y invert their unvarying pattern. By this way, possibly
other agents in the environment for either satisfying ital§o 4 of the two shrunk populations will have the opportunity
or retrieving information in the environment. It is how thatto withdraw and surpass the local optima, a concept that
we got our first idea to the new formalism call1-GA a i make it survive and retrieve its accurate direction to

new technique planned on agents function and implementgel | giscover the search space. Then, split-and-mergecycl
in a resurgent encoding work engine in purpose to bring SOM@ inyes until a given maximum number of generations
order into the unsettled situation caused by the influence %axGen are attained (cf. Algo 6). The schema representing
representations on the performance of GAs. SM-GA whole process is shown in Fig 2. This algorithm
parameter does not require fine tuning for each problem.
Just, startGen value must be large enough to be able to

SM-GA algorithm is based on the role of double-agentgvell estimate the steady states measurements for eachgcodin
(dual coding). It includes two main phases and their fumstio To optimize SM-GA algorithm, standard procedures were
can be resumed as follows : In first phase, this technigqugilized. For given populationpop, popl and pop2, given
consists in generating randomly an initial population (firsrepresentationsoding, codingl and coding2, and given
agent). Then, it belongs to splitting this basic populationumberssteadyGen andmazGen, these procedures can be
into two sub-populations (units) and getting each a distingummarized as follows :

representation. Primarily, two synchronous SGAs are exe- Split(pop, popl, pop2) : takespop and divides it into
cuted with these two units for a given number of generations 4,9 sub-populationgopl andpop?.

(startGen). At this point, steady state (state of no improve- | Compute_Steady State(coding, startGen) : estimates
ment of best fithess value for a given number of generations) steady state value foroding corresponding to the

value is computed automatically for each coding. Steady gyerage of all steady states encountered while executing
state measurement for each representation is taken equal to 5, sga withcoding for startGen generations.

the average of all steady states encountered during SGA, SelectBest Coding(popl, codingl, pop2, coding?)
operation in that representation for tBéartGen genera- computespopl and pop2 fitness averages and returns

tions. Then after the two units have achievethriGen the coding corresponding to the population that has the
generations, it consists in merging all individuals in one  |gast average fitness.

population having a best coding representation. Best godin
is selected relatively to the population that has the least
average fitness. Next, an SGA is processed with the united
population until meeting a steady state. After estimating V. SETUP OFEXPERIMENTS
regular values of steady states for each representaticonde
phase induces a re-splitting of the whole population into tw™*
sub-populations having each a different coding. Then, the Taking the most problematic and challenging test functions
two divided units are operated in parallel with two SGAs. Irunder consideration and given the nature of our study, we
this manner, SGA will benefit from the two representationsoncluded to a total of five optimization functions. Taffle |
at the same time by the fact that this parallel genotypesummarizes some of the unconstrained real-valued fursction
codification describes proactivity appearing on two levelgll these routines are minimization problems and prove

B. SM-GA Methodology of Work and Implementation

o Merge(popl, pop2, pop) : takespopl and pop2 and
blends them intgop.

Test Problems



Algorithm 6 SM-GA gg s
startGen <« startGeneration %%@m

pop «— Generatelnitial -Population()
Split(pop, popl, pop2)
repeat -
Run_1_.SGA(popl, codingl) S @ g & (i, (B
Run_1_.SGA(pop2, coding2) L s ’ g
until Is_Period(startGen) FHASEL
steadyGenl <« Compute_Steady Statg(codingl, startGen) A ®
steadyGen2 «— Compute_Steady State(coding2, startGen) .
bestCoding < SelectBestCoding(popl, codingl, pop2, coding2) i gﬂ L=l 1
Convert_Population(pop1, bestCoding)
Convert_Population(pop2, bestCoding)
Merge(popl, pop2, pop)
repeat
Run_1_.SGA(pop, bestCoding) 3
until Is_Steady Generation(pop, steadyGenO f(bestCoding)) @ﬂ%@ @ @ o
repeat ]
Split(pop, popl, pop2)
Convert_Population(popl, codingl)
Convert_Population(pop2, coding?2) et
repeat b i
Run_1_SGA(pop1, codingl) UNTIL SAXGEN
Run_1_.SGA(pop2, coding?2) ]
until Is_Steady Generation(pop1, steadyGenl) or /
Is_Steady.Generation(pop2, steadyGen2) -1 b
[@%e &

XA
bestCoding + SelectBestCoding(popl, codingl, pop2, coding?2) %ﬁ o
Convert_Population(popl, bestCoding)
Convert_Population(pop2, bestCoding) F ® UNTIL STEADY STATE @4

Merge(popl, pop2, pop) | - @
repeat L= (=7 1
Run_1_SGA(pop, bestCoding) Il, ?ﬂ ﬁ}%%' @
until Is_Steady Generation(pop, steadyGenO f(bestCoding)) !
until Is_.MaxGen(mazGen) \

PHASE 2

LY

e e
L{)Hi{tl E E’mﬂ%%: @ @ ongs

different degrees of complexity. Although, they were stldc

because of their ease of computation and widespread u S @A UNTIL STEADY STATE
which should facilitate evaluation of the results. B

The first test function Rosenbrock [F2] has been proposed Fig. 2
by De Jong. It is unimodal (i.e. containing only one optimum) SM-GASCHEMA.

and is considered to be difficult because it has a very

narrow ridge. The tip of the ridge is very sharp, and it runs

around a parabola. Algorithms that are not able to discover

good directions underperfom in this problem. Rosenbrock F2

has the global minimum afl, 1) [f]. The second function the search range increase on the basis of the product, which
Schaffer [F6] has been conceived by Schaffer. It is afesults in the decrease of the local minimums. The more we
example of a multimodal function (i.e. containing manyncrease the search range, the atter the function. Geyerall
local optima, but only one global optimum) and is knowrsPeaking, this is a very difficult but good function for tesfi

to be a hard problem for GAs due to the number of locdPAs performance mainly because the product creates sub-
minima and the large search interval. Schaffer F6 has tig@pulations strongly codependent to parallel GAs models.
global minimum at(0, 0) and there are many nuisance locafGriewangk F8 has the global minimum @, ..., 0) [g]. The
minima around it IIB] The third function Rastrigin [F?] is aflfth function Schwefel [Fg] also is a non-linear multimodal
'[yp|ca| model of a non-linear h|gh|y multimodal function_function. It is somewhat easier than RaStrigin F7 and is
It is a fa|r|y difficult pr0b|em for GAs due to the wide characterized by a second-best minimum which is far away
search space and the large number of local minima. fiiom the global optimum. In this function, V is the negative
has a complexity ofO(nIn(n)), where n is the number Of the global minimum, which is added to the function so
of function parameters. This function contains millions ofS to move the global minimum to zero, for convenience.
local optima in the interval of consideration. Rastrigin F71he exact value of V depends on system precision; for our
has the g|oba| minimum mﬁ, ___’0), i.e. in one corner of eXperimentS V = 418.9829101. Schwefel F9 has the glObal
the search spacd][3]. The fourth function Griewangk [Fginimum at(420.9687, ..., 420.9687) [8].

also is a non-linear multimodal function. It has a complexit Most algorithms have difficulties to converge close to the
O(nln(n)), where n is the number of function parametersminimum of such functions especially under high levels of
The terms of the summation produce a parabola, while tltBmensionality (i.e. in a black box form where the search
local optima are above parabola level. The dimensions aefgorithm should not necessarily assume independence of



TABLE | TABLE Il

OBJECTIVEFUNCTIONS. SET OF USED PARAMETERS.
Parameters Objective Functions
Name Expression Range Dimension F2 F6 F7 F8 F9
maxGen 3500 3500 3500 3500 3500
popSize 100 100 100 100 100
F2  fo(w;) = 100(z? — 22)2 + (1 — x1)? [—2.048 : 2.048] 2 vecSize 40 80 200 200 150
tSize 2 2 4 2 2
N sin(v/22+y2)—0.5 100 - pCross 0.6 0.6 1.0 0.75 0.6
F6  Jol@i) =05+ 000107 442))2 [~100: 100] 2 1-PointRate 1.0 1.0 1.0 1.0 1.0
20 pMut 1.0 1.0 1.0 1.0 1.0
F7  fr(x;) =200+ > (xf —10cos(2mx;))  [-5.12:5.12] 20 pMutPerBit 0.025 0.0125 | 0.0077 | 0.0035 0.006
i=1 period 50 40 25 30 10
[minP : mazP]| [25:75] | [26:70] | [20:50] | [20:70] | [10:20]
F8  fs(w) = 1+ 3 (255) — I] (cos(24)) [-600:600] 10 |< 50 0.1 5.0 25 1.0
8\¥i) = £, 3000 = Vi ’ steadyGen 35 25 5 25 5
startGen 250 500 100 250 250

FO  fo(zi) =10V + gl(—xi sin(v/[zi]))  [—500 : 500] 10

accelerated a bit our plan of action. The best parameter
settings between those tested are given in Thble 1.

dimensions), because the probability of making progress, Testing Description and Numerical Observations
decreases rapidly as the minimum is approached. 1) Real Numbers and Fithess Computatiomhe real
numbers are represented by binary bit strings of lengtty,

. wheren is the problem dimension an¥¥ is the number of

. In already defined proposals, an SGA was processed Its needed to represent each function paramatés.chosen

I enpapsulateg th-e standard parameter values for any. f'such as to have sufficient precision on the majority of real
application which is based on binary strings represematio,  mners included in the specific search space. In that case,

B. Parameter Settings

More specifically, the main common parameters are : the first N bits represent the first parameter, the seconhd

« Pseudorandom generator : Uniform Generator. bits represent the second parameter, and so forth. Given a

« Selection mechanism : Tournament Selection. function parametex: represented by binary bits, if z has

« Crossover mechanism : 1-Point Crossover. an SC representation, then real value is computed by :

o Mutation mechanism : Bit-Flip Mutation. z=a+ 2!;\751 iliglxiQi wherea and b are respectively

« Replacement models : a) Generational Replacement. fple minimum and maximum bounds of the search interval.
Elitism Replacement. If we write the Standard-binary-Coded value of a real

« Algorithm ending criteria : the executions stop afteryg Sp—1...5150 and the Gray-Coded value ag_1...g1 4o,
maximum number of generations are reached. then we have the re|a’[ionship$é = Si41 D 8; and 8 =

The set of remaining applied parameters are shown in Tablg,; & ¢g; which allow conversion from one representation
I] with : maxGen for maximum number of generationsto the other (takings, = 0). In all cases and after real
before STOP,popSize for population size,vecSize for numbers computation, the fithess value was taken equal to the
genotype sizetSize for tournament selection sizeCross  corresponding function value which was calculated acogydi

for crossover rate]-Point Rate for 1-point crossover rate, to the function expression given in Tatﬂe l.

pMut for mutation ratepMut Per Bit for bit-flip mutation 2) Experimental ResultsTesting new algorithms on ob-
rate (1/vecSize). Besides, the values of parameters necegective functions, experimental results were reportedhia t
sary to new proposals are almost near for each function withianits to decide about the optimal proposal among all ones.
little difference evoked by the problem complexity. Valuwds TabIe|E| presents statistical results obtained o2@® runs
these specific parameters were determined recurrentlyrwitrand at the last generation (ge¥ib 3500). All problems
fixed intervals lengths. IrPeriodic-GA and Aperiodic-GA are being minimized, this table shows generation number
period and aperiod ([minP : maxP]) values changed to optimum (GNTO) and succes rate (SR and SR2) results
within [25 : 100] interval with step of5. In HomogPop- after 700000 (200 x 3500) executions for each proposal and
GA, ¢ value varied from0.1 to 5.0 with step of 0.1. In  each function, with the highest score in bold. GNTO value
SteadyGen-GAsteadyGen value changed within5[ : 50] corresponds to the maximum number of generations needed
interval with step of5. In SM-GA startGen value changed to reach the optimum after entire process of all runs. SR
within [100 : 500] interval with step of50. Sufficient tests value represents a percentage of the number of times the
were performed to be able for attributing adequate values tiptimal solution is found after all executions. SR2 value
each specific parameter. As has been discussed and aftaepresents a percentage of the number of times the optimal
large number of tests, we found that modifications of thesslution is found after all executions correspondinglyhe t
parameters values within coherent fixed intervals lengths dninimum GNTO found for each function. For example, the
not affect so much the final results of each proposal whichinimum GNTO for function F9 wa8025 recorded folISM-



TABLE IV
T-TESTRESULTS: COMPARISON BETWEENSM-GAAND OTHER
ALGORITHMS.

SM-GA F2 F6 F7 F8 F9
Compared to  [SR2MBF|[SRZMBF|| SRZMBF|| SRAMBF|| SRIMBF
SGAC 21 [ 10 |[4.1]5.1] inf| 25 || 3.6 | 11 || inf| 47
SM-GAsc 21 [8.7([1.9]2.6 ][ 98 [ 24 [|[1.8]05 |[inf| 42 o
SGAcc 1511111291451 16511.1114.819313.6125 w Function F2 Graph _’_.-——""_ Funcion F2 Graph —
SM-GAoc T5|11||11|31]21]16]28|31]25|15 ® w i
Periodic-GAs_[5851][1.3]2.1[[21[03][39[39][7.3]32] " f g,
Periodic-GAqs | 4.5 4.3 2.3|2.7] 71|68 44|44][41]|39] =. f’
Aperiodic-GAs [4.8 | 4.2 || 1.3 | 2.1][3.0|3.2|[4.85.1[[49]2.2| . /
Aperiodic-GAyg | 4.2 | 1.7 || 11| 1.7][3.9 2.7 |[48|3.3|[48[1.9| = / i ———
LocaIOpt-G%G 7.9(14.6|1.7]|2.7]|/5.3|4.8(3.6[3.3|[3.9]|1.5 ey m 20 ; JSonce
LocalOpt-GAgs | 7.1|5.1]1.92.7||3.3|2.3][3.9|5.8|[3.6 |26 of g et aAcs ‘ sueree
HOmOgPOp-G&G 21 10 3.3(13.4 an 25 5.3|6.1 an 47 0u 500 1000 1500 2000 2500 3000 3500 Do 500 1000 1500 2000 2500 3000 3500
HOmOgPOp‘G&S 1 5 1 . 1 39 47 33 1 . 1 48 55 36 25 (a1) Generation Number (a2) Generation Number
SteadyGen-GA | 5.5 | 4.9 2.3|3.1]3.3| 25| 32| 41| 58|24 w o _
SteadyGen-GAg | 5.3 |4.7 || 1.3 1.5 2.1 | 1.4||44]6.1]6.7|2.9 Y Y i

540 - ng J i o e €T
GA proposal; forPeriodic-GA; proposal, the GNTO was : » {/ SRR AR
3480 and the corresponding SR wae0, but if we wanted .| |y sostedeGa st - o / o
to note the SR measure &eriodic-GA; found so far at f} semyogoncs N Pt

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

generation numberef025 we would detect a value 69 o) coneiontumbe 0 cenemonumber
denoted SR2. In Tablf ]Il sc signifies an execution with e
R N Function F7 Graph e - Function F7 Graph
SC, ¢¢ for an execution with GCge means that SC was . _,.f/ N
o

the starter coding angs when GC was the starter coding. -
3) Student’s t-test:Generally, the Student’s t-test serves ”

for comparing the means of two experiences and asses$es

whether they are statistically different from each othes. A" _ L/ oo cs

LocalOpt-GA GS 20
Periodic-GA SG

well in our experiments, the t-test was used to compare, o seanGarcaso
across all runs, success rate (SRZ) and mean best fitnes°s w mo  mw mo  mw wo  ww 0 S0 1000 1500 2000 2500 3000 3500
(MBF) results between different proposals so it will help o o s
to judge the difference between their averages relative to,| """ _—— I e

the spread or variability of their scores. Regarding Table | —_— ] =* ~
which distinctly shows the performances ®M-GAtowards *

other proposals, t-test results were studied in comparis@n -
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displayed in Tablé Tjv. S i
| SteadyGen-GA SG e SM-GA x-
Vl . GENERAL DISCUSSIONS ANDCONCLUSION 0 500 o 1000 (::::va“mziﬂ"ﬂmev 2500 3000 3500 0 500 @ 1000 ;z::’auoni‘?’:bev 2500 3000 3500
Genetic algprithms, as has been digcqssgd, provide ave o
good conceptional framework for optimization inspired by L w
nature, but theoretical questions and algorithmic comsides 17 i,
ations deliberated in this work suggest that an SGA with {FE S
static single coding sometimes fails to converge to the* ,;f,
desired solution in a defined number of generations, a state ) . 2 , T —
called GA deceptionin optimization task, by the fact that J rmance Mo

[
3000 3500 0 500 1000 1500 2000 2500 3000 3500

selecting a representation that conflicts and opposes to a - @ @
problem’s fitness function can make that problem much hard

and difficult for a GA to solve. In this paper, we tried to
make SC and GC interacts each with other to transform
the binary parameter representation for the problem todavoi
compromising the difficulty of the problem because both SC
and GC produce all possible representations and both have
quite a lot of advantages. Yet, we started by formulating
Serial Dual Coding strategies in a dynamic manner to study
the fundamental interaction while alternating between two
representations. Likewise, we presented a new and prhctica

Fig. 3
SUCCESSRATE EVOLUTION OVER GENERATIONS: COMPARISON
BETWEEN DIFFERENTPROPOSALS



TABLE Ill
EXPERIMENTAL RESULTS.

Proposal F2 F6 F7 F8 F9
GNTO [SR %[SR2%|| GNTO [SR % [SR2 %|| GNTO [SR %[SR2%|| GNTO [SR %[SR2%|| GNTO [SR %[SR2%

SGAsc 3500+ | 32 31 3500+ | 37 37 3500+ 1 0 3500+ 6 6 3500+ 0 0
SM-GAsc 3500+ | 30 30 3500+ | 48 48 3500+ 2 2 3500+ | 11 11 3500+ 0 0
SGAzc 3500+ | 99 99 3500+ | 43 43 2957 100 | 99 3500+ 3 3 2395 100 | 94
SM-GAzc 3256 100 | 99 3500+ | 52 52 3362 100 | 98 3500+ 8 8 2413 100 | 97
SM-GA 3139 | 100 | 100 || 3500+ | 57 57 2940 | 100 | 100 || 3500+ | 17 17 2025 | 100 | 100
Periodic-GAsa 3500+ | 87 86 3500+ | 51 51 3191 | 100 | 98 3500+ 5 5 3480 100 | 79
Periodic-GAg s 3500+ | 91 91 3500+ | 46 46 3500+ | 99 80 3500+ 4 4 2279 | 100 | 92
Aperiodic-GAs & 3500+ | 90 90 3500+ | 51 51 3500+ | 99 93 3500+ 3 3 3009 100 | 89
Aperiodic-GAgs | 3500+ | 93 92 3500+ | 52 52 3230 100 | 93 3500+ 3 3 2818 100 | 90
LocalOpt-GAs 3500+ | 78 76 3500+ | 49 49 3500+ | 96 88 3500+ 6 6 2480 100 | 93
LocalOpt-GAzs 3500+ | 81 80 3500+ | 48 48 3491 100 | 95 3500+ 5 5 2480 100 | 94
HomogPop-GA¢ | 3500+ | 32 31 3500+ | 41 41 3500+ 1 0 3500+ 2 2 3500+ 0 0
HomogPop-GAzs| 3500+ | 99 99 3500+ | 38 38 3001 100 | 95 3500+ 3 3 2395 100 | 94
SteadyGen-GAsc| 3500+ | 88 87 3500+ | 46 46 3381 100 | 95 3500+ 7 7 2453 100 | 86
SteadyGen-GAs | 3500+ | 89 88 3500+ | 51 51 3254 100 | 98 3500+ 4 4 2894 100 | 82

implementation of GAs for &&EM-GAas a new symmetric show, for each exploited function, a comparison between
Dual Coding strategy. In this purpose, we tried to improv&M-GAand SGA referring to SR activity across generations.
bounds on GAs convergence by profiting from the manner oh these figuresSM-GAgraphical records illustrate how SR
operating simultaneously two codings in two units of workwvas progressing quickly after a small number of generations
to consume the majority of possible representations that cavhich made SGA performs better and improves its process-
obtained by the two codifications. In this paper, SC anthg during the investigation for the optimum. On the other
GC were applied to the new proposals. Although, any othaide,SM-GAshows its advancement ov@M-GA; andSM-
coding types and any number of codings could be applied B8A: ¢ which proves distinctly the efficacity of blending and
the sequential and parallel strategies. integrating two various representations simultaneously.
Experiments were performed to search for the optimal Experimental results were confirmed by using the t-test
proposal for a given set of minimization problems. Findingesults in TabIeE}J. Entering a t-table @98 degrees of
an appropriate best proposition is not an easy task, sirate edreedom {99 for n; + 199 for n,) for a level of significance
proposal has particular parameters and specific criteria 86 95% (p = 0.05) we found a tabulated t-value df.96,
that the characteristics and typical combination of proper going up to a higher level of significance % (p = 0.01)
represented by any suggestion do not allow for generalizete detected a tabulated t-value H8. And to a greater
performance statements. In order to facilitate an empiricaxtent, we increased the level of significance to the most
comparison of the performance of each proposal, we hawigher level 0f99.9% (p = 0.001) we got a tabulated t-value
measured the success rate progress over generations whi€l3.29. Calculated t-test values in Ta IV exceeded these
transfers a clear view and permits a legal opinion anih most cases, so the difference between compared proposals
decision about the efficiency and the evolution of eachverages is highly significant. Clearl$M-GAs produced
proposition. significantly finer results than those of other algorithms by
For Serial Dual Coding proposals, Taplg 11l introduces nothe fact that coexistence of dual chromosomal encryption
bad results according to SR evaluation. Likewise, Figuregfimulated production, multiplication and interchangaeiv
positioned at the left side of Figu[ 3 prove that each ofeéhestructures concurrently between synchronized population
proposals enhanced a little the performance of the SGA faccording to the split-and-merge life cycle and ordered
a given problem. At least, we can say that they producddnctionality.
results which were best from the worst of those of executing In futur works, we will use multi-codingM-GAin the
an SGA with unchangeable representation. Thus, it meafisld of genetic programming, where it exists more enhanced
that their performances maybe were affected by attributingAs (Evoltution Strategies, state-of-the-art GAs, et a
inexact values to their specific parameters, or probably thelifferent kinds of representations (tree, linear, etn)pider
were affected by the choice of the initial population beeaugo use the well-adapted representation for a specific pnoble
this criteria’s effect is sometimes dramatic. Finally, these measurements leave us with valuable percep-
As well, in Table[Tl}, SM-GAproduced relative high results tions concerning the utility of compounding various coding
than the other algorithms according to SR measurement atygpes for individual representation in collaboration ineon
this for all examined functions. The experimental data ie th SGA. In purpose to ameliorate our new algorithms, we
table also suggest that, while it is possible to each prdposa need to have a deeper apprehension of what GAs are really
control accurately its parameters, very good performaaoe cprocessing as they operate and we are due to understand ad-
be obtained with a varying range of SGA control parameterantageously and refine our knowing about the specifications
settings. Figures positioned at the right side of Figﬂre 8f each coding and its reactions with the genetic operators



which can help to enhance GAs optimal performances and
provide us with more steps towards GAs evolution.
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