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Abstract. This paper addresses the resolution, by Genetic Programming
(GP) methods, of ambiguous inverse problems, where for a single input,
many outputs can be expected. We propose two approaches to tackle this
kind of many-to-one inversion problems, each of them based on the esti-
mation, by a team of predictors, of a probability density of the expected
outputs. In the first one, Stochastic Realisation GP, the predictors outputs
are considered as the realisations of an unknown random variable which
distribution should approach the expected one. The second one, Mixture
Density GP, directly models the expected distribution by the mean of a
Gaussian mixture model, for which genetic programming has to find the
parameters. Encouraging results are obtained on four test problems of dif-
ferent difficulty, exhibiting the interests of such methods.

1 Introduction

One of the main application of Genetic Programming (GP) is for the approx-
imation of unknown functions, a task known as Symbolic Regression [7]. To
construct a such approximator, a GP system is trained on a given dataset that
consists of pairs of inputs and desired outputs, representative of an unknown
function. This is a direct problem.

While a direct problem describes a Cause-Effect relationship, an Inverse Prob-
lem (IP) consists in retrieving the causes responsible of some observed effects.
For example, inferring gene regulatory networks from gene activity data or de-
riving some water constituants from the ocean colour are actually IP. GP has
already been introduced as a method for solving IP, such as in [4I3J11l5]. How-
ever, IP are often far more difficult to solve than direct problems, since different
causes may produce the same effect, 7.e. the solution of an IP may be not unique.
In that case, the IP is said to be redundant or ambiguous or, in a more formal
way, ill—pose. In the context of learning from datasets, a redundant IP corre-
sponds to a Many-To-One mapping inversion, i.e. to a given input y;, a set of
outputs X; is expected. The purpose of this study is to enhance the inversion

! In fact, there are three sufficient conditions for ill-posedness which are the existence,
the continuity and the redundancy of the solutions.
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of Many-To-One mappings with GP. Here, the set of expected outputs A; is
seen as a set of realisations of a random variable with an unknown probability
density which has to be estimated. We propose two different ways to estimate
the probability density of these answers and both are based on the possibility of
producing multiple outputs with GP.

The section 2 highlights the limits of the classical Symbolic Regression ap-
proach for ambiguous IP and reviews the possibilities of producing multiple
outputs with GP. Then, two original methods to tackle the redundancy problem
are proposed in section 3 and tested on four benchmark problems in section 4.
Finally, the application of this work and the possible further developments are
discussed in the conclusion.

2 Inverse Problem and GP

2.1 Learning with Redundancy

With few hypothesis on the instructions set used to build programs, GP is an
universal approximator [13] that can learn an arbitrary target functiont : X — Y
from a dataset Dy = {(x1,91)...(zn,yn)}. Here, we consider the pairs (x;,y;)
as the realisations of two random variables x and y and we note f the function
implemented by a GP program. When training a GP system to approximate
an unknown mapping defined by Dy, an error function, such as for example
the classical Root-Mean-Square Error, is minimized. It is known that in the
theoretical case, this process leads to find the optimal answer f*(x) which is the
conditional mean E(y|x), see [1] for details.

When solving an IP, the dataset D; used can always be seen as the set of the
N reversed pairs (y;, ;). If the direct function ¢ is not injective, the learning
of D; corresponds to a Many-To-One mapping inversion. Hence, for each y; a
set of of outputs X; is expected, and the single answer f(y;) given by GP can
be very poorly adapted. Indeed, during the training phase, f tends to converge
towards the theoretical optimal answer f*(x) = E(x|y), which is, in the better
case, only one of the expected answer.

To illustrate this, we have created a dataset Dy from the target function d :
R — R such that y = sin(z?) + ¢, with € a random variable with normal distribu-
tion NV(0,0.2). An (nearly good) approximation of the corresponding theoretical
f*(x) is given by a standard GP system from Dy with N = 500 learning exam-
ples in the range [—2, 2], see Figure[ll In a same way, in Figure[2] the output of GP
corresponding to the inversion of d is plotte. We can see that GP has produced
a very unstable function that highly overfits the dataset D,.

2.2 Multiple Outputs

In the GP field, several studies are related to IP solving (see for example [4U3/1115])
but very few of them have investigated the question of the redundancy. However a

2 The evolutionary parameters settings of the direct case were kept here.
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noticeable exception can be found in [9] and will be discussed further. To overcome
the non-uniqueness of the solution, instead of predicting the conditional mean, one
way is to ensure that the output of an inverse model is at least one of the expected
solutions [6]. A second idea is to produce a reduced list of illustrative examples [8]
and a third possibility consists in approximating the distribution of the plausible
solutions, that is the conditional probability density p(x|y) as explained in [1].
In this study, we are interested in the latter two possibilities, namely, those that
require for GP to produce multiple outputs.

A lot of previous work in GP deals with multiple outputs. Probably the
most straightforward way of doing this is by implementing sophisticated sys-
tems evolving programs able to manipulate a complex data structure such as a
vector or a matrix [10]. Thus, one single GP program is responsible of producing
multiple outputs. In [9], a technique based on boosting, that usually creates a
posteriori mixtures of potential solutions, was extended to handle the ambiguity
problem. Similarly, with the Parisian approach, used also to tackle an IP in [4],
a subset of the population is selected to build the final answer. In these two
previous examples, some GP programs are optionally associated to form a set of
multiple outputs. Conversely, it is also possible to definitely link together several
programs as being the co-operative members of a team and then, to make the
whole team evolve [2I5]. In what follows, we will see how the multiple outputs
of a team of programs can be used to estimate a probability density.

3 Density Estimation with GP

3.1 From Team to Probability Distribution

Practically, to solve an IP, a dataset D consisting of pairs (y;, x;) is used and for
a given input y;, the goal is to approximate the distribution of the associated
outputs X;. In the statistical inversion theory (see [12]), the pairs (y;, ;) are



considered as the joint realisations of two random variables y and x and the
solution of an IP has the form of a conditional probability density p(x|y). We
propose two different ways to approximate the subsequent distribution.

In the first approach, called Stochastic Realisation GP (SR-GP), for each input
yi, we consider the n outputs of a GP team T as the n realisations of an unknown
random variable. We note f;, the function implemented by the 4" member of
T. With SR-GP, the evolutionary system try to find teams which outputs f;(y;)
report distributions similar to the distributions p(x|y = y;) for all the y; of the
dataset.

The second approach is called Mixture Density GP (MD-GP). Here, a para-
metric model, namely the finite Gaussian Mixture Model (GMM), is used as
explained in [1]. An unknown density p(x|y) can always be represented as a
finite sum of G Gaussian densities such as :

G
pxly) =) wy(y) ég(xly)
g=1

with ¢4 (x|y) a normal density N (uy(y), 04(y)). In MD-GP, each of the n = 3x G
members of a team 7' approximates one of the functions ¢4, 1, and o, that
actually tune the GMM. It is worth noticing that, except for the means pg, the
parameters of a GMM are constrained for a given y;, since the deviations og(y;)
are positive real numbers, and since the weights wg(y;) are also positive numbers
but with ) wgy(y;) = 1. We note W and S, two functions that transform the
team outputs into respectively valid wg(y;) and o4(y;) parameters for GMME.
So, for a given input y;, the answer of a team T is :

wi(y) =W( filyi)) - wa(y) =W( fn-2(yi))
Tyi) =4 i) = foly)) o pelyi) = fa-1(ys)
o1(yi)) = S( fs(wi)) ... ocyi) = S( fu (i)

Hence T'(y;) is directly used to tune the GMM from which a set of r realisations
can be produced (with usually » >> n). With MD-GP, the evolutionary system
tries to find teams tuning GMM, so that the GMM realisations according to y;
report distributions similar to the distributions p(x|y = y;).

Intuitively, we understand that in SR-GP, a huge number of parameters have
to be retrieved, since the size of the teams have to be big enough to produce a
sufficient number of realisations (probably more than 10%) so that the subsequent
distributions can be significantly tested. However, one can presume that with this
representation, the search space is “smooth” since the modification of one team
member only affects one realisation and so slightly modify the distribution. At
the contrary, with MD-GP, fewer parameters have to be retrieved to properly tune
the GMM (less than 30 in this paper) and so to produce significant results but
it is clear that the modification of only one team member can induce important
consequences on the fitness of the whole team.

3 In this paper, S(og4(y:)) is simply the absolute value |o4(y:)| and similarly

W (wg (yi)) = |wg (ya)l/22 [wg (yi)-



3.2 Construction of Target Distributions

The conditional probability density p(x|y) is unknown and only pairs (y;, x;) are
available in a dataset D. However, illustrative training distributions are required
to properly educate the GP system. So for each input y;, we have to build the
probability distribution p(x|y = y;). Our idea is that even if a given value y; is
more likely present at most once in the dataset, many comparable values can be
found. Thus here, for each value y;, a set of k-nearest neighbours {y; ...y;} is
computed. Then, for each value y; of the dataset, the set {x;...x;} is turn into
binned data, by grouping the events into C' specific ranges and so binned distri-
butions are computed. The underlying assumption being that the distribution
of the {x;...z;} is similar to p(x|y = y;).

The dataset D, presented section 2.1]is extended to hold N = 10° pairs and
in Figure 3, we have plotted three sets of the k = 1000 pairs (y;,z;) ... (y;j, ;)
corresponding to y; = —0.93, —0.19 and 0.49. In Figure [3, three binned distri-
butions are drawn for C' = 50. Each of them represents an approximation of the
theoretical conditional probability p(x|y = y;) for y;=-0.93, -0.19 and 0.49.
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Fig. 3. Examples of pairs (y;,z;) corre- Fig.4. Examples of binned distributions
sponding to the k-nearest neighbours of used to approximate p(x|y = y:), with
1;=-0.93, -0.19 and 0.49 1;=-0.93, -0.19 and 0.49

3.3 Fitness Function

In this paper, only the fitness of the teams are computed and no effort have been
made to estimate the fitness of the team members. Either with SR-GP or MD-GP, a
team will be considered as a good team, if the set of the realisations produced for
each y; tested report a binned distribution comparable to the binned distribution
obtained from a dataset D, as explained above. To measure the distance between
distributions, ¢-divergences can be used, as for example the chi-square distance.
Let be U(y;) the expected binned distribution computed from D for a given y;
and V(y;), the distribution produced by a team of programs for the same y;.



We note U.(y;) and V.(y;), the number of events in the bin ¢ of the two distri-
butions. The total number of events #U (y;) is actually independent of y; in this
study and corresponds to the value k defined in section 3.2 Here, the partial
fitness of a team T for one sample y; is

Erlys) = ZC: — Ve(y)?
r(w) e(yi +V(yz)

c:l

and the total fitness is simply the average of the Er(y;) for all the y; of a dataset
D.

4 Experiments

In this section, we aim to verify the ability of the SR-GP and MD-GP systems to ap-
proximate conditional probabilities and so to solve an IP. The linear stack-based
GP implementation described in [5] is used to run the experiments but any other
GP implementation suitable for Symbolic Regression can be used instead. The
number of members in the teams is static and fixed a priori, see [2] for details.
Different settings for the fitness function and the genetic operators but also var-
ious options for the representation and the conversion of teams are investigated.
For each experiment, we perform 30 independent runs and a statistical unpaired,
two-tailed t-test with 95% confidence determines if results are significantly dif-
ferent. Populations of teams are randomly created and the maximum creation
size of the teams members is 50. The instruction set contains: the four arithmetic
instructions ADD, SUB, MUL, DIV, the input variable Y and one stack-based GP
specific instruction DUP which duplicates the top of the operand stack. We add
also into the instructions set, two Ephemeral Random Constants noted ERC1
and ERC2, as described in [7], respectively in the ranges [-100, 100] and [—1, 1].
The evolution is achieved with elitism, 4-tournament selection and steady-state
replacement. Recombination is performed by the standard crossover operator
with a rate of 0.7 and mutation with a rate of 1.0, meaning that each program
involved in reproduction will undergo, on average, either one insertion or one
deletion or one substitution.

Four problems P,, P, P., Py are tested. The corresponding datasets consist
of N = 10° samples from which 100 binned distributions are computed as ex-
plained in section B.2] and 80 are dedicated to the training phase. In fact, the
two first test problems P, and P, do not correspond to the inversion of a direct
function, but for P,, the GP system has to approximate a bimodal distribution
IN (i =y +yi+9, 0.1) + 2N (5(y;® — 3y;?) xe ¥ — 3, 0.1) and for P,
for each input y; we have N/ (yi,2.3yi2 —1.7y; — 5.4). With an increasing dif-
ficulty, P. and Py are true IP that correspond respectively to the inversion of
the function ¢(x) = x + 0.3sin(27z) + € with €, a random variable with uniform
distribution in the range [—0.1,0.1] and to the inversion the function d described

4 This problem is strongly inspired by the work of Paris et al. [9]



Fig. 5. Density estimation : four test problems

Table 1. Average fitness of the best programs found on the four test problems

||GP Type|Pop. Size|Team Size|MaX Size|No Gen.|k Real.” Train Fit. | Test Fit. ||

Problem P,

MD-GP 9.102 2x3 2.102 102 10 [10.435=0.16 | 0.495—0.24
SR-GP 2 0.22,-0.09/0.25,—-0.09
Problem P,

MD-GP 9.10% 4x3 102 102 10° []0.216—-0.11]0.23,—0.14
SR-GP 10% 102 1.240—0.21 | 1.435—0.34
Problem P,

MD-GP 9.102 5x 3 10° 2.10° 10 [/0.555—0.11]0.58,—0.14
SR-GP 10% 108 1.025—0.18 | 1.030—=0.24
Problem Py
MD-GP 9.10° 6 x 3 10° 10° 10° [/0.285-0.06|0.35,—0.07
SR-GP 10* 103 10% 0.425=0.15 | 0.515=0.14
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Fig.6. Examples of density p(x|y =vy;) Fig.7. Example of Gaussian Mixture

estimation with MD-GP for the problem P; Model settings as a function of y with

with, from top to bottom, y; = 0.49, —0.93 G = 5 for the problem Py

and —0.19

section 2,11 The training samples of the four test problems, are plotted (gray

points) in Figure [§ respectively part (a), (b), (c¢) and (d). The outputs (reali-

sations) of representative of the best density estimations performed by our GP

systems are also superimposed (in black).



We note from Table [L that SR-GP is the best approach for tackling P, even
if we allow more generations to SR-GP. Actually, solving P, consists more in
retrieving two different functions than in a density estimation, and we think
this is exactly the reason why SR-GP is more adapted. Conversely, MD-GP per-
forms better on the three others problems. To figure out the quality of density
estimation given by MD-GP, we have plotted for P;, three examples of expected
and retrieved distributions corresponding to y; = 0.49, —0.93 and —0.19, (see
fig. [6), and we think that a good agreement has been obtained. The retrieved
distributions are produced by three Gaussian mixtures with G = 5. The outputs
of the corresponding GP team, consisting of 15 programs, is plotted in Figure [T,
We can see (middle part), the expected 'Y’ shape realized by the 5 functions
ftg controlling the means of the Gaussian. Actually, the unwanted null-function
has no influence in the model outputs since the corresponding weight @, in the
mixture is also null in the top part of Figure [ We note that there are two
different ways of almost “switching-off” a Gaussian since fixing a deviation oy
to zero is another possible option for the system. This possibility should also be
investigated for the approximation of non-continuous function with teams.

5 Conclusion and Perspectives

In many scientific domains, solving IP is now a major concern and the question
of their redundancy requires particular answers. A wide range of methods can
be used. Often based on a Bayesian approach, they actually report very good
performances compared the two GP variants presented here, so that no inter-
comparisons were made. However, this paper is a promising proof of concept. In-
deed, we note that Symbolic Regression has been introduced probably more as a
benchmark problem than as a true potential application for GP, but after more
than a decade of improvements, the best programs found by GP are now compet-
itive with others methods, which is very encouraging for SR-GP and MD-GP.

One of the difficulty in comparing with published work is that, for the two al-
ternatives presented here, the fitness function used is a ¢-divergence, very useful
for computing distance between two distributions but unusual in GP. As far as
we know, the only previous GP work addressing explicitly the redundancy prob-
lem [9], is much more appropriated for functions decomposition, as the problem
P,, than for more complex IP. Our SR-GP system can also easily solve P,, while
MD-GP is much more suitable to tackle IP where complex densities have to be
estimated. So a broad variety of redundant IP can be addressed with SR-GP and
MD-GP and we think that, for a given IP, preliminary statistical analysis of the
dataset, will help to decide which method is adapted but also to a priori tune
the systems parameters. Moreover, a lot of improvements can be made. We think
that further work should address the possibility of : assigning a partial fitness
to the team members, producing a variable number of realisations according to
the inputs and designing genetic operators appropriate to teams, in particular
to teams which members have different semantics in the system as the weights,
the means and the deviations of the Gaussian Mixture Model.
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