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A neessary and su�ient onditionfor exat reovery by ℓ1 minimizationCharles DossalLaBAG, Université Bordeaux 1,351, ours de la Libération,F-33405 Talene edex (FRANCE)harles.dossal�math.u-bordeaux1.frJuly 23, 2007AbstratThe minimum ℓ1-norm solution to an underdetermined system of linear equations y = Ax,is often, remarkably, also the sparsest solution to that system. Sine the seminal work ofDonoho and o-workers, we have witnessed a �urry of researh ativity whih has foused onsu�ient onditions ensuring a unique sparsest solution, in both noiseless and noisy settings.This sparsity-seeking property is of interest in many pratial areas suh as image and signalproessing, ommuniation and information theory, et. However, most of these su�ientonditions are either too pessimisti although easily omputable (e.g. bounds with mutualoherene), or sharp but di�ult to hek in pratie.In this paper, we provide a neessary and su�ient ondition for x to be identi�able for alarge set of matries A; that is to be the unique sparsest solution to the ℓ1-norm minimizationproblem. Furthermore, we prove that this sparsest solution is stable under a reasonable pertur-bation of the observations y. We also propose an e�ient semi-greedy algorithm to hek ourondition for any vetor x. We present numerial experiments showing that our ondition isable to predit almost perfetly all identi�able solutions x, whereas other previously proposedriteria are too pessimisti and fail to identify properly some identi�able vetors x. Beside thetheoretial proof, this provides empirial evidene to support the sharpness of our ondition.Keywords: Sparse representations, underdetermined linear systems, ℓ1-minimization, identi-�able vetors.1 Introdution1.1 Sparse ReoveryLet A be a matrix whose olumns vetors (ai)i6p are p vetors of R
n, where n≪ p (dimension ofobservations n is muh smaller than that of data p). Let x0 ∈ R

p and y = Ax0. x0 an be seen asa data vetor and y as observations of these data.One wants to reover data x0 from the observations y. However, beause the underlying linearsystem is underdetermined, reovery of the overomplete representation vetor x0 from y faesan apparent obstale, based on elementary linear algebra. Nevertheless, although the problem ofreovering of x0 is admittedly ill-posed in general, introduing the hypothesis that x0 has a simplestruture an radially hange the situation. In this ase, one an hope to properly reover x0 from
y under appropriate onditions.The sparsity assumption is to suppose that x0 has few non-zero omponents. Suh a hypothesison the struture of x0 an often be rephrased as : the expansion of x0 in a familly of vetors isessentially supported on a few of them.As a measure of sparsity of a vetor x, we may take the ℓ0 (quasi)-norm ‖x‖0, whih is thenumber of non-zero omponents of x. Hene, if x0 has few non-zero omponents, one an hope1



that x0 is the unique minimizer of
min
x
‖x‖0 under the onstraint Ax = y P0(y)with y = Ax0. We will refer to this problem by P0(y) to speify the seond member.This is an NP-hard problem sine there is no way to solve it exept testing all possible k-olletionsof olumns of A with k = 1, . . . , p, and looking for the smallest k-olletion that synthesize y. Thatis why [12℄ proposed to substitute this highly non-onvex problem with the following onvex ℓ1minimization problem

min
x
‖x‖1 under the onstraint Ax = y P1(y)with y = Ax0. We will refer to this problem by P1(y) to speify the seond member.It is well known that under appropriate onditions, both problems P0(y) and P1(y) share thesame solutions; see [10, 12, 16, 23, 20℄ to ite only a few. Furthermore, several onditions on x0have been proposed in the literature to guaranty the uniqueness of the solution x0 to the problemP1(Ax0). Before proeeding, we will need some terminology that will be used in the remainder ofthe paper.De�nition 1 A vetor x0 is said to be identi�able if it is the unique solution to P1(Ax0).Notations The support of x0 and its ardinal are de�ned by

supp (x0) = I = {i|x0(i) 6= 0} ⊂ {1, . . . , p} and |I| = |supp (x0) | = ‖x0‖0 .The vetor x̄ is obtained by seleting from x omponents with indies in its support. Thematrix AI = (ai)i∈I is obtained by seleting the olumns of A indexed by I. This matrix is alledthe ative matrix assoiated to the set I. The ative matrix AI assoiated to a vetor x0 is theative matrix assoiated to the support I of x0. The olumns (ai)i∈I are alled ative olumns orvetors and (aj)j /∈I are alled inative olumns or vetors. The pseudo-inverse A+
I of AI is de�nedas

A+
I = (AtIAI)

−1AtI .A vetor x0 is said to be inluded in a vetor x1 if supp (x0) ⊂ supp (x1) and sign (x0) = sign (x1)on their ommon support. The vetor x1 is an extension of the vetor x0 if the latter is inludedin the former.The vetor δk ∈ R
p is suh that ‖δk‖0 = 1 and δk(i) = 1 and 0 otherwise.1.2 State of a�airs1.2.1 The ohereneThe most popular su�ient ondition that guaranties the identi�ablility of x0 relates its support

supp (x0) to the oherene of A :
C(A) = max

i6=j

|〈ai, aj〉|

‖ai‖2 ‖aj‖2
. (1)If

|I| = ‖x0‖0 <
1

2
(1 +

1

C
) (2)then x0 is identi�able, moreover x0 is also the solution of (1.1). This bound has appeared in manypapers, e.g. [12, 10, 16, 23, 20℄.This bound on the ardinal of supp (x0) is optimal if one does not have any additionnal in-formation on A. Donoho and Elad [10℄ proposed to improve this bound using the Spark of A.

Spark (A) is de�ned as the minimal number of linearly dependent vetors ai. Estimating Spark (A)is omputationly prohibitive. Moreover, it is unstable under a small perturbation of A. That is,
Spark (A) may hange dramatially with A.Although it appears as a simple and omputationally tratable a priori test of identi�ability,the oherene-based bound 1

2 (1 + 1
C ) is pessimisti and an be improved in many situations.2



1.2.2 Compressed SensingIn a series of papers Candès, Tao and Romberg [5, 2, 7, 6, 3, 4℄ studied di�erent optimizationproblems inluding P1(y) in [7℄. They espeially investigated [4℄ a problem where data y may beorrupted by gaussian noise w whose ℓ2 norm is bounded by ε, i.e. y = Ax0 + w. The authorssuggested to solve the following minimization problem
min
x
‖x‖1 under the onstraint ‖y −Ax‖2 6 ε (3)where ε is the size of the error term.The authors established onditions on vetors x0 ensuring identi�ability, equivalene betweensolutions of P0(Ax0) and P1(Ax0), as well as stability to noise. These onditions are uniform onthe ardinal of the support. To state their onditions, those authors have introdued the so-alledRestrited Isometry Hypothesis (RIH) on A. RIH assumes that any subset I, |I| 6 S of vetors

(ai)i∈I de�ning the matrix AI , is a Riesz basis with the assoiated onstants uniformely ontroledby a funtion δS . For all set of indies I suh that |I| 6 S,
∀x ∈ R

|I|, (1− δS) ‖x‖22 6 ‖AIx‖
2
2 6 (1 + δS) ‖x‖22 (4)The RIH requirement states that for all sets I whose ardinal is smaller than S, the mapping AIapproximately ats like an isometry on |I|-sparse vetors.One of the RIH-based indenti�ability onditions requires that

δS + δ2S + δ3S < 1 (5)see [4℄, the reader may �nd others onditions in [8℄. These di�erents RIH lead to di�erents resultsof reovery and robustness to noise.Compressed Sensing (CS) theory shows that all vetors suh that ‖x‖0 6 Cn
log(p/n) , are identi�-able, with a probability lose to 1 when A sati�es a RIH. The CS reovery results extend also tovetors x0 whih are nearly sparse [6℄; vetors whose ℓp norm is onentrated on a sparse set. Thispoint is important in mathematial image or signal proessing appliations, where x0 is not exatlysparse but ompressible in some transform domain e.g. wavelets [21℄, urvelets [1℄. However, theseresults do not apply to any matrix. Furthermore, for a deterministi A, there is no simple way tohek the RIH and ompute the onstants δS , exept testing all possible |I|-olletions of olumnsof A whih is a ombinatorial proess. Moreover, it is hard to build matries satifying RIH for large

S. Consequently, if a matrix A is given and not built to satisfy RIH, we annot staightforwardlyuse CS bounds to ensure that a vetor x0 is identi�able. To date, the only deterministi ontrutionof matries obeing RIH for large values of S has been proposed in 2007 by R. De Vore [24℄.1.2.3 Conditions on support and sign for any matrix AAlthough the previous bound (2) is optimal for ertain ditionaries (matries), there are manyvetors violating the oherene-based sparsity bound that are still identi�able. Gribonval andNielsen [20℄ proposed an identi�ability riterion whih does not depend on the ardinal of supp (x0),but rather on the support itself. Their riterion an be veri�ed by sparse vetors in the sense ofthe bound (2), as well as by other vetors that are less sparse. Unfortunately there is no simpleway to ompute their riterion. As previously pointed out for the Spark, their riterion dependsdiretly on the null spae of A and is unstable under small variation of A.Tropp [23℄ and Fuhs [18, 19℄ proposed riteria that apply to any matrix and depends on thestruture of the vetor x, not only on |I|. Both authors study solutions of the relaxed problem
min
x

1

2
‖y −Ax‖22 + γ ‖x‖1 (6)whih is equivalent to the previous minimisation (3), i.e. for all ε > 0 there exists a bijetion γ(ε)suh that problems (3) and (6) share the same solutions. The limit of the solution of (6) whenit is unique, tends to the solution of P1(y) when γ tends to 0. Tropp de�ned the Exat ReoveryCoe�ient (ERC) as follows, ERC(I) = 1− sup

j /∈I

∥

∥A+
I aj

∥

∥

13



The ERC is then de�ned only when AI has full rank. Tropp [23℄ proved that if ERC(I) > 0, anyvetor x0 supported in I is identi�able. He also showed that ERC(I) > 0 guaranties stability whenobsvervations are orrupted by an additive noise with bounded variane.From a vetor x0 Fuhs [18℄ introdues the following vetor
d0 = A+t

I sign (x̄0) ∈ R
n (7)whih plays a major role to state reovery onditions for x0. This vetors is spanned by the ativevetors (ai)i∈I . Setion 2 presents geometrial interpretations of d0 when n equals 2 and 3. Fuhsproposed sharper su�ieny results by de�ning a riterion depending on the support and on thesign of x0 through d0.De�nition 2 F is the set of vetors x0 suh that the ative matrix AI assoiated to x0 has fullrank and

F (x0) = max
j /∈I
|〈aj , A

+t
I sign (x̄0)〉| = max

j /∈I
|〈aj , d0〉| < 1.Fuhs [18℄ proved that for all vetors x0 ∈ F , the minimizer x(γ) of (6) is unique for γ smallenough, tends to x0 when γ tends to 0, and then that x0 is a minimizer of P1(Ax0). Note that if

x1 and x2 have the same support and the same sign, x1 ∈ F implies x2 ∈ F . Hene F is the unionof ones of various dimensions. The ondition F (x0) < 1 asserts that the orrelation between d0and all inative vetors (aj)j /∈I is strily smaller than 1.Donoho in [9℄ proposed a neessary and su�ient ondition to ensure that a vetor x is aminimizer of P1(Ax). The author onsidered the image of the unit ℓ1-ball by A, whih is thepolytope whose verties are (±aj)j6p, and assoiated to eah vetor x the orresponding faet
H(x) of the ℓ1 ball. Hene, this faet H(x) depends only on the sign and support of x. Donohoproved that x is a minimizer of P1(Ax) if and only if the image of the faet H(x) belongs to theonvex hull of the image of the unit ℓ1-ball by A. This geometrial and topologial ondition wassubsequently used by Donoho and Tanner [14, 13℄ to estimate the number of vetors x minimizingP1(Ax) for a given sparsity. The authors propose sharp results for random projetors and showthat the bounds derived from ERC or Compressed Sensing are often pessimisti.The new ondition proposed in this paper is strongly linked with both onditions proposed byFuhs [18℄ on the one hand, and by Donoho [9℄ on the other hand.1.3 ContributionsIf no hypothesis are made on A, it may happen that for some y, P1(y) has several solutions, forexample if two vetors ai and aj oinide. The question of the identi�ability of a vetor x0 is thenill-posed. The following ondition oined (UC), whih stands for Uniity Condition, guarantees theuniity of the minimizer of P1(y) for any y ∈ Im (A).De�nition 3 A satis�es ondition (UC) if, for all subsets I ⊂ {1, . . . , p}, suh that (ai)i∈I arelinearly independent, for all indies j /∈ I and all vetors S ∈ {−1, 1}|I|,

|〈aj , A
+t
I S〉| 6= 1 (UC)ie for all x0 suh that AI has full rank and for all j /∈ I

|〈aj , d0〉| 6= 1 (8)where d0 is the vetor de�ned in setion 1.2.3 by (7). In words, the orrelation between any signvetor and the projetion of aj on the subspae spanned by (ai)i∈I is never exately 1 or −1.This ondition implies that there is no vetor x0 suh that F (x0) = 1 and no vetors suh thatERC(I(x0)) = 0.The main ontribution of this paper is Theorem 1 whih provides a neessary and su�ientondition for x0 to be identi�able for the set of matries A satisfying ondition (UC).Theorem 1 Suppose that A satis�es ondition (UC). Then x0 is identi�able if and only if x0 ∈ K,where K is the losure of F . 4



More preisely, the ondition x0 ∈ K is always a su�ient ondition for x0, to be identi�bale. If Asatis�es the (UC) ondition, it beomes also a neessary ondition.Theorem 1 allows then to de�ne the mapping ϕ
ϕ

{

Im (A) −→ K
y 7−→ x solution of problem P1(y)

(9)The mapping ϕ is a non-linear inverse of the linear map A. The following theorem ontrols theontinuity of ϕ.Theorem 2 If A satis�es ondition (UC), then ϕ is uniformly Lipshitz, hene ontinuous.The set K is omposed of any vetor that an be extented to yield a vetor belonging to F . Thismeans that for any vetor x0 ∈ K there is a vetor x1 whose support is disjoint from the one of x0suh that x0 + x1 = x2 ∈ F .Condition x0 ∈ K annot be easily veri�ed. To irumvent this di�ulty setion 4 proposes asemi-greedy algorithm termed SupportExtension, whih exploits the above haraterization of Kto reognize those vetors whih are in K. More preisely, the suess of this algorithm guaranteesthat x0 ∈ K, but its failure does not ensure that x0 /∈ K. Atually, simulations did not provide anyidenti�able x0 suh that the algorithm fails, but they may exist.The study of the relaxed formulation (6) assoiated to problem P1(y) is at the heart of theproof of Theorem 1 and 2. These two optimization problems are losely linked and Theorem 1leads to the following result.Theorem 3 If A satis�es ondition (UC), for any y ∈ R
n and γ > 0, the minimizer x(γ) of

1

2
‖y − Ax‖22 + γ ‖x‖1is unique and belongs to K.Atually, Theorem 1 leads to a more general result than Theorem 3. Indeed, with a similar proof,it an be shown that if A sati�es (UC), for any losed set D, the set of solutions of

min
x
‖x‖1 under the onstraint Ax ∈ D P1(D)is inluded in K. Moreover, if D is strilty onvex, then the solution of P1(D) is unique and belongsto K. It follows that, if A sati�es (UC), the solutions of the following minimization problem, see[6℄

min
x
‖x‖1 under the onstraint ∥∥At(y −Ax)∥∥

∞
6 γbelong to K.1.4 Relation to prior workOne of the �rst approahes dealing with this identi�ability problem proposes a bound on ‖x0‖0based on the oherene of matrix A, see setion 1.2.1. This bound (2) is often pessimisti. Twoapproahes to improve over this result an be distinguished. The �rst one adds hypotheses on thematrix A. Hene, if A obeys some restritive onditions, bound (2) may be improved. It is the pointof view of ompressed sensing, see setion 1.2.2. Suh an approah, provides bounds on |supp (x0) |to guarantee identi�ability, and also ensures the equivalene between P0(y) and P1(y). It also hasthe drawbak to give pessimisti bounds in many situations, see [7, Theorem 1.6℄. CompressedSensing provides good asymptoti bounds whih an be worse than (2).The seond approah abandons the idea of a uniform bound on |supp (x0) | and uses supp (x0)itself and sometimes even sign (x0). These approahes followed by Gribonval and Nielsen [20℄,Fuhs [18℄ and Tropp [23℄ may explain why many vetors that are not so sparse are identi�able,but do not ensure the equivalene between problems P0(y) and P1(y). This paper improves overthe results of Tropp and Fuhs by providing a neessary and su�ient ondition for identi�abilityfor a large set of matries A. 5



This work may be viewed a omplementary approah to Compressed Sensing : whereas Com-pressed Sensing needs a strong hyopthesis on A and gives strong results of reovery, stability andequivalene between P0(y) and P1(y), this work proposes near minimal hypotheses on A and givestight onditions for the ℓ1 reovery, with minimal stability results and no equivalene betweenP0(y) and P1(y).Following Fuhs [18, 19℄ and Tropp [23℄, this papers fouses on the relaxed and onvex problem
min
x

1

2
‖y −Ax‖22 + γ ‖x‖1 P1(y, γ)More preisely, it investigates the properties of the solutions of P1(y, γ) for small γ. This problemis refered to as P1(y, γ) to speify the seond member y and the parameter γ. A solution of P1(y, γ)will be denoted x(γ).This relaxed formulation P1(y, γ) is partiularly well adapted to deal withobservations orrupted by an additional noise y = Ax0 + w, but an also give information aboutthe solution of P1(Ax0).As previously mentionned, this formulation is equivalent, under appropriate orrespondene ofparameters γ and ε, to (3) used by Candès et al. to develop some Compressed Sensing results [4℄and also by Donoho, Elad Temlyakov [11℄ and others.Even if the �nal ondition x ∈ K is derived from algebrai relationships satis�ed by the solutionsof P1(Ax, γ), it is learly related to the topologial properties of the set F . It turns out that it is alsonaturally linked to the topologial ondition proposed by Donoho [9℄. Hene ∀x, 〈u,A+t

I sign (x̄)〉 =
1 is the equation of a hyperplane P ontaining all signed ative vetors assoiated to x, i.e. if
i ∈ supp (x), sign (x(i)) ai ∈ P . Condition F (x) < 1 ensures that all inative vetors (aj)j /∈I(x)belong to the same half-spae "below" the hyperplane P . P is then one of the hyperplanes de�ningthe onvex hull of the polytope formed by the vetors (±aj)j6p. Moreover if x an be extentedinto a vetor x1 ∈ F , one an de�ne a hypperplane P ontaining all signed and ative vetorsassoiated to x1 suh that all (±aj)j /∈I(x1) belong to the same half-spae de�ned by P , i.e. P isone of the hyperplanes de�ning the onvex hull of (±aj)j6p.Hene if A satis�es ondition (UC), both our haraterization of identi�ability and the oneproposed by Donoho [9℄ are equivalent. In fat, this paper sheds light on the relation between thealgebrai and the analytial point of view on this haraterization. It also provides a onditionensuring uniity and a fast algorithm to hek the identi�ability of a vetor x.Setion 4 devoted to the numerial experiments shows that there are many identi�able x0 thatdo not satisfy any of the previous onditions reviewed above. The di�erent bounds derived fromthe mutual oherene (2), the ERC or the CS theory are atually too pessimisti. This pessimismis neessary to get these bounds to be uniform over the support or, even worse, over the ardinalof the support. We will see that for a given sparsity or a given support, most of vetors may beidenti�able and only a small fration of them may not.Hene, this new approah sheds light on those identi�able vetors x0 that are not very sparse.In partiular, it gives lues to understand why CS an be used with a good probability of suessbeyond theoretial bounds.All results presented here hold true provided that A satis�es ondition (UC). Indeed, as previ-ously said, the uniity of the solution is important to de�ne the identi�ability, and ondition (UC)ensures this uniqueness. It turns out that this ondition is not really restritive. In partiular if thevetors ai are independent and randomly generated aording to a probability law with a density,the probability that A satis�es (UC) is exatly 1.2 Geometri insightThe analytial details look more ompliated than the simple underlying geometry. Hene, beforegiving a proof of Theorem 1, some insight may be gleaned by onsidering the geometry underlyingthe set K and ondition (UC) for n = 2 and n = 3. In this setion A is supposed to satisfy ondition(UC), Im (A) = R

n and the vetors (ai)j6p belong to the unit sphere S of R
2 or R

3. We denote
B = (bj)j62p = (±ai)i6p and bj = σjaψ(j), where σj ∈ {−1, 1} and ψ(j) 6 p.By de�nition, F is a �nite union of half-ones of various dimensions, eah half-one beingde�ned by positions and signs of non-zero omponents. Consequently K is also a union of losed6



half-ones. This setion exempli�es these half-ones when n = 2 and n = 3 and gives a geometrialinterpretation of the funtion ϕ as a bijetion between two sets of ones.For a given set J ⊂ {1, · · · , 2p}, a half-one CJ in R
n by

CJ =







∑

j∈J

λjbj with λj > 0, ∀j ∈ J







(10)and a half-one KJ in R
p

KJ =







∑

j∈J

σjλjδψ(j) with λj > 0, ∀j ∈ J







. (11)Hene CJ is the image of KJ by A, ∀J ⊂ {1, · · · , 2p}.The following theorem explains how appliation ϕ indues a tiling of sets Im (A) and K.Theorem 4 For n = 2 and n = 3, there is a set P suh that
R
n = ∪J∈P C̄J and K = ∪J∈PK̄J (12)where C̄J and K̄J are the losure sets of CJ and KJ . Moreover, for all J ∈ P, ϕ ats as a linearbijetion from CJ to KJ .The purpose of the two following subsetions is to desribe the set P for n = 2 and n = 3. Morepreisely, it is shown that ∀J ∈ P KJ ⊂ F , from whih it is dedued that KJ is the image of CJby ϕ using Theorem 1.2.1 Example in two dimensions n = 2First, we note that ondition (UC) implies that (bj)j62p are all distint. Let's de�ne the set

P = {1, · · · , 2p}2 by P = {J = (j, l) suh that B ∩ CJ = ∅}.One an notie that (j, l) ∈ P if and only if bj and bl orrespond to two onsutive points of theset B on the unit irle S. Hene one gets
R

2 = ∪J∈P C̄J . (13)We now prove that for any I ∈ P , KI ∈ F . Suppose J = {j, l} ∈ P and x0 ∈ KJ . Let's denote
I = {ψ(j), ψ(l)} the support of x0. Sine (bj)j62p are distint, rank(AI) = 2 and is then maximal.The vetor d0 is de�ned by d0 = A+t

I sign (σj , σl), it is spanned by bj and bl and satis�es
〈d0, aψ(j)〉 = sign (σj) i.e. 〈d0, bj〉 = 1

〈d0, aψ(l)〉 = sign (σl) i.e. 〈d0, bl〉 = 1This vetor d0 belongs to the bisetor of bj and bl.
−ai−ai

aiai

−aj−aj

ajaj

d0

d0

d0

d0

x(i) > 0 and x(j) < 0 x(i) > 0 and x(j) > 0 x(i) < 0 and x(j) > 0 x(i) < 0 and x(j) < 0Figure 1: Four di�erent on�gurations of oe�ients (x0(i), x0(j)) and the orresponding d0.7



−b j

−b

b j

b

d0

0

0

| u, d0 | < 1

S1(x )

S2(x )Figure 2: Example of vetor d0 and aps S1(x0) and S2(x0) for a vetor x0 ∈ Kj,l.The set of vetors u suh that 〈u, d0〉 = 1 is the hord (bj , bl). Hene, from the de�nition of d0,one has
S1(x0) = S∩{u suh that 〈u, d0〉 > 1} = S∩CJ and S2(x0) = S∩{u suh that 〈u, d0〉 < −1} = −S1(x0)

S1 and S2 orrespond to the ars shown with the red lines in Figure 2.Thus, a vetor x0 belongs to F if and only if
F (x0) = max

k/∈I
|〈ak, d0〉| < 1Hene

x0 ∈ F ⇐⇒ (B ∩ S1(x0) = ∅ and B ∩ S2(x0) = ∅)

⇐⇒ B ∩ CJ = ∅,beause the set B is anti-symmetri, i.e. B = −B. Hene, x0 ∈ F if and only if J ∈ P , and then
−b j

−b

b j

b

d0

| u, d0 | < 1

0

0

S1(x )

S2(x )

bk2

bk3

bk1 −b j

−b

b j

b

d0

| u, d0 | < 1

0

0

S1(x )

S2(x ) bk1

bk2

bk3Figure 3: On the left, (S1(x0) ∪ S2(x0)) ∩ B = ∅ and then x0 ∈ F , on the right S2(x0) ∩ B 6= ∅and then x0 /∈ F .
KJ ⊂ F if and only if J ∈ P . Thus ∪J∈PKJ ⊂ F implying that ∪J∈PK̄J ⊂ K.For all y ∈ R

2, from (13) there exists some J ∈ P suh that y ∈ C̄J and then there is x ∈ K̄Jsuh that y = Ax. Sine x ∈ K, from Theorem 1, it is onluded that ϕ(y) = x. Hene, ∀x ∈ R
p,

ϕ(Ax) ∈ ∪J∈PKJ and then K ⊂ ∪J∈PKJ , that is K = ∪J∈PKJ and F = K. Moreover ∀x ∈ KJ ,
J = {j, l}, Ax = AI x̄ where I = {ψ(j), ψ(l)} we have x̄ = A+

I AI x̄. Hene ∀y ∈ CJ , ϕ(y) = A+
I yand then ϕ is linear from CJ to KJ . It follows that ∀(y1, y2) ∈ (R2)2,

‖ϕ(y1)− ϕ(y2)‖2 6 max
J∈P

∥

∥A+
I

∥

∥

2,2
‖y1 − y2‖2 with ∥

∥A+
I

∥

∥

2,2
= max

x∈S

∥

∥A+
I x
∥

∥

2
(14)Thus, maxJ∈P

∥

∥A+
I

∥

∥

2,2
is the best Lipshitz onstant assoiated to the funtion ϕ.8
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x AxFigure 5: Right: The ones KJ ⊂ F orrespond to the edges, here in red, of the unit ℓ1-ball. Left:The images by A of these edges are the (red) edges of the onvex hull of the polytope (±aj)j6p.2.2 Example in three dimensions n = 3We now investigate the ase n = 3 where (ai)i6p and ‖aj‖2 = 1, ∀j 6 p. To give a geometriintuition of what happens in dimension 3, some properties of spherial triangulation are realledin the following. To begin, de�nitions of faets and spherial aps are given.De�nition 4 Let (xl)l6n ∈ S a set of vetors on the unit sphere and J ⊂ {1, · · · , n}, suh thatpoints (xj)j∈J are oplanar and suh that dim(Span(xj)j∈J ) = 3. The set (xj)j∈J is alled a faetof the set (xl)l6n. There is a vetor x suh that for all j ∈ J , 〈xj , x〉 = 1. The spherial ap SJassoiated to the faet (xj)j∈J is de�ned by
SJ = {u suh that 〈u, x〉 > 1} ∩ S (15)Then one de�nes a general triangulation on the sphere S.De�nition 5 A triangulation T of (xi)i6n ∈ R

3 is a set of triplets (i, j, k) with an adjaenerelationship. If (i, j, k) ∈ T , the segments (i, j), (j, k) and (k, i) belong to two triangles.A spherial Delaunay triangulation is de�ned byDe�nition 6 A spherial Delaunay triangulation of a set (xi)i6n ∈ S is a triangulation T suhthat for any J = (i, j, k) ∈ T , no vetors xl, for l /∈ J belongs to the ap SJ , SJ ∩ (xl)l6n = ∅.9



This de�nition is an extension of the de�nition of a Delaunay triangulation in the plane, whereinteriors of irumirles of triangles of the triangulation for points (xi)i6n do not interset the set
(xi)i6n.

d0

| u, d0 | < 1

aj
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ai

Figure 6: Example of 3D spherial aps assoiated to a vetor x suh that ‖x‖0 = 3 and x(i) >
0, x(j) > 0 and x(k) > 0.

ai

Ci,j,k

aj

ak

Figure 7: Example of a one Ci,j,k belonging to the set T .The following lemma is needed to ensure that, for a spherial Delaunay triangulation, the onlypoints bj on the border of a spherial ap SJ are bj , for any j ∈ J . This lemma atually guaranties,under the hypothesis (UC), the uniity of the spherial Delaunay triangulation. The proof of thelatter assertion is omitted here.Lemma 1 Assume that A satis�es (UC) and T is a spherial Delaunay triangulation of the set
B. For all J = (i, j, k) ∈ T ,

S̄J ∩ B = {bi, bj, bk} (16)that is if the ap SJ is de�ned by (15), ∀m /∈ J, 〈bm, u〉 < 1 and then ∀l 6 2p, 〈bl, u〉 6 1.Proof: Let's de�ne x0 = σiδψ(i) + σjδψ(j) + σkδψ(k), and I = (ψ(i), ψ(j), ψ(k)) its support.
A satis�es ondition (UC), then ∀m /∈ I, |〈am, d0〉| 6= 1, where d0 = AI(A

t
IAI)

−1sign (σi, σj , σk).From the de�nition of the spherial Delaunay triangulation, SJ∩B = ∅ and then, ∀l 6 2p, 〈d0, bl〉 6

1. Equation 〈u, d0〉 = 1 is that of the plane (bi, bj, bk), sine 〈bi, d0〉 = 〈bj , d0〉 = 〈bk, d0〉 = 1. Wethen dedue that there are no other points bm satisfying 〈bm, d0〉 > 1, whih onludes the proof.10



For any set of points (xi)i6n in R
3, the triangulation of the onvex hull is a spherial Delaunaytriangulation and then there is always suh a triangulation. Let T be the spherial Delaunaytriangulation of B. Sine T is a triangulation of B, ∀y ∈ R

3, there is J ∈ T suh that y ∈ C̄J , andthen
R

3 = ∪J∈T C̄J (17)We now prove that ∀J ∈ T , KJ ∈ F . Suppose that J = (i, j, k) ∈ T and x0 ∈ KJ . The set
I = (ψ(i), ψ(j), ψ(k)) is the support of x0. One �rst noties that rank(AI) = 3 and then is maximal.Equation 〈u, d0〉 = 1, where d0 = AI(A

t
IAI)

−1sign (σi, σj , σk), is then the equation of the planede�ned by the points (bi, bj , bk). Hene ondition F (x0) = maxm/∈I |〈am, d0〉| = maxl/∈J |〈bl, d0〉| <
1 is equivalent to assert that S̄J ∩ (B\(bi, bj, bk)) = ∅. Sine x0 ∈ KJ , J ∈ T and T is a spherialDelaunay triangulation, from Lemma 1, it is straightward to seen that S̄J ∩ (B\(bi, bj, bk)) = ∅.As a onsequene, F (x0) < 1 i.e. x0 ∈ F . Hene ∪J∈TKJ ⊂ F . Using the same arguments as theprevious subsetion, it is easy to prove that K = ∪J∈T K̄J and that ϕ is linear from CJ to KJ .Here again, inequality (14) holds and maxJ∈P

∥

∥A+
I

∥

∥

2,2
is the best Lipshitz onstant assoiatedto ϕ. For any dimension n, the set K is a union of ones K = ∪J∈PK̄J , where KJ ⊂ F .3 A su�ient and neessary ondition of identi�abilityIn this setion we givethe proofs of Theorems 1, 2 and 3. The proof of Theorem 1 is split into twopropositions. The �rst one orresponding to a su�ient ondition on x0 to be identi�able:Proposition 1 If x0 ∈ K then x0 is identi�able, that is x0 is the unique solution of P1(Ax0).The seond one orresponds to a neessary ondition for x0 to be identi�able:Proposition 2 Let A be a matrix satisfying (UC), for any y ∈ Im (A) there is a unique solution

x0 of P1(y), moreover x0 ∈ K.More preisely, one proves that if A satis�es ondition (UC), for any y ∈ Im (A), the solution ofP1(y) is unique and is in K. After developing the main key ideas giving a �avour of the proof, theproofs of Proposition 1, Proposition 2, Theorem 2 and Theorem 3 are detailed in four subsetions.Some intermediate tehnial lemmas will be needed. For the sake of oniseness, their proofs aredeferred to the appendix awaiting inspetion by the genuinely interested reader.3.1 Strategy of proofAs previously mentioned, this paper fouses on the properties of the minimizer of P1(y, γ) for asmall γ. A key ingredient of this proof is to notie that if x(γ) is the unique minimizer of P1(y, γ),then x(γ) is the unique minimizer of P1(Ax(γ)) that is x(γ) is identi�able.To prove Proposition 1, it is shown that any x0 ∈ F is the unique solution of P1(y1, ε) for asuitable y1 and ε, and then that x0 is identi�able. The rest of the proof relies on the fat that anyvetor x0 ∈ K an be extended into a vetor x1 ∈ F . To prove Proposition 2, it is argued thatthere is a sequene of x(γn), solutions of P1(y, γn) belonging to F and tending to a vetor x0 suhthat y = Ax0.The proof of Theorem 2 uses the fat that x(γ), solution of P1(y, γ) varies on a ontinuouspieewise linear urve when γ varies. As a byprodut, the proof of this theorem establishes thestability of P1(y, γ) to a small variation of y.To show Theorem 3, it is �rst proved that all solutions of P1(y, γ) have the same image by
A, using onvexity. The uniity and the fat that this solution belongs to K is a onsequene ofTheorem 1.3.2 If x0 ∈ K, then x0 is identi�ableTo prove that x0 ∈ K is a su�ient ondition for x0 to be identi�able we do not require that Asatis�es ondition (UC). The following lemma establishes that x0 ∈ F is a su�ient ondition for
x0 to be identi�able. 11



Lemma 2 If x0 ∈ F , x0 is the unique minimizer of P1(Ax0).Proof: The proof is started by appealing to the following lassial optimization lemma,whih gives su�ient onditions under whih a vetor x∗ is the unique minimizer of P1(y, γ), see[17, 18℄.Lemma 3 The three following onditions are su�ient for x∗ to be the unique minimizer ofP1(y, γ)1. AtI(y −Ax∗) = γ(sign (x̄∗)),2. |〈aj , y −Ax∗〉| < γ for any inative vetor aj assoiated to x∗,3. AI is full rank.where I is the support of x∗.Moreover x∗ satis�es the following impliit relationship:
x̄∗ = A+

I y − γ(A
t
IAI)

−1sign (x̄∗) . (18)Let x0 ∈ F , and AI be the assoiated ative matrix and ε > 0 suh that
sign

(

x̄0 + ε(AtIAI)
−1sign (x̄0)

)

= sign (x̄0) . (19)If ε is small enough the previous relation (19) always holds.Let x1 be the vetor satisfying I(x1) = I(x0) = I and de�ned by x̄1 = x̄0 + ε(AtIAI)
−1sign (x̄0)and y1 = Ax1. By onstrution x1 ∈ F and y1 −Ax0 = εAI(A

t
IAI)

−1sign (x̄0) and then
AtI(y1 − Ax0) = εAtIAI(A

t
IAI)

−1sign (x̄0) = εsign (x̄0) .Moreover, for all inative vetor aj ,
|〈aj , y1 −Ax0〉| = ε|〈aj, AI(A

t
IAI)

−1sign (x̄0)〉| 6 εF (x0) < ε.Then Lemma 3 implies that x0 is the unique minimizer of P1(y1, ε).Then, for any x2 ∈ R
p,

1

2
‖y1 −Ax2‖

2
2 + ε ‖x2‖1 >

1

2
‖y1 −Ax0‖

2
2 + ε ‖x0‖1 . (20)In partiular, if Ax2 = Ax0, the relation (20) implies that ‖x2‖1 > ‖x0‖1, i.e. x0 is identi�ablewhih onludes the proof of the lemma.Let x0 ∈ K, and let x2 ∈ R

p suh that Ax0 = Ax2 and ‖x2‖1 6 ‖x0‖1. Sine x0 ∈ K, there is avetor x1 whose support is disjoint from that of x0, suh that x0 + x1 = x3 ∈ F . Let x4 = x2 + x1,by de�nition Ax4 = Ax3 and
‖x4‖1 6 ‖x2‖1 + ‖x1‖1 6 ‖x0‖1 + ‖x1‖1 = ‖x3‖1 , (21)whih implies, from lemma 2 that x4 = x3 and then x2 = x0. That is, x0 is identi�able.3.3 If x0 is identi�able, x0 ∈ KIn this subsetion, A is supposed to satisfy ondition (UC). As mentionned in the strategy of theproof, subsetion 3.1, we start by showing that under ondition (UC), a solution x(γ) of P1(y, γ)is in F , for small γ.Let y ∈ Im (A), γn > 0 a sequene of real numbers deaying to zero, and x(γn) a sequeneof solutions of P1(y, γn). Suh a sequene does not need to be uniquely de�ned and an arbitrarysolution is hosen for eah γn. Up to the extration of a sub-sequene, it is supposed that thesequene x(γn) onverges to some x0. From the de�nition of x(γn), ‖y −Ax(γn)‖22 +γn ‖x(γn)‖1 6

γn ‖z‖1, where z is a vetor suh that y = Az and then ‖y −Ax(γn)‖2 → 0 when γn → 0 and then
Ax0 = y. Let n0 suh that ∀n > n0, I(x0) ⊂ I(x(γn)). From now, it is assumed that n > n0. Weuse the following optimization lemma (see e.g. Fuhs [18℄) and ondition (UC) to prove that therank of the ative matrix AI assoiated to x(γn) is maximum.12



Lemma 4 A neessary and su�ient ondition for x(γ) to be a minimizer of P1(y, γ) is that x(γ)satis�es the two following onditions
AtI(y − AI x̄(γ)) = γsign (x̄(γ)) , (22)

|〈ak, y −AI x̄(γ)〉| 6 γ for all inative vetors (ak)k/∈I . (23)where I = supp (x(γ)) and x̄(γ) is the vetor obtained by keeping the non-zero omponents of x(γ).Let's suppose AI does not have a full rank. There exists a set J ⊂ I and an index k ∈ I \ J suhthat |J | = rank(AJ ) = rank(AI) and ak ∈ Span(aj)j∈J , i.e. ak = AIA
+
I ak. Moreover, (22) impliesthat

AtJ (y −Ax(γn)) = γnsign (x̄J (γn))where x̄J (γn) is the vetor extrated from x(γn) whose omponents are indexed by J . From (22),it is also dedued that
γn = |〈ak, y −Ax(γn)〉|

= |〈AJA
+
J ak, y −Ax(γn)〉|

= |〈ak, A
+t
J AtJ (y −Ax(γn))〉|

= γn|〈ak, A
+t
J sign (x̄J (γn))〉|and then |〈ak, A+t

J sign (x̄J (γn))〉| = 1, whih is impossible sine A satis�es ondition (UC). Hene,the rank of AI is maximum and AtIAI is non-singular.From (22), it follows that̄
x(γn) = A+

I y − γn(A
t
IAI)

−1sign (x̄(γn)) .Then for all j /∈ I
〈aj , y −Ax(γn)〉 = 〈aj , y −AIA

+
I y − γnAI(A

t
IAI)

−1sign (x̄(γn))〉.Sine I(x0) ⊂ I(x(γn)), one has x̄0 = A+
I AI x̄0 and then AIA+

I y = AIA
+
I AI x̄0 = AI x̄0 = y whihgives

〈aj , y −Ax(γn)〉 = −γn〈aj , A
+t
I sign (x̄(γn))〉.Using (23),

|〈aj , A
+t
I sign (x̄(γn))〉| 6 1.Sine A satis�es (UC),

|〈aj , A
+t
I sign (x̄(γn))〉| 6= 1and then

|〈aj , A
+t
I sign (x̄(γn))〉| < 1It follows from Lemma 3 that x(γn) is the unique solution of P1(y, γn) and x(γn) ∈ F . Hene, x0the limit of elements of F , belongs to K.Using Proposition 1, x0 is then the unique solution of P1(Ax0) whih onludes the proof ofProposition 2.3.4 Proof of theorem 2Let y0 and y1 be two elements of Im (A). If y0 and y1 are lose enough, the two assoiatedminimizers x0 = ϕ(y0) and x1 = ϕ(y1) are also lose. More preisely, it will be shortly shown thatthere is a onstant C, independent of y0 and y1, suh that

‖x1 − x0‖2 6 C ‖y1 − y0‖2 (24)owing to the properties of the minimizer of P1(y, γ).Let x0(γ) (resp. x1(γ)) denotes the minimizer of P1(y0, γ) (resp P1(y1, γ)). For all γ > 0,
‖x0 − x1‖2 6 ‖x0 − x0(γ)‖2 + ‖x0(γ)− x1(γ)‖2 + ‖x1 − x1(γ)‖2The following lemma bounds ‖x0 − x0(γ)‖2 and ‖x1 − x1(γ)‖2.13



Lemma 5 For all y ∈ R
n, x(γ), the minimizer P1(y, γ), is a ontinuous funtion of γ and liveson a polygonal path. Moreover x(γ) is C0-Lipshitz where C0 does not depend on y.A proof of this lemma an be found in the appendix. This lemma is at the heart of the homotopymethod, see for example [22, 15℄It follows from this lemma that for all γ > 0

‖x0 − x1‖2 6 2C0γ + ‖x0(γ)− x1(γ)‖2 .To bound ‖x0(γ)− x1(γ)‖2, the stability of the minimization problem P1(y, γ) to a small additivenoise is exploited. This is formally summarised in the following lemma.Lemma 6 There exists two real positive numbers C1 and C2 suh that ∀y0 ∈ R
n if ‖y1 − y0‖2 6

ε 6 ε0 for a noise level ε0 > 0, then,
‖x1(C1ε)− x0(C1ε)‖2 6 C2ε. (25)The proof of this lemma is given in the appendix B.Hene, armed with Lemma 5 and 6, it follows that

‖x0 − x1‖2 6 2C0C1ε+ C2ε = (2C0C1 + C2) ‖y1 − y0‖2 .whih onludes the proof.Unfortunatly, at this point of our work, one does not have any ontrol on the numbers C0, C1and C2 and the Lipshitz property is essentialy a theoretial result and annot stand for a resultof robustness to noise. Nevertheless, empirial �ndings from the numerial experiments learlydemonstrate that, most of the time, there is a real stability to a small noise. Note that sine theondition x0 ∈ K is sharp to ensure identi�ability of x0, it seems di�ult to prove a strong stabilityto noise.3.5 Proof of Theorem 3In many situations suh as signal proessing, statistis and model seletion [?, ?℄ for example, theobservations y are orrupted by noise, y = Ax0 +w, or x0 is not exately sparse. A way to estimate
x0 from y in this non-ideal situation, is to look at x(γ), where γ depends on the noise level ε. Thatis why the solution x(γ) of P1(y, γ) is interesting by itself, not only to haraterize the solution ofP1(y) by lowering γ to 0. The properties of the solutions x(γ) to P1(y, γ), has been already studiedin statistis although in the over-determined setting p < n, see the homotopy method of Osborneet al. [22℄, and LARS/LASSO of Efron at al. [15℄.Theorem 3 ensures that, if A satis�es ondition (UC), x(γ) is always uniquely de�ned andbelongs to K.Proof: Let y ∈ R

n, γ > 0 and x1 and x2 be two solutions of P1(y, γ). One neessarily has
Ax1 = Ax2. Indeed, suppose that Ax1 6= Ax2. Let x3 = 1

2 (x1 + x2), from the onvexity of thenorm map x 7→ ‖x‖1
‖x3‖1 6

1

2
(‖x1‖1 + ‖x2‖1) (26)From the strit onvexity of the mapping Z 7→ ‖y − Z‖22

‖y −Ax3‖
2
2 <

1

2

(

‖y −Ax1‖
2
2 + ‖y −Ax2‖

2
2

) (27)and then
1

2
‖y −Ax3‖

2
2 + γ ‖x3‖1 <

1

2
‖y −Ax1‖

2
2 + γ ‖x1‖1whih ontradits the initial de�nition of x1.Hene if there are two minimizers x1 and x2 we neessarily have Ax1 = Ax2 and then ‖x1‖1 =

‖x2‖1.Sine x1 is a minimizer of P1(y, γ), x1 is also a minimizer of P1(Ax1). We dedue from Theorem1 that x1 ∈ K and that x1 is the unique minimizer of P1(y). Thus x2 = x1 and x1 is the uniqueminimizer of P1(y, γ). 14



4 Algorithm and numerial experiments4.1 Algorithm SupportExtensionThe ondition x0 ∈ F is diretly veri�able, sine there is an expliit formula to de�ne F (x0) evenif the omputation may be instable if the matrix AI is badly onditioned. There is however nostraightforward expliit formula guaranteeing that x0 ∈ K.This setion proposes a semi-greedy algorithm to hek whether x0 ∈ K. This algortihm is builtupon the following proposition.Proposition 3 Let x0 ∈ R
p, and A a matrix satisfying ondition (UC), if there exists a vetor

x1 ∈ F suh that x1 is an extension of x0, and suh that for all j ∈ I(x1)\I(x0)

sign (x1(j)) = −sign (v(j))where v is the vetor whose support is equal to the support of x1 de�ned by v̄ = (AtIAI)
−1sign (x̄1),where I = I(x1), then there is some γ0 > 0 suh that for all γ 6 γ0, the solution x(γ) of P1(Ax0, γ)is unique and

x(γ) = x0 − γv.In the following, the notation F+(x0) = F (x1) is used.To prove this proposition, it is su�ient to hek that x0 − γv satis�es the three onditions ofLemma 3 for small γ.The algorithm SupportExtension extends vetor x0 into a vetor x1 adding or removing itera-tively omponents to x1 in suh a way that the quantity
F (x1) = max

j /∈I=I(x1)
|〈aj , A

+t
I sign (x̄1)〉|dereases.The main steps of the support extension algorithm are summarized as follows:Algorithm 1 SupportExtension1: Set x1 ← x0, I ← I(x1).2: while AI does not have full rank and F (x1) > 1 do3: Compute

j0 = arg max
j /∈I
|〈aj , A

+t
I sign (x̄1)〉|4: x1(j0)← sign

(

(A+
I aj0)

tsign (x̄1)
), I ← I(x1)5: v̄ ← (AtIAI)

−1sign (x̄1),6: For all k ∈ I\I(x0) suh that
v(k)x1(k) > 07: Set x1(k)← 0, I ← I(x1).8: end whileIf the algorithm terminates by �nding a vetor x1 suh that F (x1) < 1, then x0 ∈ K. However,if the algorithm stops only beause the matrix AI has full rank, then it is possible that x0 /∈ K.To hek the e�ieny of SupportExtension, 200 000 ouples of matries-vetors (A, x) have beenrandomly hosen with di�erent matrix sizes and di�erent sparsity levels. For eah ouple, thealgorithm SupportExtension and the ℓ1 minimization solver SolveBP of the matlab toolbox Sparse-Lab http://sparselab.stanford.edu have been applied. The �nding of this experiment wasthat identi�ability as revealed by the algorithm SupportExtension oinided with exat reovery bySolveBP for all vetors, exept one identi�able vetor that was not reognized by SupportExtension.4.2 Computational omplexityThe bulk of omputational omplexity of this algorithm is invested in the matrix inversion (AtIAI)

−1at eah step, whih is a d × d matrix, where d = |I|. If p ≫ n, omputing all salar produts15



〈aj , A
+t
I sign (x̄1)〉 may be more time-onsuming osting O(pn) �ops. But this situation has notbeen tested. Sine rankAI 6 n and AI has full rank one always has d 6 n. Moreover, numerialexperiments show that the removal steps orresponding to v(k)x1(k) > 0 are rare and the numberof steps is in pratie always bounded by n. Hene the omputational omplexity is O(n3).Some simpli�ed versions of SupportExtension have been tested, omiting the element removal stepor seleting several indies j0 at eah step. These versions are faster but may fail to reognize asmall number of identi�able vetors.4.3 Comparison to other riteriaThe identi�bality riteria reviewed in the introdutory part of the paper, namely F, ERC andoherene C have been ompared. Sine these riteria an be ranked as

(‖x‖0 6 C(A)) =⇒ ERC(I(x)) > 0 =⇒ F (x) < 1 =⇒ F+(x) < 1 (28)they are ompared pairwise. To do so, a matrix size is �xed (e.g.n = 300, p = 1200) and matries
A are randomly generated from the uniform spherial ensemble. For eah matrix A, eah supportsize s between 1 and 150, a vetor x0 is generated suh that ‖x0‖0 = s with random signs. Foreah matrix A and vetor x0, the solution of P1(Ax0) is denoted x⋆. The identi�ability of x0 ismeasured by

RA(x0) = 1−
1

2s
‖sign (x̄⋆)− sign (x̄0)‖0where x̄ is the vetor extrated from x keeping only the s largest omponents in magnitude.Obviously, 0 ≤ RA(x0) ≤ 1 and RA(x0) = 1 orresponds to an identi�able vetor. The quantity

F+
A (x0) is estimated by SupportExtension algorithm. To ease the omparison between all riteriaone de�nes CA(x0) = 1

2 (1+1/C(A))−‖x0‖0 and to esae the omparison between ERC, F and F+one also de�nes FA(x0) = 1− F (x0) and F+
A (x0) = 1− F+(x0).Eah point on eah plot of Figure 8 orresponds to a randomly generated triplet (A, s, x0). Theplots of the top row of Figure (8) ompare eah riterion to its suessor aording to the rankingrelation (28). The shaded retangle on eah plot delimits the vetors x0 for whih the riterionon the absissa fails to reognize them as identi�able, whereas the riterion on the ordinate axissueeds in identifying them. These plots learly on�rm the ranking relation (28) of these riteriain terms of their ability to properly reognize identi�able vetors. In partiular, F+

A is learlybetter than F and is then a sharper test of exat reovery by ℓ1 minimization.The plots of the seond row of Figure 8 depit the exat reovery suess measure RA as afuntion of eah identi�ability riterion. The riterion F+ is strikingly better than its ompetitors,showing a sharp phase transition at 1 as expeted. F+ is the only riterion showing this behaviourwhile the other riteria fail to positively test many identi�able vetors (shown in the gray shadedretangles).Another way to see the gap between onditions ERC > 0, F < 1 and F+ < 1 is to ompare theproportion of vetors, for a given sparsity, that satisfy these onditions. By proportion, we meanthat for a given sparsity d the number of half ones of vetors with the same non-zero omponentsand the same signs is 2d
(

d
p

). Among these ones, some orrespond to vetors satisfying some ofthe three above riteria. The goal of this experiment is to estimate the proportion of these ones.In this simulation, a size of matrix is �xed (here 200 × 1000). For eah sparsity d, 5000 ouples
(A, x) are randomly generated as in the previous test, and the three iteria ERC > 0, F < 1 and
F+ < 1 are omputed (F+ < 1 is estimated by the algorithm SupportExtension). Figure 9 depitsthe proportions of vetors satisfying eah of the three riteria as a funtion of the sparsity d. This�gure does not ensure that there is no vetors x that are not identi�able when ‖x‖0 6 35, it onlyshows that they are not numerous. Atually one an build vetors that are not identi�able withless than 16 non-zero omponents using a greedy algorithm �nding a sparse vetor x0 suh that
‖d0‖2 =

∥

∥AI(A
t
IAI)

−1sign (x̄0)
∥

∥

2
is as large as possible.
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x̄(γ) = A+
I y − γ(A

t
IAI)

−1sign (x̄(γ1)) (29)where AI is the ative matrix assoiated to x(γ1) and x(γ2). Hene x(γ) is on the segment
[x(γ1), x(γ2)].We denote (γi)i the �nite sequene of values orresponding to a variation of the support of
x(γ); that is (γi)i are the values at the breakpoints of the polygonal path of x(γ). The funtion
x(γ) is then loally a�ne, hene ontinuous, exept at points γi.It remains to show that x(γ) is ontinuous on the left and on the right of points γi.Let γi0 be any of these points. For all γ ∈]γi0−1, γi0 [, x(γ) an be written x(γ) = xi0−1−γvi0−1.Let's denote x∗ = xi0−1 − γi0vi0−1.By onstrution, the support of x∗ is inluded in the support of x(γ) for γ ∈]γi0−1, γi0 [. Fur-thermore, x∗ satis�es both onditions of Lemma 4 with γ = γi0 . Then, x∗ = x(γi0 ). Using similararguments, we an also show that x(γi0 ) is the limit of x(γ) when γ tends to γi0 on the right. Wethen obtain that x(γ) is a pieewise a�ne and ontinuous funtion of γ.Sine for all y and γ > 0, x(γ) = A+

I y − γ(A
t
IAI)

−1sign (x(γ)) and sine (AtIAI)
−1sign (x(γ))an take a �nite number of values, there's a real number C0 depending on A but not on y, suhthat x(γ) is C0-Lipshitz. This onludes the proof.17
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Figure 9: Proportions of vetors satisfying eah of the three riteria ERC > 0, F < 1 and F+ < 1as a funtion of sparsity d. The blak line orresponds to the ondition ERC > 0, the green line to
F < 1 and the red one to F+ < 1.Appendix B - Proof of Lemma 6Let y0 ∈ Im (A) and x0 = ϕ(y0), the solution of P1(y0). We denote x0(γ) the solution ofP1(y0, γ).From lemma 5, x(γ) lives on a polygonal path, and from the proof of proposition 2, one knowsthat x(γn) ∈ F for a sequene of γn tending to zero, thus one an dedue that there is a nonnegative real number γ0 and a vetor v suh that ∀γ ∈]0, γ0[ suh that x0(γ) ∈ F , supp (x0) ⊂
supp (x0(γ)) = supp (x0(γ0)) = I and x0(γ) = x0 + γv. One an suppose γ0 6

xmin

2‖v‖
∞

, where xmindenotes the smallest absolute value of non zero omponent of x0.Moreover for γ 6 γ0 and for all inative vetor (aj)j /∈I ,
|atj(y −AI x̄0(γ))| 6 γF (x0(γ0)) = γF+ < γ. (30)For a matrix B, one denotes ‖B‖2,∞ = sup

x 6=0

‖Bx‖∞
‖x‖2

.Let ε < γ0vmin

2‖A+

I ‖2,∞

and y1 ∈ Im (A) suh that ‖y1 − y2‖2 6 ε, where vmin denotes the smallestabsolute value of non zero omponent of v. For all γ ∈ [
2ε‖A+

I ‖2,∞

vmin
, γ0], one de�nes vetor x∗1(γ)whose support is equal to I and de�ned by

x̄∗1(γ) = x̄0 + γv̄ +A+
I (y1 − y0) (31)where x̄ is obtained keeping omponents of x indexed by I. Hene, with this de�nition, x̄0 mayhave some zeros omponents.To prove x∗1(γ) is the solution of P1(y1, γ), one �rst shows that sign (x̄∗1(γ)) = sign (x̄0(γ)).

‖γv̄‖∞ 6
xmin

2
(32)

∥

∥A+
I (y1 − y0)

∥

∥

∞
6
∥

∥A+
I

∥

∥

2,∞
ε 6

γvmin

2
6
xmin

4
(33)Hene x̄∗1(γ) is the sum of three vetors x̄0, γv̄ and A+

I (y1 − y0). The sign of this sum will begiven by x̄0(i) if it's non zero and by γv̄(i) if it is. Then, if for i ∈ I, x0(i) 6= 0, then
sign (x∗1(γ)(i)) = sign (x0(i)) = sign (x0(γ)(i)) (34)18



else if for j ∈ I, x0(j) = 0, then
sign (x∗1(γ)(j)) = sign (γv(j)) = sign (x0(γ)(j)) (35)Hene, sign (x̄∗1(γ)) = sign (x̄0(γ)).Using lemma 4 one proves that x∗1(γ) is the solution of P1(y1, γ), if moreover

ε 6
γ(1− F+)

maxj ‖aj‖2
(36)On a �rst hand we have

AtI(y1 −AI x̄
∗
1(γ)) = AtI(y0 −AI x̄0(γ)) +AtI(y1 − y0 −AIA

+
I (y1 − y0))

= γsign (x̄0(γ))

= γsign (x̄∗1(γ)) .On a seond hand, for all inative vetor (aj)j /∈I , we have
|atj(y1 −AI x̄

∗
1(γ))| 6 |a

t
j(y0 −AI x̄0(γ))|+ |a

t
j(y1 − y0 +AIA

+
I (y1 − y0))|

6 γF+ + ε ‖aj‖2
6 γand then x∗1(γ) = x1(γ) is the solution of P1(y1, γ). Finnally if γ 6 γ0 and

ε 6 min

(

γ(1− F+)

maxj ‖aj‖2
,

γvmin

2
∥

∥A+
I

∥

∥

2,∞

)

=
γ

C1
(37)then,

‖x1(γ)− x0(γ)‖2 =
∥

∥A+
I (y1 − y0)

∥

∥

2
6 C2ε. (38)Constants C1 and C2 an take only a �nite number of values and then taking γ = maxx0

(C1)ε,whih is always possible if ε 6 ε0 = γ0
max(C1)
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