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Abstract

The minimum £;-norm solution to an underdetermined system of linear equations y = Ax,
is often, remarkably, also the sparsest solution to that system. Since the seminal work of
Donoho and co-workers, we have witnessed a flurry of research activity which has focused on
sufficient conditions ensuring a unique sparsest solution, in both noiseless and noisy settings.
This sparsity-seeking property is of interest in many practical areas such as image and signal
processing, communication and information theory, etc. However, most of these sufficient
conditions are either too pessimistic although easily computable (e.g. bounds with mutual
coherence), or sharp but difficult to check in practice.

In this paper, we provide a necessary and sufficient condition for x to be identifiable for a
large set of matrices A; that is to be the unique sparsest solution to the ¢;-norm minimization
problem. Furthermore, we prove that this sparsest solution is stable under a reasonable pertur-
bation of the observations y. We also propose an efficient semi-greedy algorithm to check our
condition for any vector z. We present numerical experiments showing that our condition is
able to predict almost perfectly all identifiable solutions x, whereas other previously proposed
criteria are too pessimistic and fail to identify properly some identifiable vectors x. Beside the
theoretical proof, this provides empirical evidence to support the sharpness of our condition.

Keywords: Sparse representations, underdetermined linear systems, ¢;-minimization, identi-
fiable vectors.

1 Introduction

1.1 Sparse Recovery

Let A be a matrix whose columns vectors (a;);<p are p vectors of R”, where n < p (dimension of
observations n is much smaller than that of data p). Let o € R? and y = Axg. x¢ can be seen as
a data vector and y as observations of these data.

One wants to recover data xg from the observations y. However, because the underlying linear
system is underdetermined, recovery of the overcomplete representation vector xy from y faces
an apparent obstacle, based on elementary linear algebra. Nevertheless, although the problem of
recovering of z( is admittedly ill-posed in general, introducing the hypothesis that zy has a simple
structure can radically change the situation. In this case, one can hope to properly recover xg from
y under appropriate conditions.

The sparsity assumption is to suppose that zy has few non-zero components. Such a hypothesis
on the structure of xy can often be rephrased as : the expansion of zy in a familly of vectors is
essentially supported on a few of them.

As a measure of sparsity of a vector x, we may take the {y (quasi)-norm ||z[|,, which is the
number of non-zero components of z. Hence, if 2y has few non-zero components, one can hope



that xg is the unique minimizer of

min [|z||, under the constraint Az =y Po(y)
x

with y = Axg. We will refer to this problem by Py(y) to specify the second member.

This is an NP-hard problem since there is no way to solve it except testing all possible k-collections
of columns of A with k =1,...,p, and looking for the smallest k-collection that synthesize y. That
is why [12] proposed to substitute this highly non-convex problem with the following convex ¢;
minimization problem

min ||z||; under the constraint Az =y P1(y)
x

with y = Axg. We will refer to this problem by P (y) to specify the second member.

It is well known that under appropriate conditions, both problems Py(y) and P;(y) share the
same solutions; see [10, 12, 16, 23, 20] to cite only a few. Furthermore, several conditions on xg
have been proposed in the literature to guaranty the uniqueness of the solution x( to the problem
P (Axg). Before proceeding, we will need some terminology that will be used in the remainder of
the paper.

Definition 1 A wvector xq is said to be identifiable if it is the unique solution to P1(Axg).

Notations The support of xg and its cardinal are defined by

supp (xg) = I = {i|zo(i) #0} C {1,...,p} and |I| = |supp (zo) | = ||zo]|, -

The vector T is obtained by selecting from x components with indices in its support. The
matrix Ar = (a;),; is obtained by selecting the columns of A indexed by I. This matrix is called
the active matrix associated to the set I. The active matrix A; associated to a vector zg is the
active matrix associated to the support I of xg. The columns (a;);c; are called active columns or
vectors and (a;);¢; are called inactive columns or vectors. The pseudo-inverse AT of Ay is defined
as

Af = (ALA) 1AL,

A vector zg is said to be included in a vector x; if supp (z¢) C supp (x1) and sign (zg) = sign (z1)
on their common support. The vector x; is an extension of the vector xq if the latter is included
in the former.

The vector 6, € R? is such that ||dx[|, = 1 and 65 (i) = 1 and 0 otherwise.

1.2 State of affairs
1.2.1 The coherence

The most popular sufficient condition that guaranties the identifiablility of x( relates its support
supp (zo) to the coherence of A :

O(4) = max 10000 )
2 il Tas
If
1] = zolly < 2(1+ =) (2)
- 70l > 5 C

then x is identifiable, moreover xq is also the solution of (1.1). This bound has appeared in many
papers, e.g. [12, 10, 16, 23, 20].

This bound on the cardinal of supp (z¢) is optimal if one does not have any additionnal in-
formation on A. Donoho and Elad [10] proposed to improve this bound using the Spark of A.
Spark (A) is defined as the minimal number of linearly dependent vectors a;. Estimating Spark (A)
is computationly prohibitive. Moreover, it is unstable under a small perturbation of A. That is,
Spark (A) may change dramatically with A.

Although it appears as a simple and computationally tractable a priori test of identifiability,
the coherence-based bound %(1 + %) is pessimistic and can be improved in many situations.



1.2.2 Compressed Sensing

In a series of papers Candés, Tao and Romberg [5, 2, 7, 6, 3, 4] studied different optimization
problems including P;(y) in [7]. They especially investigated [4] a problem where data y may be
corrupted by gaussian noise w whose /3 norm is bounded by €, i.e. y = Azxy + w. The authors
suggested to solve the following minimization problem

min||z]|;  under the constraint |y — Az||, <e (3)
x

where € is the size of the error term.

The authors established conditions on vectors xy ensuring identifiability, equivalence between
solutions of Py(Axg) and P;(Axg), as well as stability to noise. These conditions are uniform on
the cardinal of the support. To state their conditions, those authors have introduced the so-called
Restricted Isometry Hypothesis (RIH) on A. RIH assumes that any subset I, |I| < S of vectors
(a;)icr defining the matrix Ay, is a Riesz basis with the associated constants uniformely controled
by a function dg. For all set of indices I such that |I| < S,

vee R (1—dg)||l2|2 < |Arzl2 < (14 6s) |l )

The RIH requirement states that for all sets I whose cardinal is smaller than S, the mapping A;
approximately acts like an isometry on |I|-sparse vectors.
One of the RIH-based indentifiability conditions requires that

0g + 025 + 035 < 1 (5)

see [4], the reader may find others conditions in [8]. These differents RIH lead to differents results
of recovery and robustness to noise.

Compressed Sensing (CS) theory shows that all vectors such that ||z||, < log?%, are identifi-
able, with a probability close to 1 when A satifies a RIH. The CS recovery results extend also to
vectors xo which are nearly sparse [6]; vectors whose ¢, norm is concentrated on a sparse set. This
point is important in mathematical image or signal processing applications, where x is not exactly
sparse but compressible in some transform domain e.g. wavelets [21], curvelets [1]. However, these
results do not apply to any matrix. Furthermore, for a deterministic A, there is no simple way to
check the RIH and compute the constants dg, except testing all possible |I|-collections of columns
of A which is a combinatorial process. Moreover, it is hard to build matrices satifying RIH for large
S. Consequently, if a matrix A is given and not built to satisfy RIH, we cannot staightforwardly
use CS bounds to ensure that a vector zg is identifiable. To date, the only deterministic contruction
of matrices obeing RIH for large values of S has been proposed in 2007 by R. De Vore [24].

1.2.3 Conditions on support and sign for any matrix A

Although the previous bound (2) is optimal for certain dictionaries (matrices), there are many
vectors violating the coherence-based sparsity bound that are still identifiable. Gribonval and
Nielsen [20] proposed an identifiability criterion which does not depend on the cardinal of supp (zo),
but rather on the support itself. Their criterion can be verified by sparse vectors in the sense of
the bound (2), as well as by other vectors that are less sparse. Unfortunately there is no simple
way to compute their criterion. As previously pointed out for the Spark, their criterion depends
directly on the null space of A and is unstable under small variation of A.

Tropp [23] and Fuchs [18, 19] proposed criteria that apply to any matrix and depends on the

structure of the vector x, not only on |I|. Both authors study solutions of the relaxed problem
1 2
min o [y — Azll; +7 [l2[l, (6)

which is equivalent to the previous minimisation (3), i.e. for all € > 0 there exists a bijection (&)
such that problems (3) and (6) share the same solutions. The limit of the solution of (6) when
it is unique, tends to the solution of P;(y) when ~ tends to 0. Tropp defined the Exact Recovery
Coefficient (ERC) as follows,
ERC(I) =1 —sup || AT a;]|,
3



The ERC is then defined only when A; has full rank. Tropp [23] proved that if ERC(I) > 0, any
vector xg supported in 7 is identifiable. He also showed that ERC(I) > 0 guaranties stability when
obsvervations are corrupted by an additive noise with bounded variance.

From a vector xy Fuchs [18] introduces the following vector

do = A}rtsign (i‘o) e R" (7)

which plays a major role to state recovery conditions for zy. This vectors is spanned by the active
vectors (a;);er. Section 2 presents geometrical interpretations of dy when n equals 2 and 3. Fuchs
proposed sharper sufficiency results by defining a criterion depending on the support and on the
sign of xo through dy.

Definition 2 F is the set of vectors xo such that the active matriz A; associated to xo has full
rank and
F(zo) = max |(a;, A 'sign (Zo))| = max|(a;, do)| < 1.
J¢I jer

Fuchs [18] proved that for all vectors ¢ € F , the minimizer z(y) of (6) is unique for ~ small
enough, tends to xp when v tends to 0, and then that z( is a minimizer of P;(Azg). Note that if
z1 and x5 have the same support and the same sign, x; € F implies x5 € F. Hence F is the union
of cones of various dimensions. The condition F(z) < 1 asserts that the correlation between dg
and all inactive vectors (a;);¢; is stricly smaller than 1.

Donoho in [9] proposed a necessary and sufficient condition to ensure that a vector z is a
minimizer of P;(Az). The author considered the image of the unit ¢;-ball by A, which is the
polytope whose vertices are (£a;);<p, and associated to each vector x the corresponding facet
H(x) of the ¢; ball. Hence, this facet H(z) depends only on the sign and support of . Donoho
proved that z is a minimizer of P;(Az) if and only if the image of the facet H(x) belongs to the
convex hull of the image of the unit ¢;-ball by A. This geometrical and topological condition was
subsequently used by Donoho and Tanner [14, 13] to estimate the number of vectors  minimizing
P, (Ax) for a given sparsity. The authors propose sharp results for random projectors and show
that the bounds derived from ERC or Compressed Sensing are often pessimistic.

The new condition proposed in this paper is strongly linked with both conditions proposed by
Fuchs [18] on the one hand, and by Donoho [9] on the other hand.

1.3 Contributions

If no hypothesis are made on A, it may happen that for some y, P;(y) has several solutions, for
example if two vectors a; and a; coincide. The question of the identifiability of a vector zg is then
ill-posed. The following condition coined (UC), which stands for Unicity Condition, guarantees the
unicity of the minimizer of P;(y) for any y € Im (4).

Definition 3 A satisfies condition (UC) if, for all subsets I C {1,...,p}, such that (a;)ics are
linearly independent, for all indices j ¢ I and all vectors S € {—1, 1}‘”,

[{aj, AT"S)] #1 (UC)

ie for all xo such that Ay has full rank and for all j ¢ I

[(aj, do)| # 1 (8)
where dg is the vector defined in section 1.2.3 by (7). In words, the correlation between any sign
vector and the projection of a; on the subspace spanned by (a;)icr is never exactely 1 or —1.

This condition implies that there is no vector xy such that F'(z¢9) = 1 and no vectors such that
ERC(I(zg)) = 0.

The main contribution of this paper is Theorem 1 which provides a necessary and sufficient
condition for zy to be identifiable for the set of matrices A satisfying condition (UC).

Theorem 1 Suppose that A satisfies condition (UC). Then xq is identifiable if and only if xo € K,
where IC is the closure of F.



More precisely, the condition xg € K is always a sufficient condition for xg, to be identifibale. If A
satisfies the (UC) condition, it becomes also a necessary condition.
Theorem 1 allows then to define the mapping ¢

{Im(A) — K o)

Y — x solution of problem Py (y)
The mapping ¢ is a non-linear inverse of the linear map A. The following theorem controls the
continuity of .

Theorem 2 If A satisfies condition (UC), then ¢ is uniformly Lipschitz, hence continuous.

The set K is composed of any vector that can be extented to yield a vector belonging to F. This
means that for any vector zy € I there is a vector x; whose support is disjoint from the one of xg
such that xg +x1 = 29 € F.

Condition zg € K cannot be easily verified. To circumvent this difficulty section 4 proposes a
semi-greedy algorithm termed SupportEztension, which exploits the above characterization of IC
to recognize those vectors which are in L. More precisely, the success of this algorithm guarantees
that 2o € K, but its failure does not ensure that zo ¢ K. Actually, simulations did not provide any
identifiable xg such that the algorithm fails, but they may exist.

The study of the relaxed formulation (6) associated to problem Py(y) is at the heart of the
proof of Theorem 1 and 2. These two optimization problems are closely linked and Theorem 1
leads to the following result.

Theorem 3 If A satisfies condition (UC), for any y € R™ and v > 0, the minimizer x(v) of

1 2
lly— Az + el
is unique and belongs to IC.

Actually, Theorem 1 leads to a more general result than Theorem 3. Indeed, with a similar proof,
it can be shown that if A satifies (UC), for any closed set D, the set of solutions of

min ||z||; under the constraint Az € D P,(D)
x

is included in K. Moreover, if D is striclty convex, then the solution of P (D) is unique and belongs
to K. It follows that, if A satifies (UC), the solutions of the following minimization problem, see

[6]

min |||, under the constraint ||A*(y — Az)||_ <~
xT o0

belong to K.

1.4 Relation to prior work

One of the first approaches dealing with this identifiability problem proposes a bound on ||z,
based on the coherence of matrix A, see section 1.2.1. This bound (2) is often pessimistic. Two
approaches to improve over this result can be distinguished. The first one adds hypotheses on the
matrix A. Hence, if A obeys some restrictive conditions, bound (2) may be improved. It is the point
of view of compressed sensing, see section 1.2.2. Such an approach, provides bounds on |supp (z¢) |
to guarantee identifiability, and also ensures the equivalence between Py (y) and P1(y). It also has
the drawback to give pessimistic bounds in many situations, see |7, Theorem 1.6]. Compressed
Sensing provides good asymptotic bounds which can be worse than (2).

The second approach abandons the idea of a uniform bound on |supp (o) | and uses supp (z¢)
itself and sometimes even sign (zg). These approaches followed by Gribonval and Nielsen [20],
Fuchs [18] and Tropp [23] may explain why many vectors that are not so sparse are identifiable,
but do not ensure the equivalence between problems Pg(y) and P;(y). This paper improves over
the results of Tropp and Fuchs by providing a necessary and sufficient condition for identifiability
for a large set of matrices A.



This work may be viewed a complementary approach to Compressed Sensing : whereas Com-
pressed Sensing needs a strong hyopthesis on A and gives strong results of recovery, stability and
equivalence between Py(y) and P;(y), this work proposes near minimal hypotheses on A and gives
tight conditions for the ¢; recovery, with minimal stability results and no equivalence between
Po(y) and P1(y).

Following Fuchs [18, 19] and Tropp [23], this papers focuses on the relaxed and convex problem

.1 2
min % [y — Az} + 7 ], Pi(y,7)

More precisely, it investigates the properties of the solutions of P;(y,~) for small . This problem
is refered to as Py (y,y) to specify the second member y and the parameter . A solution of P1(y,~)
will be denoted z(7y).This relaxed formulation P;(y,~y) is particularly well adapted to deal with
observations corrupted by an additional noise y = Axg + w, but can also give information about
the solution of Py (Axy).

As previously mentionned, this formulation is equivalent, under appropriate correspondence of
parameters v and ¢, to (3) used by Candés et al. to develop some Compressed Sensing results [4]
and also by Donoho, Elad Temlyakov [11] and others.

Even if the final condition x € K is derived from algebraic relationships satisfied by the solutions
of P1(Ax, ), it is clearly related to the topological properties of the set F. It turns out that it is also
naturally linked to the topological condition proposed by Donoho [9]. Hence Vz, (u, A} sign (z)) =
1 is the equation of a hyperplane P containing all signed active vectors associated to z, i.e. if
i € supp (z), sign (z(i)) a; € P. Condition F(x) < 1 ensures that all inactive vectors (a;);¢s(x)
belong to the same half-space "below" the hyperplane P. P is then one of the hyperplanes defining
the convex hull of the polytope formed by the vectors (+a;);<,. Moreover if x can be extented
into a vector x1 € F, one can define a hypperplane P containing all signed and active vectors
associated to w1 such that all (£a;);¢7(s,) belong to the same half-space defined by P, i.e. P is
one of the hyperplanes defining the convex hull of (+a;);<p-

Hence if A satisfies condition (UC), both our characterization of identifiability and the one
proposed by Donoho [9] are equivalent. In fact, this paper sheds light on the relation between the
algebraic and the analytical point of view on this characterization. It also provides a condition
ensuring unicity and a fast algorithm to check the identifiability of a vector z.

Section 4 devoted to the numerical experiments shows that there are many identifiable x( that
do not satisfy any of the previous conditions reviewed above. The different bounds derived from
the mutual coherence (2), the ERC or the CS theory are actually too pessimistic. This pessimism
is necessary to get these bounds to be uniform over the support or, even worse, over the cardinal
of the support. We will see that for a given sparsity or a given support, most of vectors may be
identifiable and only a small fraction of them may not.

Hence, this new approach sheds light on those identifiable vectors zy that are not very sparse.
In particular, it gives clues to understand why CS can be used with a good probability of success
beyond theoretical bounds.

All results presented here hold true provided that A satisfies condition (UC). Indeed, as previ-
ously said, the unicity of the solution is important to define the identifiability, and condition (UC)
ensures this uniqueness. It turns out that this condition is not really restrictive. In particular if the
vectors a; are independent and randomly generated according to a probability law with a density,
the probability that A satisfies (UC) is exactly 1.

2 Geometric insight

The analytical details look more complicated than the simple underlying geometry. Hence, before
giving a proof of Theorem 1, some insight may be gleaned by considering the geometry underlying
the set K and condition (UC) for n = 2 and n = 3. In this section A is supposed to satisfy condition
(UC), Im (A) = R™ and the vectors (a;);<, belong to the unit sphere S of R? or R3. We denote
B = (bj)jggp = (:l:ai)igp and bj = 0;Ay(5)» where gj € {—]., 1} and ¢(j) < p.

By definition, F is a finite union of half-cones of various dimensions, each half-cone being
defined by positions and signs of non-zero components. Consequently K is also a union of closed



half-cones. This section exemplifies these half-cones when n = 2 and n = 3 and gives a geometrical
interpretation of the function ¢ as a bijection between two sets of cones.
For a given set J C {1,---,2p}, a half-cone C; in R™ by

Cr=3Y N\b; with \;>0,VjeJ (10)
jeJ
and a half-cone K; in RP
K;= ZO’j)\j(Sw(j) with A\; >0,VjieJ,. (11)
jeJ

Hence C; is the image of K; by A, VJ C {1,---,2p}.
The following theorem explains how application ¢ induces a tiling of sets Im (A) and K.

Theorem 4 For n =2 and n = 3, there is a set P such that
R" = U(]gpéj and K = UJE'/)KJ (12)

where C; and K are the closure sets of Cy and K ;. Moreover, for all J € P, ¢ acts as a linear
bijection from Cy to K.

The purpose of the two following subsections is to describe the set P for n = 2 and n = 3. More
precisely, it is shown that VJ € P K; C F, from which it is deduced that K; is the image of C;
by ¢ using Theorem 1.

2.1 Example in two dimensions n = 2

First, we note that condition (UC) implies that (b;);<2, are all disctinct. Let’s define the set
P={1,---,2p}? by P = {J = (4,1) such that BN C; = 0}.

One can notice that (j,1) € P if and only if b; and b; correspond to two conscutive points of the
set B on the unit circle S. Hence one gets

R? = U]epéj. (13)

We now prove that for any I € P, K; € F. Suppose J = {j,1} € P and 2y € K. Let’s denote
I ={v(j),% ()} the support of zo. Since (b;),<2p are disctinct, rank(A;) = 2 and is then maximal.
The vector dj is defined by dy = A}'tsign (0j,01), it is spanned by b; and b; and satisfies

1
1

<d0,a¢(j)> = blgn (O'j) i.e. <d0,bj>
<d0,a¢,(l)> = sign (0’1) i.e. <d0,bl>

This vector dy belongs to the bisector of b; and b;.

a; a; ____dO

‘J

—a; <

—Q; _—_-70/’.
7 dO i
(1) >0 and z(j) <0 (i) >0 and z(j) >0 (1) <0 and z(j) >0 (1) <0 and z(j) <O

Figure 1: Four different configurations of coefficients (zo(i),x0(j)) and the corresponding dy.



Figure 2: Ezample of vector dy and caps Si(xo) and Sa(xg) for a vector xg € Kj;.

The set of vectors u such that (u,dy) = 1 is the chord (b;, b;). Hence, from the definition of dy,
one has

S1(zo) = SN{u such that (u,dy) > 1} = SNC; and Sa(xg) = SN{u such that (u,dp) < —1} = —=S1(z0)

S1 and S5 correspond to the arcs shown with the red lines in Figure 2.
Thus, a vector xy belongs to F if and only if

F(xzg) = rlrclg;(|(ak,do>| <1

Hence

o €F <= (BﬂSl(azo):Q) and BHSQ(IE()):@)
= BnC;=10,

because the set B is anti-symmetric, i.e. B = —B. Hence, xg € F if and only if J € P, and then

Figure 3:  On the left, (Si(z0) U S2(z0)) N B = 0 and then zo € F, on the right Sz(xo) N B # 0
and then xo ¢ F.

K; C Fif and only if J € P. Thus Ujep Ky C F implying that Usep Ky C K.

For all y € R?, from (13) there exists some J € P such that y € C; and then there is z € K
such that y = Az. Since z € K, from Theorem 1, it is concluded that ¢(y) = x. Hence, Vz € RP,
p(Azx) € Ujep Ky and then K C Ujep Ky, that is K = Ujep Ky and F = K. Moreover Vz € K,
J = {j,1}, Az = A;z where I = {¢(j),%(1)} we have Z = AT A;z. Hence Vy € Cy, p(y) = Afy
and then ¢ is linear from C; to K. It follows that V(y1,ys) € (R?)?,

”‘P(yl) - @(y2)||2 < I}lgg ||A-I‘_||2,2 ”yl - y2”2 with ||A-I‘_||2,2 = r;léagc ”A}i_x”Q (14)

Thus, max jep ||A}"||2 , is the best Lipschitz constant associated to the function .



L)

T — Ax

€3

Figure 4: When n =2 and p = 3, the map ¢ acts as a bijection cone by cone and sends the unit
disk onto a manifold of R3.

a1 —as

NI~ A

Figure 5:  Right: The cones Kj C F correspond to the edges, here in red, of the unit ¢1-ball. Left:
The images by A of these edges are the (red) edges of the convex hull of the polytope (£a;);<p-

2.2 Example in three dimensions n = 3

We now investigate the case n = 3 where (a;)icp and ||a;]|, = 1,Vj < p. To give a geometric
intuition of what happens in dimension 3, some properties of spherical triangulation are recalled
in the following. To begin, definitions of facets and spherical caps are given.

Definition 4 Let (x;)i<n € S a set of vectors on the unit sphere and J C {1,---,n}, such that
points (z;);es are coplanar and such that dim(Span(z;);cs) = 3. The set (x;)jecs is called a facet
of the set (x1)i<n. There is a vector x such that for all j € J, (x;,x) = 1. The spherical cap S;
associated to the facet (x;);cs is defined by

Sy = {u such that (u,x) >1} NS (15)
Then one defines a general triangulation on the sphere S.

Definition 5 A triangulation T of (z;)i<n € R? is a set of triplets (i,7,k) with an adjacence
relationship. If (i,7,k) € T, the segments (i,5), (4, k) and (k,i) belong to two triangles.

A spherical Delaunay triangulation is defined by

Definition 6 A spherical Delaunay triangulation of a set (z;)i<n € S is a triangulation T such
that for any J = (i,7,k) € T, no vectors xy, for 1 ¢ J belongs to the cap Sy, Sy N (x1)i1<n = 0.



This definition is an extension of the definition of a Delaunay triangulation in the plane, where
interiors of circumcircles of triangles of the triangulation for points (z;)i<» do not intersect the set

(@:)ign-

b 1(u,do)] < 1

Figure 6: Ezample of 3D spherical caps associated to a vector x such that ||z|, = 3 and x(i) >
0, z(j) > 0 and z(k) > 0.

Figure 7: Ezample of a cone C; ;1 belonging to the set T.

The following lemma is needed to ensure that, for a spherical Delaunay triangulation, the only
points b; on the border of a spherical cap Sy are b;, for any j € J. This lemma actually guaranties,
under the hypothesis (UC), the unicity of the spherical Delaunay triangulation. The proof of the
latter assertion is omitted here.

Lemma 1 Assume that A satisfies (UC) and T is a spherical Delaunay triangulation of the set
B. For all J = (i,j,k) € T, B
SJﬂBz{bi,bj,bk} (16)
that is if the cap Sy is defined by (15), Ym & J, (b, u) <1 and then VI < 2p, (bj,u) < 1.
Proof: Let’s define 29 = 0;0y(;) + 0j0y(j) + 00y ), and I = (¥(i),9(j), ¥ (k)) its support.
A satisfies condition (UC), then Ym ¢ I, [(a,do)| # 1, where dy = A;(ALAr)~sign (04,05, 0%).
From the definition of the spherical Delaunay triangulation, S;NB = () and then, VI < 2p, (dy, b;) <
1. Equation (u,dp) = 1 is that of the plane (b;,b;,by), since (b;,do) = (bj,do) = (bg,do) = 1. We
then deduce that there are no other points by, satisfying (b,,,do) > 1, which concludes the proof.
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For any set of points (z;)i<, in R3, the triangulation of the convex hull is a spherical Delaunay
triangulation and then there is always such a triangulation. Let 7 be the spherical Delaunay
triangulation of B. Since T is a triangulation of B, Vy € R?, there is J € 7 such that y € C, and
then

R? = U erCy (17)

We now prove that VJ € T, K; € F. Suppose that J = (i,4,k) € T and x9 € K;. The set
I=(@i),¥(j),v(k)) is the support of z5. One first notices that rank(A;) = 3 and then is maximal.
Equation (u,dp) = 1, where dy = A;(AYA;)~'sign (0, 04,0%), is then the equation of the plane
defined by the points (b;, b;, bx). Hence condition F(zg) = maX,, ¢ [{(am, do)| = maxg ; [(bi, do)| <
1 is equivalent to assert that Sy N (B\(b;, bj,br)) = 0. Since x9 € K;, J € T and 7 is a spherical
Delaunay triangulation, from Lemma 1, it is straightward to seen that S; N (B\(b;,bj,bx)) = 0.
As a consequence, F(xg) < 1i.e. xg € F. Hence Ujer K; C F. Using the same arguments as the
previous subsection, it is easy to prove that K = U;jc7K; and that ¢ is linear from C to K.

Here again, inequality (14) holds and max jcp ||A;FHQ72 is the best Lipschitz constant associated

to ¢. For any dimension n, the set K is a union of cones K = Ujep K s, where K; C F.

3 A sufficient and necessary condition of identifiability

In this section we givethe proofs of Theorems 1, 2 and 3. The proof of Theorem 1 is split into two
propositions. The first one corresponding to a sufficient condition on xg to be identifiable:

Proposition 1 If xg € K then xq is identifiable, that is xo is the unique solution of Py(Axg).

The second one corresponds to a necessary condition for xg to be identifiable:

Proposition 2 Let A be a matriz satisfying (UC), for any y € Im (A) there is a unique solution
xo of P1(y), moreover zo € K.

More precisely, one proves that if A satisfies condition (UC), for any y € Im (A), the solution of
Py (y) is unique and is in K. After developing the main key ideas giving a flavour of the proof, the
proofs of Proposition 1, Proposition 2, Theorem 2 and Theorem 3 are detailed in four subsections.
Some intermediate technical lemmas will be needed. For the sake of conciseness, their proofs are
deferred to the appendix awaiting inspection by the genuinely interested reader.

3.1 Strategy of proof

As previously mentioned, this paper focuses on the properties of the minimizer of Py (y,~y) for a
small v. A key ingredient of this proof is to notice that if z(vy) is the unique minimizer of P1(y, ),
then z(7y) is the unique minimizer of P1(Axz(y)) that is x(y) is identifiable.

To prove Proposition 1, it is shown that any xzy € F is the unique solution of P;(y;,¢) for a
suitable y; and e, and then that zq is identifiable. The rest of the proof relies on the fact that any
vector xp € K can be extended into a vector z; € F. To prove Proposition 2, it is argued that
there is a sequence of x(7,,), solutions of P4 (y,~,) belonging to F and tending to a vector x such
that y = Axg.

The proof of Theorem 2 uses the fact that z(vy), solution of Py(y,~) varies on a continuous
piecewise linear curve when ~ varies. As a byproduct, the proof of this theorem establishes the
stability of P1(y,~) to a small variation of y.

To show Theorem 3, it is first proved that all solutions of P;(y,~y) have the same image by
A, using convexity. The unicity and the fact that this solution belongs to K is a consequence of
Theorem 1.

3.2 If zy € K, then z, is identifiable

To prove that xg € K is a sufficient condition for zy to be identifiable we do not require that A
satisfies condition (UC). The following lemma establishes that z¢o € F is a sufficient condition for
o to be identifiable.

11



Lemma 2 If xg € F, x¢ is the unique minimizer of P1(Axg).

Proof: The proof is started by appealing to the following classical optimization lemma,
which gives sufficient conditions under which a vector z* is the unique minimizer of P;(y, ), see
[17, 18].

Lemma 3 The three following conditions are sufficient for x* to be the unique minimizer of
Pl (ya’}/)

1. Aj(y — Az™) = y(sign (z%)),
2. [{a;,y — Ax*)| <~y for any inactive vector a; associated to x*,
3. Ay is full rank.

where I is the support of x*.
Moreover x* satisfies the following implicit relationship:

7" = Afy — (A7 A;) " tsign (7). (18)
Let zg € F, and A; be the associated active matrix and ¢ > 0 such that
sign (Zo + e(Aj A7)~ 'sign (Zo)) = sign (Zo) . (19)

If £ is small enough the previous relation (19) always holds.
Let 21 be the vector satisfying I(z1) = I(z¢) = I and defined by 7, = T + (AL A7)~ tsign (Zo)
and y; = Az;. By construction z; € F and y; — Axg = e Ar (A} Ar) " tsign (Zo) and then

Ab(y1 — Azo) = e AL A (AL Ap)~tsign (Zg) = esign (o) .
Moreover, for all inactive vector aj,
[{aj,y1 — Awo)| = el{aj, Ar(ATAr) " 'sign (z0))| < eF (z0) < e.

Then Lemma 3 implies that x¢ is the unique minimizer of Py (y1, ).
Then, for any o € RP,

1 2 1 2
5 llyr = Aza |5 +ellzall, > 5 llyr — Azoll; + € [loll; - (20)

In particular, if Azy = Axg, the relation (20) implies that ||z2||; > ||zol|;, i.e. zo is identifiable
which concludes the proof of the lemma.

Let zg € K, and let x5 € RP such that Azg = Azy and ||z2]; < ||2ol|;. Since zg € K, there is a
vector 1 whose support is disjoint from that of zq, such that xo +x7, = z3 € F. Let x4 = x5 + 21,
by definition Az4 = Ax3 and

lzally < llz2lly + lzally < llzolly + lzally = llzslly (21)

which implies, from lemma 2 that x4 = x3 and then x5 = zo. That is, zq is identifiable.

3.3 If z, is identifiable, 2y €

In this subsection, A is supposed to satisfy condition (UC). As mentionned in the strategy of the
proof, subsection 3.1, we start by showing that under condition (UC), a solution z(v) of P1(y,~)
is in F, for small ~.

Let y € Im (A), v, > 0 a sequence of real numbers decaying to zero, and z(v,) a sequence
of solutions of Py (y,7,). Such a sequence does not need to be uniquely defined and an arbitrary
solution is chosen for each ~,. Up to the extraction of a sub-sequence, it is supposed that the
sequence z(7,) converges to some xg. From the definition of x(v,), ||y — Ax(vn)Hg + 90 [|lz(y)ly <
n ||Z|l;, where z is a vector such that y = Az and then ||y — Az(vy,)|l, — 0 when v, — 0 and then
Az = y. Let ng such that Vn > ng, I(zo) C I(z(y,)). From now, it is assumed that n > ng. We
use the following optimization lemma (see e.g. Fuchs [18]) and condition (UC) to prove that the
rank of the active matrix A; associated to z(7y,) is maximum.
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Lemma 4 A necessary and sufficient condition for x() to be a minimizer of P1(y,~y) is that z(v)
satisfies the two following conditions

Af(y — Arz(v)) = ysign (2(7)) (22)
[{ax,y — Arz(y))| <~ for all inactive vectors (ax)igr- (23)
where I = supp (z(7)) and Z(7y) is the vector obtained by keeping the non-zero components of x(v).
Let’s suppose A; does not have a full rank. There exists a set J C I and an index k € I\ J such
that |J| = rank(A;) = rank(A;) and ay, € Span(a;)jes, i.e. ax = A;A} ax. Moreover, (22) implies
that
AG(y = Ax(yn)) = ynsign (2 (yn))
where Z j(7,) is the vector extracted from x(+,) whose components are indexed by J. From (22)
it is also deduced that

[(ar, y — Az(vn))]
[(AsATak,y — Ax(yn))]
[, AT A (y — Az(yn)))|
= nl{ax, A7 sign (2. (7n)))]

TYn =

and then |(ay, AT'sign (Z;(v,)))| = 1, which is impossible since A satisfies condition (UC). Hence,
the rank of Ay is maximum and A% A; is non-singular.
From (22), it follows that

Z(m) = ATy — (AT Ar) " Tsign (2(7n)) -
Then for all j ¢ I
(aj,y — Azx(n)) = (aj,y — ArA]y — Y Ar(ATA;) 'sign (Z(n))).

Since I(xg) C I(xz(7y)), one has Ty = A}"Aljo and then AIA}'y = AIA}"AIiO = A;To = y which
gives
(aj,y — Az(yn)) = —ynla;, A7 'sign (Z(y))).
Using (23),
[(a;, AT'sign (2(yn)))| < 1.
Since A satisfies (UC),
[{aj, Af 'sign (z(7a)))] # 1
and then
[{aj, Af'sign (z(7a)))] < 1
It follows from Lemma 3 that z(v,,) is the unique solution of Py (y,~,) and z(vy,) € F. Hence, zg
the limit of elements of F, belongs to K.
Using Proposition 1, zq is then the unique solution of P;(Azg) which concludes the proof of
Proposition 2.

3.4 Proof of theorem 2

Let yo and y; be two elements of Im(A). If yo and y; are close enough, the two associated
minimizers o = ¢(yo) and 1 = ¢(y1) are also close. More precisely, it will be shortly shown that
there is a constant C, independent of yy and y1, such that

lz1 — oll, < Clyr — yoll, (24)

owing to the properties of the minimizer of P4 (y, ).
Let zo(y) (resp. z1(y)) denotes the minimizer of Py (yg,~) (resp P1(y1,7)). For all v > 0,

2o — 21l < llzo = 2oz + lwo(y) = 21Ny + l2 — 21 (W),

The following lemma bounds ||zg — zo(7)||, and ||z — 21 (7),-
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Lemma 5 For all y € R"™, x(y), the minimizer P1(y,7), is a continuous function of v and lives
on a polygonal path. Moreover x(v) is Co-Lipschitz where Cy does not depend on y.

A proof of this lemma can be found in the appendix. This lemma is at the heart of the homotopy
method, see for example [22, 15]
It follows from this lemma that for all v > 0

2o — 21l < 2C0y + [[zo(y) =22 (V)l -

To bound ||zo(y) — x1(7)||5. the stability of the minimization problem P;(y, ) to a small additive
noise is exploited. This is formally summarised in the following lemma.

Lemma 6 There exists two real positive numbers Cy and Ca such that Vyo € R™ if ||y1 — yol|, <
e < g9 for a noise level eg > 0, then,

[21(Cre) — wo(Cre)l, < Cae. (25)

The proof of this lemma is given in the appendix B.
Hence, armed with Lemma 5 and 6, it follows that

|20 — w1l < 2CoC1e + Cae = (2CoC1 + C2) [ly1 — o, -

which concludes the proof.

Unfortunatly, at this point of our work, one does not have any control on the numbers Cy, C;
and Cy and the Lipschitz property is essentialy a theoretical result and cannot stand for a result
of robustness to noise. Nevertheless, empirical findings from the numerical experiments clearly
demonstrate that, most of the time, there is a real stability to a small noise. Note that since the
condition zy € K is sharp to ensure identifiability of ¢, it seems difficult to prove a strong stability
to noise.

3.5 Proof of Theorem 3

In many situations such as signal processing, statistics and model selection [?, ?] for example, the
observations y are corrupted by noise, y = Axg+w, or xg is not exactely sparse. A way to estimate
xo from y in this non-ideal situation, is to look at x(y), where v depends on the noise level €. That
is why the solution z(v) of P1(y,y) is interesting by itself, not only to characterize the solution of
P1(y) by lowering « to 0. The properties of the solutions z(v) to P1(y, ), has been already studied
in statistics although in the over-determined setting p < n, see the homotopy method of Osborne
et al. [22], and LARS/LASSO of Efron at al. [15].

Theorem 3 ensures that, if A satisfies condition (UC), z(y) is always uniquely defined and
belongs to K.

Proof: Lety € R", v > 0 and z; and z2 be two solutions of P;(y,7). One necessarily has

Axy = Axo. Indeed, suppose that Az; # Axzs. Let z3 = %(xl + 23), from the convexity of the
norm map z — |z,

1
lzslly < 5 Ulzally + [l22lly) (26)

From the strict convexity of the mapping Z +— ||y — Z||§

2 1 2 2
ly — Azs|3 < 5 (Ily — Azal + lly — Azall?) (27)

and then . .
2 2
5y = Asl3 + v lwslly < 5 lly = Awa |3+ 1l

which contradicts the initial definition of x1.

Hence if there are two minimizers x; and zo we necessarily have Az, = Azs and then ||z1||; =
sl

Since 7 is a minimizer of P1(y, ), 1 is also a minimizer of P;(Axz;). We deduce from Theorem
1 that z; € K and that 2 is the unique minimizer of P1(y). Thus x2 = x; and x; is the unique
minimizer of Py (y,~).
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4 Algorithm and numerical experiments

4.1 Algorithm SupportExtension

The condition zy € F is directly verifiable, since there is an explicit formula to define F(xo) even
if the computation may be instable if the matrix A; is badly conditioned. There is however no
straightforward explicit formula guaranteeing that xzq € K.

This section proposes a semi-greedy algorithm to check whether zy € . This algortihm is built
upon the following proposition.

Proposition 3 Let xg € RP, and A a matriz satisfying condition (UC), if there exists a vector
x1 € F such that x1 is an extension of xo, and such that for all j € I(z1)\I(zo)

sign (z1(j)) = —sign (v(j))

where v is the vector whose support is equal to the support of x1 defined by v = (AL A;)~'sign (z1),
where I = I(x1), then there is some vo > 0 such that for all v < o, the solution x(vy) of P1(Axo,")
is unique and

x(y) = zo — V.

In the following, the notation F*(x) = F(z1) is used.

To prove this proposition, it is sufficient to check that xy — yv satisfies the three conditions of
Lemma 3 for small ~.

The algorithm SupportEztension extends vector xg into a vector z; adding or removing itera-
tively components to x; in such a way that the quantity

F(x) = jeﬁe})({m) |<aj, A;rtsign (531)>|

decreases.
The main steps of the support extension algorithm are summarized as follows:

Algorithm 1 SupportExtension

1: Set 1 «— xg, I — I(z1).
2: while A; does not have full rank and F(z;) > 1 do
3:  Compute
jo = argmax [{a;, Af'sign (71))]
J

4 x1(jo) < sign ((AF aj,)'sign (z1)), I < I(z1)
5: U — (A’}AI)_lsign (5?1)
6: For all k € I\I(zg) such that

3

v(k)z1(k) >0

7. Set z1(k) — 0, [ «— I(x1).
8: end while

If the algorithm terminates by finding a vector 7 such that F'(z1) < 1, then g € K. However,
if the algorithm stops only because the matrix A; has full rank, then it is possible that z¢ ¢ K.
To check the efficiency of SupportExtension, 200 000 couples of matrices-vectors (A, x) have been
randomly chosen with different matrix sizes and different sparsity levels. For each couple, the
algorithm SupportEztension and the £; minimization solver Solve BP of the matlab toolbox Sparse-
Lab http://sparselab.stanford.edu have been applied. The finding of this experiment was
that identifiability as revealed by the algorithm SupportEztension coincided with exact recovery by
SolveBP for all vectors, except one identifiable vector that was not recognized by SupportEztension.

4.2 Computational complexity

The bulk of computational complexity of this algorithm is invested in the matrix inversion (A} A7) ~*
at each step, which is a d x d matrix, where d = |I|. If p > n, computing all scalar products

15



(a;, Af'sign (Z1)) may be more time-consuming costing O(pn) flops. But this situation has not
been tested. Since rankA; < n and A; has full rank one always has d < n. Moreover, numerical
experiments show that the removal steps corresponding to v(k)z1 (k) > 0 are rare and the number
of steps is in practice always bounded by n. Hence the computational complexity is O(n?).

Some simplified versions of SupportEztension have been tested, omiting the element removal step
or selecting several indices jy at each step. These versions are faster but may fail to recognize a
small number of identifiable vectors.

4.3 Comparison to other criteria

The identifibality criteria reviewed in the introductory part of the paper, namely F, ERC and
coherence C' have been compared. Since these criteria can be ranked as

(lzll, < C(A)) = ERC(I(z)) > 0 = F(z) < 1 = F*(2) <1 (28)

they are compared pairwise. To do so, a matrix size is fixed (e.g.n = 300, p = 1200) and matrices
A are randomly generated from the uniform spherical ensemble. For each matrix A, each support
size s between 1 and 150, a vector x is generated such that |lz¢||, = s with random signs. For
each matrix A and vector zg, the solution of P;(Axg) is denoted z*. The identifiability of z is
measured by

1
Ra(wo) = 1= 5 ||sign (z*) — sign (o)l

where Z is the vector extracted from x keeping only the s largest components in magnitude.
Obviously, 0 < Ra(zp) < 1 and Ra(xzg) = 1 corresponds to an identifiable vector. The quantity
FX(xO) is estimated by SupportExtension algorithm. To ease the comparison between all criteria
one defines C4 (z9) = 2(1+1/C(A)) — ||zo]|, and to esae the comparison between ERC, F and F*
one also defines Fa(zo) =1 — F(20) and F (z9) =1 — FT (o).

Each point on each plot of Figure 8 corresponds to a randomly generated triplet (A, s, zg). The
plots of the top row of Figure (8) compare each criterion to its successor according to the ranking
relation (28). The shaded rectangle on each plot delimits the vectors zy for which the criterion
on the abscissa fails to recognize them as identifiable, whereas the criterion on the ordinate axis
succeeds in identifying them. These plots clearly confirm the ranking relation (28) of these criteria
in terms of their ability to properly recognize identifiable vectors. In particular, FX is clearly
better than F' and is then a sharper test of exact recovery by ¢; minimization.

The plots of the second row of Figure 8 depict the exact recovery success measure R4 as a
function of each identifiability criterion. The criterion F't is strikingly better than its competitors,
showing a sharp phase transition at 1 as expected. F'T is the only criterion showing this behaviour
while the other criteria fail to positively test many identifiable vectors (shown in the gray shaded
rectangles).

Another way to see the gap between conditions ERC > 0, F' < 1 and F'™ < 1 is to compare the
proportion of vectors, for a given sparsity, that satisfy these conditions. By proportion, we mean
that for a given sparsity d the number of half cones of vectors with the same non-zero components

L d -
and the same signs is 2¢ ( » ) Among these cones, some correspond to vectors satisfying some of

the three above criteria. The goal of this experiment is to estimate the proportion of these cones.
In this simulation, a size of matrix is fixed (here 200 x 1000). For each sparsity d, 5000 couples
(A, z) are randomly generated as in the previous test, and the three citeria ERC > 0, F < 1 and
FT <1 are computed (F' < 1 is estimated by the algorithm SupportExtension). Figure 9 depicts
the proportions of vectors satisfying each of the three criteria as a function of the sparsity d. This
figure does not ensure that there is no vectors x that are not identifiable when ||z||, < 35, it only
shows that they are not numerous. Actually one can build vectors that are not identifiable with
less than 16 non-zero components using a greedy algorithm finding a sparse vector xg such that
lldoll, = ||A1(A§A1)*1sign (EO)H2 is as large as possible.
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Figure 8: First row: pairwise comparison of identifiablity criteria C, ERC, F and FT. The shaded
rectangle on each plot delimits the vectors xo for which the criterion on the abscissa fails to recognize
them as identifiable, whereas the criterion on the ordinate azxis succeeds in identifying them. Second
row: exact recovery success measure R4 as a function of each identifiability criterion. The shaded

rectangles show those vectors that are positively tested as identifiable by the corresponding criterion.
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Appendix A - Proof of Lemma 5

From theorem 3, we know that z(v) is uniquely defined. Borrowing the arguments of the proof
of proposition 2, one obtain that the support and the sign of x(y) varies only a finite numbers of
times. More precisely x(y1) and z(72) are the two minimizers of Py (y,y1) and P1(y,~2) with the
same support and sign, one can verify using Lemma 4 that Vv € [y1, 2]

Z(y) = ATy — (AT Ar)~ 'sign (2(m1)) (29)

where Aj is the active matrix associated to z(v1) and z(72). Hence z(7) is on the segment
[2(1), 2(72).

We denote (v;); the finite sequence of values corresponding to a variation of the support of
x(7y); that is (v;); are the values at the breakpoints of the polygonal path of z(v). The function
x(7y) is then locally affine, hence continuous, except at points ~;.

It remains to show that x(v) is continuous on the left and on the right of points ~;.

Let ~;, be any of these points. For all v €]7y;,-1,7i, [, () can be written x(y) = ;51— Yvig—1-
Let’s denote o* = ;-1 — VigVig—1-

By construction, the support of z* is included in the support of z(v) for v €]vi,—1, Vi, [ Fur-
thermore, z* satisfies both conditions of Lemma 4 with v = 7;,. Then, 2* = z(v;,). Using similar
arguments, we can also show that x(v;,) is the limit of z(y) when 7 tends to ;, on the right. We
then obtain that x(vy) is a piecewise affine and continuous function of ~.

Since for all y and v > 0, z(y) = ATy — v(ALA;)~tsign (z(7)) and since (A} A7)~ tsign (z(7))
can take a finite number of values, there’s a real number Cj depending on A but not on y, such
that x(vy) is Cop-Lipschitz. This concludes the proof.
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Figure 9: Proportions of vectors satisfying each of the three criteria ERC >0, F <1 and FT < 1
as a function of sparsity d. The black line corresponds to the condition ERC > 0, the green line to
F <1 and the red one to F+ < 1.

Appendix B - Proof of Lemma 6

Let yo € Im(A) and 29 = ¢(yo), the solution of Py(yg). We denote xo(y) the solution of
Py (y()v ’7) .
From lemma 5, z(7) lives on a polygonal path, and from the proof of proposition 2, one knows
that xz(y,) € F for a sequence of v, tending to zero, thus one can deduce that there is a non
negative real number 7y and a vector v such that Vv €]0,~o[ such that zo(y) € F, supp (x9) C
supp (zo (7)) = supp (zo(y0)) = I and zo(y) = xo + yv. One can suppose vy < ZﬁZ‘Il\;’ where zpin
denotes the smallest absolute value of non zero component of zg.
Moreover for v < 7o and for all inactive vector (a;);¢r,

laf(y — Arzo())] < vF(20(70)) = vF <. (30)
B
For a matrix B, one denotes ||B|[, . = H x”‘x’
' a0 ||zl
Let ¢ < s — and y; € Im (A) such that |ly; — y2|, < €, where v, denotes the smallest

247,

2| A7 Il e

absolute value of non zero component of v. For all v € | ,70], one defines vector 73 ()

whose support is equal to I and defined by

VUmin

Zi(y) = To + 70 + AF (y1 — yo) (31)

where T is obtained keeping components of x indexed by I. Hence, with this definition, Zy may
have some zeros components.
To prove x5 () is the solution of Py (y1,7), one first shows that sign (Z7 (7)) = sign (Zo(7)).

_ Tmin
ol < =5 (32)

YVUmin < Tmin
2 4
Hence 77 (7) is the sum of three vectors Zo, 70 and A} (y1 — yo). The sign of this sum will be
given by Zo(¢) if it’s non zero and by ~o(7) if it is. Then, if for ¢ € I, z¢(i) # 0, then

sign (27 (7)(2)) = sign (20 () = sign (z0(7)(7)) (34)

147 (1 = w0 [ < 147 5 00 © < (33)
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else if for j € I,z9(j) = 0, then
sign (21 (7)(7)) = sign (yv(j)) = sign (z0(7)(j)) (35)

Hence, sign (Z7(y)) = sign (Zo(7)).
Using lemma 4 one proves that a7 () is the solution of Py (y1,~), if moreover

y(1-F7)
= max; [|a ],
On a first hand we have
Ab(yr — A1Z(7)) = Al (yo — ArZo(7)) + A% (y1 — yo — A1AT (y1 — w0))

= ysign (Zo(7))
= ~ysign (Z1(7)) -

On a second hand, for all inactive vector (a;);¢7, we have

|af(yr — Arzi (7))] < laf(yo — Arzo(7))| + laf(y1 — yo + A1 AT (y1 — v0))|

F* "‘5”@1‘”2

NN N

Y
Y
and then z7(v) = z1(7) is the solution of P(y1,~). Finnally if v < vy and

1— F+ min
e < min 7 ) ) 7U+ =2 (37)
max; [|a;l|, 2 ||AI ||2’C>o 4

then,

lz1(7) = 20 (Ml = | A7 (w1 = vo) |, < Cae. (38)
Constants C7 and Cs can take only a finite number of values and then taking v = max,,(Ch)e,
which is always possible if € < gg = ﬁ?cl)
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