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Abstract – In this paper we extend the new family of (quantitative) Belief Conditioning Rules (BCR) recently
developed in the Dezert-Smarandache Theory (DSmT) to their qualitative counterpart for belief revision. Since
the revision of quantitative as well as qualitative belief assignment given the occurrence of a new event (the
conditioning constraint) can be done in many possible ways, we present here only what we consider as the most
appealing Qualitative Belief Conditioning Rules (QBCR) which allow to revise the belief directly with words and
linguistic labels and thus avoids the introduction of ad-hoc translations of quantitative beliefs into quantitative
ones for solving the problem.

Keywords: qualitative belief, belief conditioning rules (BCRs), computing with words, Dezert-Smarandache
Theory (DSmT), reasoning under uncertainty.

1 Introduction

In this paper, we propose a simple arithmetic of linguistic labels which allows a direct extension of quantitative
Belief Conditioning Rules (BCR) proposed in the DSmT [3, 4] framework to their qualitative counterpart.
Qualitative beliefs assignments are well adapted for manipulated information expressed in natural language and
usually reported by human expert or AI-based expert systems. A new method for computing directly with words
(CW) for combining and conditioning qualitative information is presented. CW, more precisely computing with
linguistic labels, is usually more vague, less precise than computing with numbers, but it is expected to offer a
better robustness and flexibility for combining uncertain and conflicting human reports than computing with
numbers because in most of cases human experts are less efficient to provide (and to justify) precise quantitative
beliefs than qualitative beliefs.

Before extending the quantitative DSmT-based conditioning rules to their qualitative counterparts, it will
be necessary to define few but new important operators on linguistic labels and what is a qualitative belief
assignment. Then we will show though simple examples how the combination of qualitative beliefs can be
obtained in the DSmT framework.

2 Qualitative operators and belief assignments

Since one wants to compute directly with words (CW) instead of numbers, we define without loss of generality
a finite set of linguistic labels L̃ = {L1, L2, . . . , Ln} where n ≥ 2 is an integer. L̃ is endowed with a total
order relationship ≺, so that L1 ≺ L2 ≺ . . . ≺ Ln. To work on a close linguistic set under linguistic addition
and multiplication operators, one extends L̃ with two extreme values L0 and Ln+1 where L0 corresponds to
the minimal qualitative value and Ln+1 corresponds to the maximal qualitative value, in such a way that
L0 ≺ L1 ≺ L2 ≺ . . . ≺ Ln ≺ Ln+1 where ≺ means inferior to, or less, or smaller (in quality) than, etc.
Therefore, one will work on the extended ordered set L of qualitative values L = {L0, L1, L2, . . . , Ln, Ln+1}.
The qualitative addition and multiplication of linguistic labels, which are commutative, associative, and unitary
operators, are defined as follows - see Chapter 10 in [4] for details and examples :

• Addition : if i + j < n + 1, Li + Lj = Li+j otherwise Li + Lj = Ln+1.
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• Multiplication1 : Li × Lj = Lmin{i,j}

Let’s consider a finite and discrete frame of discernment Θ = {θ1, . . . , θn} for the given problem under
consideration where the true solution must lie in; its model M(Θ) defined by the set of integrity constraints
on elements of Θ (i.e. free-DSm model, hybrid model or Shafer’s model) and its corresponding hyper-power set
denoted DΘ; that is, the Dedekind’s lattice on Θ [3] which is nothing but the space of propositions generated
with ∩ and ∪ operators and elements of Θ taking into account the integrity constraints (if any) of the model.
A qualitative basic belief assignment (qbba) also called qualitative belief mass is a mapping function qm(.) :
DΘ 7→ L. In the sequel, all qualitative masses not explicitly specified in the examples, are by default (and for
notation convenience) assumed to take the minimal linguistic value L0.

3 Quasi-normalization of qualitative masses

There is no way to define a normalized qm(.), but a qualitative quasi-normalization [4] is nevertheless possible
if needed as follows:

a) If the previous defined labels L0, L1, L2, . . ., Ln, Ln+1 from the set L are equidistant, i.e. the (linguistic)
distance between any two consecutive labels Lj and Lj+1 is the same, for any j ∈ {0, 1, 2, . . . , n}, then
one can make an isomorphism between L and a set of sub-unitary numbers from the interval [0, 1] in the
following way: Li = i/(n + 1), for all i ∈ {0, 1, 2, . . . , n + 1}, and therefore the interval [0, 1] is divided
into n + 1 equal parts. Hence, a qualitative mass, qm(Xi) = Li, is equivalent to a quantitative mass
m(Xi) = i/(n + 1) which is normalized if

∑

X∈DΘ

m(X) =
∑

k

ik/(n + 1) = 1

but this one is equivalent to
∑

X∈DΘ

qm(X) =
∑

k

Lik
= Ln+1

In this case we have a qualitative normalization, similar to the (classical) numerical normalization.

b) But, if the previous defined labels L0, L1, L2, . . ., Ln, Ln+1 from the set L are not equidistant, so the
interval [0, 1] cannot be split into equal parts according to the distribution of the labels, then it makes
sense to consider a qualitative quasi-normalization, i.e. an approximation of the (classical) numerical
normalization for the qualitative masses in the same way:

∑

X∈DΘ

qm(X) = Ln+1

In general, if we don’t know if the labels are equidistant or not, we say that a qualitative mass is quasi-
normalized when the above summation holds.

4 Quantitative Belief Conditioning Rules (BCR)

Before presenting the new Qualitative Belief Conditioning Rules (QBCR) in the next section, it is first important
and necessary to briefly recall herein what are the (quantitative) Belief Conditioning Rules (BCR) and what
was the motivation for their development in DSmT framework and also the fundamental difference between
BCR and Shafer’s Conditioning Rule (SCR) proposed in [2].

So, let’s suppose one has a prior basic belief assignment (bba) m(.) defined on hyper-power set DΘ, and one
finds out (or one assumes) that the truth is in a given element A ∈ DΘ, i.e. A has really occurred or is supposed
to have occurred. The problem of belief conditioning is on how to revise properly the prior bba m(.) with the
knowledge about the occurrence of A. Simply stated: how to compute m(.|A) from the knowledge available,
that is with any prior bba m(.) and A ?

1A more precise multiplication operator has been proposed in [1].
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4.1 Shafer’s Conditioning Rule (SCR)

Until very recently, the most commonly used conditioning rule for belief revision was the one proposed by Shafer
[2] and referred here as Shafer’s Conditioning Rule (SCR). The SCR consists in combining the prior bba m(.)
with a specific bba focused on A with Dempster’s rule of combination for transferring the conflicting mass to
non-empty sets in order to provide the revised bba. In other words, the conditioning by a proposition A, is
obtained by SCR as follows :

mSCR(.|A) = [m ⊕ mS ](.) (1)

where m(.) is the prior bba to update, A is the conditioning event, mS(.) is the bba focused on A defined by
mS(A) = 1 and mS(X) = 0 for all X 6= A and ⊕ denotes the Dempster’s rule of combination [2].

The SCR approach based on Dempster’s rule of combination of the prior bba with the bba focused on the
conditioning event remains subjective since actually in such belief revision process both sources are subjective
and SCR doesn’t manage properly the objective nature/absolute truth carried by the conditioning term. Indeed,
when conditioning a prior mass m(.), knowing (or assuming) that the truth is in A, means that we have in hands
an absolute (not subjective) knowledge, i.e. the truth in A has occurred (or is assumed to have occurred), thus
A is realized (or is assumed to be realized) and this is (or at least must be interpreted as) an absolute truth. The
conditioning term ”Given A” must therefore be considered as an absolute truth, while mS(A) = 1 introduced
in SCR cannot refer to an absolute truth actually, but only to a subjective certainty on the possible occurrence
of A from a virtual second source of evidence. The advantage of SCR remains undoubtedly in its simplicity
and the main argument in its favor is its coherence with conditional probability when manipulating Bayesian
belief assignment. But in our opinion, SCR should better be interpreted as the fusion of m(.) with a particular
subjective bba mS(A) = 1 rather than an objective belief conditioning rule. This fundamental remark motivated
us to develop a new family of BCR [4] based on hyper-power set decomposition (HPSD) explained briefly in the
next section. It turns out that many BCR are possible because the redistribution of masses of elements outside
of A (the conditioning event) to those inside A can be done in n-ways. This will be briefly presented right after
the next section.

4.2 Hyper-Power Set Decomposition (HPSD)

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, a model M(Θ) associated for Θ (free DSm model, hybrid or Shafer’s model)
and its corresponding hyper-power set DΘ. Let’s consider a (quantitative) basic belief assignment (bba) m(.) :
DΘ 7→ [0, 1] such that

∑

X∈DΘ m(X) = 1. Suppose one finds out that the truth is in the set A ∈ DΘ \ {∅}. Let
PD(A) = 2A ∩ DΘ \ {∅}, i.e. all non-empty parts (subsets) of A which are included in DΘ. Let’s consider the
normal cases when A 6= ∅ and

∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case when the truth is in A = ∅, we

consider Smets’ open-world, which means that there are other hypotheses Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1,
and the truth is in A ∈ DΘ′

\ {∅}. If A = ∅ and we consider a close-world, then it means that the problem
is impossible. For another degenerate case, when

∑

Y ∈PD(A) m(Y ) = 0, i.e. when the source gave us a totally

(100%) wrong information m(.), then, we define: m(A|A) , 1 and, as a consequence, m(X |A) = 0 for any
X 6= A. Let s(A) = {θi1 , θi2 , . . . , θip

}, 1 ≤ p ≤ n, be the singletons/atoms that compose A (for example, if
A = θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}). The Hyper-Power Set Decomposition (HPSD) of DΘ \ ∅ consists
in its decomposition into the three following subsets generated by A:

• D1 = PD(A), the parts of A which are included in the hyper-power set, except the empty set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power set generated by Θ \ s(A) under ∪ and ∩, without
the empty set.

• D3 = (DΘ \ {∅}) \ (D1 ∪D2); each set from D3 has in its formula singletons from both s(A) and Θ \ s(A)
in the case when Θ \ s(A) is different from empty set.

D1, D2 and D3 have no element in common two by two and their union is DΘ \ {∅}.

Simple example of HPSD: Let’s consider Θ = {θ1, θ2, θ3} with Shafer’s model (i.e. all elements of Θ are exclusive)
and let’s assume that the truth is in θ2 ∪ θ3, i.e. the conditioning term is θ2 ∪ θ3. Then one has the following
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HPSD: D1 = {θ2, θ3, θ2 ∪ θ3}, D2 = {θ1} and D3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3}. More complex and detailed
examples can be found in [3].

4.3 Belief conditioning rules (BCR)

Since there exists actually many ways for redistributing the masses of elements outside of A (the conditioning
event) to those inside A, several BCR have been proposed recently in [4]. Due to space limitation, we will
not browse here all the possibilities for doing these redistributions and all BCR but one just presents here a
typical and interesting BCR, i.e. the BCR number 17 (i.e. BCR17) which does in our opinion the most refined
redistribution since:
- the mass m(W ) of each element W in D2 ∪D3 is transferred to those X ∈ D1 elements which are included in
W if any proportionally with respect to their non-empty masses;
- if no such X exists, the mass m(W ) is transferred in a pessimistic/prudent way to the k-largest element from
D1 which are included in W (in equal parts) if any;
- if neither this way is possible, then m(W ) is indiscriminately distributed to all X ∈ D1 proportionally with
respect to their nonzero masses.

BCR17 is defined by the following formula (see [3], Chap. 9 for detailed explanations and examples):

mBCR17(X |A) = m(X) ·

[

SD1
+

∑

W∈D2∪D3

X⊂W

S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W, X is k-largest
S(W )=0

m(W )/k (2)

where ”X is k-largest” means that X is the k-largest (with respect to inclusion) set included in W and

S(W ) ,
∑

Y ∈D1,Y ⊂W

m(Y ) and SD1
,

1
∑

Y ∈D1
m(Y )

×
∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)

A simple example for BCR17: Let’s consider Θ = {θ1, θ2, θ3} with Shafer’s model (i.e. all elements of Θ are
exclusive) and let’s assume that the truth is in θ2 ∪ θ3, i.e. the conditioning term is A , θ2 ∪ θ3. Then one has
the following HPSD:

D1 = {θ2, θ3, θ2 ∪ θ3}, D2 = {θ1}

D3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.

Let’s consider the following prior bba: m(θ1) = 0.2, m(θ2) = 0.1, m(θ3) = 0.2, m(θ1∪θ2) = 0.1, m(θ2∪θ3) = 0.1
and m(θ1 ∪ θ2 ∪ θ3) = 0.3.

With BCR17, for D2, m(θ1) = 0.2 is transferred proportionally to all elements of D1, i.e.
xθ2

0.1 =
yθ3

0.2 =
zθ2∪θ3

0.1 = 0.2
0.4 = 0.5 whence the parts of m(θ1) redistributed to θ2, θ3 and θ2 ∪ θ3 are respectively xθ2

= 0.05,
yθ3

= 0.10, and zθ2∪θ3
= 0.05. For D3, there is actually no need to transfer m(θ1∪θ3) because m(θ1∪θ3) = 0 in

this example; whereas m(θ1 ∪ θ2) = 0.1 is transferred to θ2 (no case of k-elements herein); m(θ1 ∪ θ2 ∪ θ3) = 0.3
is transferred to θ2, θ3 and θ2 ∪ θ3 proportionally to their corresponding masses:

xθ2

0.1
=

yθ3

0.2
=

zθ2∪θ3

0.1
=

0.3

0.4
= 0.75

whence xθ2
= 0.075, yθ3

= 0.15, and zθ2∪θ3
= 0.075. Finally, one gets

mBCR17(θ2|θ2 ∪ θ3) = 0.10 + 0.05 + 0.10 + 0.075 = 0.325

mBCR17(θ3|θ2 ∪ θ3) = 0.20 + 0.10 + 0.15 = 0.450

mBCR17(θ2 ∪ θ3|θ2 ∪ θ3) = 0.10 + 0.05 + 0.075 = 0.225

which is different from the result obtained with SCR, since one gets in this example:
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mSCR(θ2|θ2 ∪ θ3) = 0.25

mSCR(θ3|θ2 ∪ θ3) = 0.25

mSCR(θ2 ∪ θ3|θ2 ∪ θ3) = 0.50

More complex and detailed examples can be found in [3].

5 Qualitative belief conditioning rules (QBCR)

In this section we propose two Qualitative belief conditioning rules (QBCR) which extend the principles of
quantitative BCR in the qualitative domain using the operators on linguistic labels defined in section 2. We
consider from now on a general frame Θ = {θ1, θ2, . . . , θn}, a given model M(Θ) with its hyper-power set DΘ

and a given extended ordered set L of qualitative values L = {L0, L1, L2, . . . , Lm, Lm+1}. The prior qualitative
basic belief assignment (qbba) taking its values in L is denoted qm(.). We assume in the sequel that the
conditioning event is A 6= ∅, A ∈ DΘ, i.e. the absolute truth is in A.

5.1 Qualitative Belief Conditioning Rule no 1 (QBCR1)

The first QBCR, denoted QBCR1, does the redistribution of masses in a pessimistic/prudent way, as follows:

• transfer the mass of each element Y in D2 ∪ D3 to the largest element X in D1 which is contained by Y ;

• if no such X element exists, then the mass of Y is transferred to A.

The mathematical formula for QBCR1 is then given by:

• If X /∈ D1,
qmQBCR1(X |A) = Lmin ≡ L0 (3)

• If X ∈ D1,
qmQBCR1(X |A) = qm(X) + qS1(X, A) + qS2(X, A) (4)

where the addition operator involved in (4) corresponds to the addition operator on linguistic labels defined in
section 2 and where the qualitative summations qS1(X, A) and qS2(X, A) are defined by:

qS1(X, A) ,
∑

Y ∈D2∪D3

X⊂Y

X=max

qm(Y ) (5)

qS2(X, A) ,
∑

Y ∈D2∪D3

Y ∩A=∅

X=A

qm(Y ) (6)

qS1(X, A) corresponds to the transfer of qualitative mass of each element Y in D2 ∪ D3 to the largest element
X in D1 and qS2(X, A) corresponds to the transfer of the mass of Y is to A when no such largest element X
in D1 exists.
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5.2 Qualitative Belief Conditioning Rule no 2 (QBCR2)

The second QBCR, denoted QBCR2, does a uniform redistribution of masses, as follows:

• transfer the mass of each element Y in D2 ∪ D3 to the largest element X in D1 which is contained by Y
(as QBCR1 does);

• if no such X element exists, then the mass of Y is uniformly redistributed to all subsets of A whose
(qualitative) masses are not L0 (i.e. to all qualitative focal elements included in A).

• if there is no qualitative focal element included in A, then the mass of Y is transferred to A.

The mathematical formula for QBCR2 is then given by:

• If X /∈ D1,
qmQBCR2(X |A) = Lmin ≡ L0 (7)

• If X ∈ D1,
qmQBCR2(X |A) = qm(X) + qS1(X, A) + qS3(X, A) + qS4(X, A) (8)

where the addition operator involved in (8) corresponds to the addition operator on linguistic labels defined in
section 2 and where the qualitative summations qS1(X, A) is defined in (5), qS3(X, A) and qS4(X, A) by:

qS3(X, A) ,
∑

Y ∈D2∪D3

Y ∩A=∅

qF 6=0

qm(Y )

qF
(9)

qS4(X, A) ,
∑

Y ∈D2∪D3

Y ∩A=∅

X=A,qF =0

qm(Y ), (10)

where qF , Card{Z|Z ⊂ A, qm(Z) 6= L0} = number of qualitative focal elements of A.

Scalar division of linguistic label

For the complete derivation of (8) we need to define the scalar division of labels involved in (9). We propose
the following definition:

Li

j
, L[ i

j
] (11)

for all i ≥ 0 and j > 0 where [ i
j ] is the integer part of i

j , i.e. the largest integer less than or equal to i
j . For

example, L5

3 = L[ 5
3
] = L1, or L6

3 = L[ 6
3
] = L2, etc.

6 Examples for QBCR1 and QBCR2

Let’s consider the following set of ordered linguistic labels L = {L0, L1, L2, L3, L4, L5, L6} (for example, L1,
L2, L3, L4 and L5 may represent the values: L1 , very poor, L2 , poor, L3 , medium, L4 , good and
L5 , very good, where the symbol , means by definition). The addition and multiplication tables corresponds
respectively to Tables 1 and 2.
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+ L0 L1 L2 L3 L4 L5 L6

L0 L0 L1 L2 L3 L4 L5 L6

L1 L1 L2 L3 L4 L5 L6 L6

L2 L2 L3 L4 L5 L6 L6 L6

L3 L3 L4 L5 L6 L6 L6 L6

L4 L4 L5 L6 L6 L6 L6 L6

L5 L5 L6 L6 L6 L6 L6 L6

L6 L6 L6 L6 L6 L6 L6 L6

Table 1: Addition table

× L0 L1 L2 L3 L4 L5 L6

L0 L0 L0 L0 L0 L0 L0 L0

L1 L0 L1 L1 L1 L1 L1 L1

L2 L0 L1 L2 L2 L2 L2 L2

L3 L0 L1 L2 L3 L3 L3 L3

L4 L0 L1 L2 L3 L4 L4 L4

L5 L0 L1 L2 L3 L4 L5 L5

L6 L0 L1 L2 L3 L4 L5 L6

Table 2: Multiplication table

6.1 Example 1

Let’s consider the frame Θ = {A, B, C, D} with the hybrid model corresponding to the Venn diagram on Figure
1. We assume that the prior qualitative bba qm(.) is given by:

qm(A) = L1, qm(C) = L1, qm(D) = L4

and the qualitative masses of all other elements of GΘ take the minimal value L0. This qualitative mass is
quasi-normalized since L1 + L1 + L4 = L1+1+4 = L6 = Lmax.

&%
'$

&%
'$

&%
'$&%

'$@R
A

�	
B

� C

� D

Figure 1: Venn Diagram for the hybrid model of Example 1

If we assume that the conditioning event is the proposition A ∪ B, i.e. the absolute truth is in A ∪ B,
the hyper-power set decomposition (HPSD) is obtained as follows: D1 is formed by all parts included in
A ∪ B, i.e. D1 = {A ∩ B, A, B, A ∪ B, B ∩ D, A ∪ (B ∩ D), (A ∩ B) ∪ (B ∩ D)}, D2 is the set generated by
{(C, D),∪,∩} \ ∅ = {C, D, C ∪D, C ∩D}, and D3 = {A∪C, A∪D, B ∪C, B ∪D, A∪B ∪C, A∪ (C ∩D), . . .}.

The qualitative mass of element D is transferred to D ∩ (A ∪ B) = B ∩ D according to the model, since D
is in the set D2 ∩ D3 and the largest element X in D1 which is contained by element D is B ∩ D. Whence
qmQBCR1(B ∩ D|A ∪ B) = L4, while qmQBCR1(D|A ∪ B) = L0. The qualitative mass of element C, which is
in D2 ∪ D3, but C has no intersection with A ∪ B (i.e. the intersection is empty), is transferred to the whole
A ∪ B. Whence qmQBCR1(A ∪ B|A ∪ B) = L1, while qmQBCR1(C|A ∪ B) = L0. Since the truth is in A ∪ B,
then the qualitative masses of the elements A and B, which are included in A ∪ B, are not changed in this
example, i.e. qmQBCR1(A|A ∪ B) = L1 and qmQBCR1(B|A ∪ B) = L0. One sees that the resulting qualitative
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conditional mass, qmQBCR1(.) is also quasi-normalized since

L4 + L0 + L1 + L0 + L1 + L0 = L6 = Lmax

In summary, one gets the following qualitative conditioned masses with QBCR12:

qmQBCR1(B ∩ D|A ∪ B) = L4

qmQBCR1(A ∪ B|A ∪ B) = L1

qmQBCR1(A|A ∪ B) = L1

Analogously to QBCR1, with QBCR2 the qualitative mass of the element D is transferred to D∩ (A∪B) =
B ∩ D according to the model, since D is in D2 ∪ D3 and the largest element X in D1 which is contained
by D is B ∩ D. Whence qmQBCR2(B ∩ D|A ∪ B) = L4, while qmQBCR2(D|A ∪ B) = L0. But, differently
from QBCR1, the qualitative mass of C, which is in D2 ∪ D3, but C has no intersection with A ∪ B (i.e. the
intersection is empty), is transferred A only since A ∈ A ∪ B and qm1(A) is different from zero (while other
sets included in A ∪ B have the qualitative mass equal to L0). Whence qmQBCR2(A|A ∪ B) = L1 + L1 = L2,
while qmQBCR2(C|A ∪ B) = L0. Similarly, the resulting qualitative conditional mass, qmQBCR2(.) is also
quasi-normalized since L4 + L0 + L2 + L0 = L6 = Lmax. Therefore the result obtained with QBCR2 is:

qmQBCR2(B ∩ D|A ∪ B) = L4

qmQBCR2(A|A ∪ B) = L2

6.2 Example 2

Let’s consider a more complex example related with military decision support. We assume that the frame
Θ = {A, B, C, D} corresponds to the set of four regions under surveillance because these regions are known to
potentially protect some dangerous enemies. The linguistic labels used for specifying qualitative masses belong
to L = {L0, L1, L2, L3, L4, L5, L6}. Let’s consider the following prior qualitative mass qm(.) defined by:

qm(A) = L1, qm(C) = L1, qm(D) = L4

All other masses take the value L0. This qualitative mass is quasi-normalized since L1 + L1 + L4 = L1+1+4 =
L6 = Lmax.
We assume that the military headquarter has decided to bomb in priority region D because there was a high
qualitative belief on the presence of enemies in zone D according to the prior qbba qm(.). But let’s suppose
that after bombing and verification, it turns out that the enemies were not in D. The important question the
headquarter is now face to is on how to revise its prior qualitative belief qm(.) knowing that the absolute truth
is now not in D, i.e. D̄ (the complement of D) is absolutely true. The problem is a bit different from the
previous one since the conditioning term D̄ in this example does not belong to the hyper-power set DΘ. In such
case, one has to work actually directly on the super-power set3 as proposed in [4] (Chap. 8). D̄ belongs to DΘ

only if Shafer’s model (or for some other specific hybrid models - see case 2 below) is adopted, i.e. when region
D has no overlap with regions A, B or C. The truth is not in D is in general (but with Shafer’s model or with
some specific hybrid models) not equivalent to the truth is in A∪B ∪C but with the truth is in D̄. That’s why
the following two cases need to be analyzed:

• Case 1: D̄ 6= A ∪ B ∪ C.

If we consider the model represented in Figure 2, then it is clear that D̄ 6= A ∪ B ∪ C.

The Super-Power Set Decomposition (SPSD) is the following:

– if the truth is in A, then D1 is formed by all non-empty parts of A;

2Only non minimal linguistic values are given here since all the masses of other elements (i.e. non focal elements) take by default
the value L0.

3The super-power SΘ is the Boolean algebra (Θ,∩,∪, C) where C denotes the complement, while hyper-power set DΘ corresponds
to (Θ,∩,∪).
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Figure 2: Venn Diagram for case 1

– D2 is formed by all non-empty parts of Ā;

– D3 is formed by what’s left, i.e. D3 = (SΘ \ {∅}) \ (D1∪D2); thus D3 is formed by all elements from
SΘ which have the form of unions of some element(s) from D1 and some element(s) from D2, or by
all elements from SΘ that overlap A and Ā.

In our particular example: D1 is formed by all non-empty parts of D̄; D2 is formed by all non-empty
parts of D; D3 = {A, B, C, A ∪ D, B ∪ D, A ∪ B, . . .}.

a) Using QBCR1: one gets:

qmQBCR1(A ∩ D̄|D̄) = L1

qmQBCR1(C ∩ D̄|D̄) = L1

qmQBCR1(D̄|D̄) = L4

b) Using QBCR2: one gets

qmQBCR2(A ∩ D̄|D̄) = L1 +
1

2
L4 = L1 + L[ 4

2
] = L3

qmQBCR2(C ∩ D̄|D̄) = L1 +
1

2
L4 = L3

Note that with both conditioning rules, one gets quasi-normalized qualitative belief masses. The results
indicate that zones A and C have the same level of qualitative belief after the conditioning which is normal.
QBRC1 however, which is more prudent, just commits the higher belief to the whole zone A∪B∪C which
represents actually the less specific information, while QBRC2 commits equal beliefs to the restricted
zones A ∩ D̄ and C ∩ D̄ only. As far as only the minimal surface of the zone to bomb is concerned (and
if zones A ∩ D̄ and C ∩ D̄ have the same surface), then a random decision has to be taken between both
possibilities. Of course some other military constraints need to be taking into account in the decision
process in such situation if the random decision choice is not preferred.

• Case 2: D̄ = A ∪ B ∪ C. This case occurs only when D ∩ (A ∪ B ∪ C) = ∅ as for example to the
following model4. In this second case, ”the truth is not in D” is equivalent to ”the truth is in A∪B ∪C”.
The decomposition is the following: D1 is formed by all non-empty parts of A ∪ B ∪ C; D2 = {D};
D3 = {A∪D, B∪D, C∪D, A∪B∪D, A∪C∪D, B∪C∪D, A∪B∪C∪D, (A∩B)∪D, (A∩B∩C)∪D, ...}.

a) Using QBCR1: one gets

qmQBCR1(A|D̄) = L1

qmQBCR1(C|D̄) = L1

qmQBCR1(A ∪ B ∪ C|D̄) = L4

4This condition is obviously also satisfied for Shafer’s model, i.e. when all regions are well separate/distinct.
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Figure 3: Venn Diagram for case 2

b) Using QBCR2: one gets

qmQBCR2(A|D̄) = L3

qmQBCR2(C|D̄) = L3

Same concluding remarks as for case 1 can be drawn for the case 2. Note that in this case, there is uncertainty
in the decision to bomb zone A or zone C because they have the same supporting belief. The only difference
with respect to case 1, it that the zone to be bomb (whatever the one chosen - A or C) will remain larger than
in case 1 because D has no intersection with A, B and C for this model.

6.3 Example 3

Let’s modify the previous example for examining what happens when using an unconventional bombing strategy.
Here we still consider four zones under surveillance, i.e. Θ = {A, B, C, D} and L = {L0, L1, L2, L3, L4, L5, L6}
but with the following prior quasi-normalized qualitative basic belief mass qm(.):

qm(A) = L1, qm(C) = L3, qm(D) = L2

All other qualitative masses take the value L0. Such prior suggests normally/rationally to bomb in priority the
zone C since it is the one carrying the higher belief on the location of enemies. But for some unknown reasons
(military, political or whatever) let’s assume that the headquarter has finally decided to bomb D first. Let’s
examine how will be revised the prior qm(.) with QBCR1 and QBCR2 in such situation for the two cases:

• Case 1: D̄ 6= A ∪ B ∪ C.

a) Using QBCR1: qm(A) = L1 is transferred to A ∩ D̄, since A ∩ D̄ is the largest element from
D̄ which is included in A, so we get qmQBCR1(A ∩ D̄|D̄) = L1; and similarly qm(C) = L3 is
transferred to C ∩ D̄, since C ∩ D̄ is the largest element from D̄ which is included in C, so we get
qmQBCR1(C∩D̄|D̄) = L3; Also, qm2(D) = L2 is transferred to D̄ since no element from D̄ is included
in D, therefore qmQBCR1(D̄|D̄) = L2. Analogously, this qualitative conditioned mass qmQBCR1(.) is
quasi-normalized since L1 + L3 + L2 = L6 = Lmax. In summary, with QBCR1 one gets in this case:

qmQBCR1(A ∩ D̄|D̄) = L1

qmQBCR1(C ∩ D̄|D̄) = L3

qmQBCR1(D̄|D̄) = L2

a) Using QBCR2: qm(A) = L1 is transferred to A∩ D̄, and qm(C) = L3 is transferred to C ∩ D̄. Since
no qualitative focal element exists in D̄, then qm(D) = L2 is transferred to D̄, and we get the same
result as for QBCR1.

• Case 2: D̄ = A ∪ B ∪ C.
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a) Using QBCR1: the qualitative masses of A, B, C do not change since they are included in A∪B ∪C
where the truth is. The qualitative mass of D becomes zero (i.e. it takes the linguistic value L0)
since D is outside the truth, and qm(D) = L2 is transferred to A ∪ B ∪ C. Hence:

qmQBCR1(A|D̄) = L1

qmQBCR1(C|D̄) = L3

qmQBCR1(A ∪ B ∪ C|D̄) = L2

This resulting qualitative conditional mass is also quasi-normalized.

b) QBCR2, the qualitative mass of D becomes (linguistically) zero since D is outside the truth, but now
qm(D) = L2 is equally split to A and C since they are the only qualitative focal elements from D1

which means all parts of A ∪ B ∪ C, therefore each of them A and C receive (1/2)L2 = L1. Hence:

qmQBCR2(A|D̄) = L1 + (1/2)L2 = L1 + L2/2 = L1 + L1 = L2

qmQBCR1(C|D̄) = L3 + (1/2)L2 = L3 + L2/2 = L3 + L1 = L4

Again, the resulting qualitative conditional mass is quasi-normalized.

As concluding remark, we see that even if a unconventional bombing strategy is chosen first, the results
obtained by QBCR rules 1 or 2 are legitimate and coherent with intuition since they commit the higher
belief in either C ∩ D̄ (case 1) or C (case 2) which is normal because the prior belief mass in C was the
higher one before bombing D.

6.4 Example 4

Let’s complicate a bit the previous example by working directly with a prior qm(.) defined on the super-power set
SΘ (see the previous Footnote 3), i.e. the complement is allowed among the set of propositions to deal with. As
previously, we consider four zones under surveillance, i.e. Θ = {A, B, C, D} and L = {L0, L1, L2, L3, L4, L5, L6}.
The following prior qualitative basic belief mass qm(.) is extended from the hyper-power set to the super-power
set, i.e. qm(.) : SΘ → L:

qm(A) = L1, qm(C) = L1, qm(D) = L2

qm(C ∪ D) = L1, qm(C ∩ D̄) = L1

All other qualitative masses take the value L0. This qualitative mass is quasi-normalized since

L1 + L1 + L2 + L1 + L1 = L1+1+2+1+1 = L6 = Lmax

We assume that the military headquarter has decided to bomb in priority region D because there was a high
qualitative belief on the presence of enemies in D according to the prior qbba qm(.). But after bombing and
verification, it turns out that the enemies were not in D (same scenario as for example 2). Let’s examine the
results of the conditioning by the rules QBCR1 and QBCR2 for the cases 1 and 2:

• Case 1: D̄ 6= A ∪ B ∪ C.

a) Using QBCR1: qm(A) = L1 is transferred to A∩ D̄, since A∩ D̄ is the largest element (with respect
to inclusion) from D̄ which is included in A. qm(C) = L1 is similarly transferred to C ∩ D̄, since
C ∩ D̄ is the largest element from D̄ which is included in C. qm(C ∪ D) = L1 is also transferred
to C ∩ D̄ since C ∩ D̄ is the largest element from D̄ which is included in C ∪ D. qm(D) = L2 is
transferred to D̄ since no element from D̄ is included in D. In summary, we get:

qmQBCR1(A ∩ D̄|D̄) = L1

qmQBCR1(C ∩ D̄|D̄) = qm(C ∩ D̄) + qm(C) + qm(C ∪ D) = L1 + L1 + L1 = L3

qmQBCR1(D̄|D̄) = L2

All others are equal to L0. The resulting qualitative conditioned mass is quasi-normalized since
L1 + L3 + L2 = L6 = Lmax.
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b) Using QBCR2: Similarly as for QBCR1, qm(A) = L1 is transferred to A ∩ D̄; also qm(C) = L1 and
qm(C ∪ D) = L1 are transferred to C ∩ D̄. But now, differently, qm(D) = L2 is equally split to the
focal elements of D̄, but only C ∩ D̄ is focal for D̄, so C ∩ D̄ receives the whole qualitative mass of
D. Finally we get:

qmQBCR2(A ∩ D̄|D̄) = L1

qmQBCR2(C ∩ D̄|D̄) = qm(C ∩ D̄) + qm(C) + qm(C ∪ D) + qm(D) = L1 + L1 + L1 + L2 = L5

All others are equal to L0. The resulting qualitative conditioned mass is quasi-normalized since
L1 + L5 = L6 = Lmax.

The results obtained by QBCR1 and QBCR2 are coherent with rational human reasoning since after
bombing zone D we get, in such case, a higher belief in finding enemies in C ∩ D̄ than in A ∩ D̄ which
is normal due to the prior information we had before bombing D. QBRC2 is more specific than QBRC1.
Say differently, QBRC1 is more prudent than QBRC2 in the revision of the masses of belief.

• Case 2: D̄ = A ∪ B ∪ C.

a) Using QBCR1: qm(C ∪ D) = L1 is transferred to C since C is the largest element (with respect to
inclusion) from A∪B∪C which is included in C∪D. qm(C∩D̄) = qm(C) since C∩(A∪B∪C) = C.
qm(D) = L2 is transferred to A ∪ B ∪ C since no element from A ∪ B ∪ C is included in D, so the
qualitative mass of D becomes zero (i.e. it takes the linguistic value L0). Thus we finally obtain:

qmQBCR1(A|D̄) = L1

qmQBCR1(C|D̄) = qm(C) + qm(C ∪ D) + qm(C ∩ D̄) = L1 + L1 + L1 = L3

qmQBCR1(A ∪ B ∪ C|D̄) = L2

All others are equal to L0. The resulting qualitative conditioned mass is quasi-normalized since
L1 + L3 + L2 = L6 = Lmax.

b) Using QBCR2: qm(C ∪ D) = L1 and qm(C ∩ D̄) = L1 are similarly as in QBRC1 transferred to C.
But qm(D) = L2 is equally split among the focal qualitative elements of D̄ = A ∪ B ∪ C, which are
A and C, so each of them receive 1/2 · L2 = L2/2 = L1. Whence

qmQBCR2(A|D̄) = qm(A) +
1

2
qm(D) = L1 +

1

2
L2 = L1 + L1 = L2

qmQBCR1(C|D̄) = [qm(C) + qm(C ∪ D) + qm(C ∩ D̄)] +
1

2
qm(D) = [L1 + L1 + L1] + L1 = L4

All others are equal to L0. The resulting qualitative conditioned mass is quasi-normalized since
L2 + L4 = L6 = Lmax.

The results obtained by QBCR1 and QBCR2 are again coherent with rational human reasoning since after
bombing zone D we get, in such case, a higher belief in finding enemies in C than in A which is normal
due to the prior information we had before bombing D and taking into account the constraint of the model.

7 Conclusions

In this paper, we have designed two Qualitative Belief Conditioning Rules in order to revise qualitative basic
belief assignments and we presented some examples to show how they work. QBCR1 is more prudent than
QBCR2 because the revision of the belief is done in a less specific transfer than for QBCR2. We use it
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when we are less confident in the source. While QBCR2 is more optimistic and refined; we use it when
we are more confident in the source. Of course, the qualitative conditioning process is less precise than its
quantitative counterparts because it is based on a rough approximation, as it normally happens when working
with linguistic labels. Such qualitative methods present however some interests for manipulating information
and beliefs expressed in natural language by human experts and can be helpful for high-level decision support
systems.
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