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A ne
essary and su�
ient 
onditionfor exa
t re
overy by ℓ1 minimizationCharles DossalLaBAG, Université Bordeaux 1,351, 
ours de la Libération,F-33405 Talen
e 
edex (FRANCE)
harles.dossal�math.u-bordeaux1.frJuly 23, 2007Abstra
tThe minimum ℓ1-norm solution to an underdetermined system of linear equations y = Ax,is often, remarkably, also the sparsest solution to that system. Sin
e the seminal work ofDonoho and 
o-workers, we have witnessed a �urry of resear
h a
tivity whi
h has fo
used onsu�
ient 
onditions ensuring a unique sparsest solution, in both noiseless and noisy settings.This sparsity-seeking property is of interest in many pra
ti
al areas su
h as image and signalpro
essing, 
ommuni
ation and information theory, et
. However, most of these su�
ient
onditions are either too pessimisti
 although easily 
omputable (e.g. bounds with mutual
oheren
e), or sharp but di�
ult to 
he
k in pra
ti
e.In this paper, we provide a ne
essary and su�
ient 
ondition for x to be identi�able for alarge set of matri
es A; that is to be the unique sparsest solution to the ℓ1-norm minimizationproblem. Furthermore, we prove that this sparsest solution is stable under a reasonable pertur-bation of the observations y. We also propose an e�
ient semi-greedy algorithm to 
he
k our
ondition for any ve
tor x. We present numeri
al experiments showing that our 
ondition isable to predi
t almost perfe
tly all identi�able solutions x, whereas other previously proposed
riteria are too pessimisti
 and fail to identify properly some identi�able ve
tors x. Beside thetheoreti
al proof, this provides empiri
al eviden
e to support the sharpness of our 
ondition.Keywords: Sparse representations, underdetermined linear systems, ℓ1-minimization, identi-�able ve
tors.1 Introdu
tion1.1 Sparse Re
overyLet A be a matrix whose 
olumns ve
tors (ai)i6p are p ve
tors of R
n, where n≪ p (dimension ofobservations n is mu
h smaller than that of data p). Let x0 ∈ R

p and y = Ax0. x0 
an be seen asa data ve
tor and y as observations of these data.One wants to re
over data x0 from the observations y. However, be
ause the underlying linearsystem is underdetermined, re
overy of the over
omplete representation ve
tor x0 from y fa
esan apparent obsta
le, based on elementary linear algebra. Nevertheless, although the problem ofre
overing of x0 is admittedly ill-posed in general, introdu
ing the hypothesis that x0 has a simplestru
ture 
an radi
ally 
hange the situation. In this 
ase, one 
an hope to properly re
over x0 from
y under appropriate 
onditions.The sparsity assumption is to suppose that x0 has few non-zero 
omponents. Su
h a hypothesison the stru
ture of x0 
an often be rephrased as : the expansion of x0 in a familly of ve
tors isessentially supported on a few of them.As a measure of sparsity of a ve
tor x, we may take the ℓ0 (quasi)-norm ‖x‖0, whi
h is thenumber of non-zero 
omponents of x. Hen
e, if x0 has few non-zero 
omponents, one 
an hope1



that x0 is the unique minimizer of
min
x
‖x‖0 under the 
onstraint Ax = y P0(y)with y = Ax0. We will refer to this problem by P0(y) to spe
ify the se
ond member.This is an NP-hard problem sin
e there is no way to solve it ex
ept testing all possible k-
olle
tionsof 
olumns of A with k = 1, . . . , p, and looking for the smallest k-
olle
tion that synthesize y. Thatis why [12℄ proposed to substitute this highly non-
onvex problem with the following 
onvex ℓ1minimization problem

min
x
‖x‖1 under the 
onstraint Ax = y P1(y)with y = Ax0. We will refer to this problem by P1(y) to spe
ify the se
ond member.It is well known that under appropriate 
onditions, both problems P0(y) and P1(y) share thesame solutions; see [10, 12, 16, 23, 20℄ to 
ite only a few. Furthermore, several 
onditions on x0have been proposed in the literature to guaranty the uniqueness of the solution x0 to the problemP1(Ax0). Before pro
eeding, we will need some terminology that will be used in the remainder ofthe paper.De�nition 1 A ve
tor x0 is said to be identi�able if it is the unique solution to P1(Ax0).Notations The support of x0 and its 
ardinal are de�ned by

supp (x0) = I = {i|x0(i) 6= 0} ⊂ {1, . . . , p} and |I| = |supp (x0) | = ‖x0‖0 .The ve
tor x̄ is obtained by sele
ting from x 
omponents with indi
es in its support. Thematrix AI = (ai)i∈I is obtained by sele
ting the 
olumns of A indexed by I. This matrix is 
alledthe a
tive matrix asso
iated to the set I. The a
tive matrix AI asso
iated to a ve
tor x0 is thea
tive matrix asso
iated to the support I of x0. The 
olumns (ai)i∈I are 
alled a
tive 
olumns orve
tors and (aj)j /∈I are 
alled ina
tive 
olumns or ve
tors. The pseudo-inverse A+
I of AI is de�nedas

A+
I = (AtIAI)

−1AtI .A ve
tor x0 is said to be in
luded in a ve
tor x1 if supp (x0) ⊂ supp (x1) and sign (x0) = sign (x1)on their 
ommon support. The ve
tor x1 is an extension of the ve
tor x0 if the latter is in
ludedin the former.The ve
tor δk ∈ R
p is su
h that ‖δk‖0 = 1 and δk(i) = 1 and 0 otherwise.1.2 State of a�airs1.2.1 The 
oheren
eThe most popular su�
ient 
ondition that guaranties the identi�ablility of x0 relates its support

supp (x0) to the 
oheren
e of A :
C(A) = max

i6=j

|〈ai, aj〉|

‖ai‖2 ‖aj‖2
. (1)If

|I| = ‖x0‖0 <
1

2
(1 +

1

C
) (2)then x0 is identi�able, moreover x0 is also the solution of (1.1). This bound has appeared in manypapers, e.g. [12, 10, 16, 23, 20℄.This bound on the 
ardinal of supp (x0) is optimal if one does not have any additionnal in-formation on A. Donoho and Elad [10℄ proposed to improve this bound using the Spark of A.

Spark (A) is de�ned as the minimal number of linearly dependent ve
tors ai. Estimating Spark (A)is 
omputationly prohibitive. Moreover, it is unstable under a small perturbation of A. That is,
Spark (A) may 
hange dramati
ally with A.Although it appears as a simple and 
omputationally tra
table a priori test of identi�ability,the 
oheren
e-based bound 1

2 (1 + 1
C ) is pessimisti
 and 
an be improved in many situations.2



1.2.2 Compressed SensingIn a series of papers Candès, Tao and Romberg [5, 2, 7, 6, 3, 4℄ studied di�erent optimizationproblems in
luding P1(y) in [7℄. They espe
ially investigated [4℄ a problem where data y may be
orrupted by gaussian noise w whose ℓ2 norm is bounded by ε, i.e. y = Ax0 + w. The authorssuggested to solve the following minimization problem
min
x
‖x‖1 under the 
onstraint ‖y −Ax‖2 6 ε (3)where ε is the size of the error term.The authors established 
onditions on ve
tors x0 ensuring identi�ability, equivalen
e betweensolutions of P0(Ax0) and P1(Ax0), as well as stability to noise. These 
onditions are uniform onthe 
ardinal of the support. To state their 
onditions, those authors have introdu
ed the so-
alledRestri
ted Isometry Hypothesis (RIH) on A. RIH assumes that any subset I, |I| 6 S of ve
tors

(ai)i∈I de�ning the matrix AI , is a Riesz basis with the asso
iated 
onstants uniformely 
ontroledby a fun
tion δS . For all set of indi
es I su
h that |I| 6 S,
∀x ∈ R

|I|, (1− δS) ‖x‖22 6 ‖AIx‖
2
2 6 (1 + δS) ‖x‖22 (4)The RIH requirement states that for all sets I whose 
ardinal is smaller than S, the mapping AIapproximately a
ts like an isometry on |I|-sparse ve
tors.One of the RIH-based indenti�ability 
onditions requires that

δS + δ2S + δ3S < 1 (5)see [4℄, the reader may �nd others 
onditions in [8℄. These di�erents RIH lead to di�erents resultsof re
overy and robustness to noise.Compressed Sensing (CS) theory shows that all ve
tors su
h that ‖x‖0 6 Cn
log(p/n) , are identi�-able, with a probability 
lose to 1 when A sati�es a RIH. The CS re
overy results extend also tove
tors x0 whi
h are nearly sparse [6℄; ve
tors whose ℓp norm is 
on
entrated on a sparse set. Thispoint is important in mathemati
al image or signal pro
essing appli
ations, where x0 is not exa
tlysparse but 
ompressible in some transform domain e.g. wavelets [21℄, 
urvelets [1℄. However, theseresults do not apply to any matrix. Furthermore, for a deterministi
 A, there is no simple way to
he
k the RIH and 
ompute the 
onstants δS , ex
ept testing all possible |I|-
olle
tions of 
olumnsof A whi
h is a 
ombinatorial pro
ess. Moreover, it is hard to build matri
es satifying RIH for large

S. Consequently, if a matrix A is given and not built to satisfy RIH, we 
annot staightforwardlyuse CS bounds to ensure that a ve
tor x0 is identi�able. To date, the only deterministi
 
ontru
tionof matri
es obeing RIH for large values of S has been proposed in 2007 by R. De Vore [24℄.1.2.3 Conditions on support and sign for any matrix AAlthough the previous bound (2) is optimal for 
ertain di
tionaries (matri
es), there are manyve
tors violating the 
oheren
e-based sparsity bound that are still identi�able. Gribonval andNielsen [20℄ proposed an identi�ability 
riterion whi
h does not depend on the 
ardinal of supp (x0),but rather on the support itself. Their 
riterion 
an be veri�ed by sparse ve
tors in the sense ofthe bound (2), as well as by other ve
tors that are less sparse. Unfortunately there is no simpleway to 
ompute their 
riterion. As previously pointed out for the Spark, their 
riterion dependsdire
tly on the null spa
e of A and is unstable under small variation of A.Tropp [23℄ and Fu
hs [18, 19℄ proposed 
riteria that apply to any matrix and depends on thestru
ture of the ve
tor x, not only on |I|. Both authors study solutions of the relaxed problem
min
x

1

2
‖y −Ax‖22 + γ ‖x‖1 (6)whi
h is equivalent to the previous minimisation (3), i.e. for all ε > 0 there exists a bije
tion γ(ε)su
h that problems (3) and (6) share the same solutions. The limit of the solution of (6) whenit is unique, tends to the solution of P1(y) when γ tends to 0. Tropp de�ned the Exa
t Re
overyCoe�
ient (ERC) as follows, ERC(I) = 1− sup

j /∈I

∥

∥A+
I aj

∥

∥

13



The ERC is then de�ned only when AI has full rank. Tropp [23℄ proved that if ERC(I) > 0, anyve
tor x0 supported in I is identi�able. He also showed that ERC(I) > 0 guaranties stability whenobsvervations are 
orrupted by an additive noise with bounded varian
e.From a ve
tor x0 Fu
hs [18℄ introdu
es the following ve
tor
d0 = A+t

I sign (x̄0) ∈ R
n (7)whi
h plays a major role to state re
overy 
onditions for x0. This ve
tors is spanned by the a
tiveve
tors (ai)i∈I . Se
tion 2 presents geometri
al interpretations of d0 when n equals 2 and 3. Fu
hsproposed sharper su�
ien
y results by de�ning a 
riterion depending on the support and on thesign of x0 through d0.De�nition 2 F is the set of ve
tors x0 su
h that the a
tive matrix AI asso
iated to x0 has fullrank and

F (x0) = max
j /∈I
|〈aj , A

+t
I sign (x̄0)〉| = max

j /∈I
|〈aj , d0〉| < 1.Fu
hs [18℄ proved that for all ve
tors x0 ∈ F , the minimizer x(γ) of (6) is unique for γ smallenough, tends to x0 when γ tends to 0, and then that x0 is a minimizer of P1(Ax0). Note that if

x1 and x2 have the same support and the same sign, x1 ∈ F implies x2 ∈ F . Hen
e F is the unionof 
ones of various dimensions. The 
ondition F (x0) < 1 asserts that the 
orrelation between d0and all ina
tive ve
tors (aj)j /∈I is stri
ly smaller than 1.Donoho in [9℄ proposed a ne
essary and su�
ient 
ondition to ensure that a ve
tor x is aminimizer of P1(Ax). The author 
onsidered the image of the unit ℓ1-ball by A, whi
h is thepolytope whose verti
es are (±aj)j6p, and asso
iated to ea
h ve
tor x the 
orresponding fa
et
H(x) of the ℓ1 ball. Hen
e, this fa
et H(x) depends only on the sign and support of x. Donohoproved that x is a minimizer of P1(Ax) if and only if the image of the fa
et H(x) belongs to the
onvex hull of the image of the unit ℓ1-ball by A. This geometri
al and topologi
al 
ondition wassubsequently used by Donoho and Tanner [14, 13℄ to estimate the number of ve
tors x minimizingP1(Ax) for a given sparsity. The authors propose sharp results for random proje
tors and showthat the bounds derived from ERC or Compressed Sensing are often pessimisti
.The new 
ondition proposed in this paper is strongly linked with both 
onditions proposed byFu
hs [18℄ on the one hand, and by Donoho [9℄ on the other hand.1.3 ContributionsIf no hypothesis are made on A, it may happen that for some y, P1(y) has several solutions, forexample if two ve
tors ai and aj 
oin
ide. The question of the identi�ability of a ve
tor x0 is thenill-posed. The following 
ondition 
oined (UC), whi
h stands for Uni
ity Condition, guarantees theuni
ity of the minimizer of P1(y) for any y ∈ Im (A).De�nition 3 A satis�es 
ondition (UC) if, for all subsets I ⊂ {1, . . . , p}, su
h that (ai)i∈I arelinearly independent, for all indi
es j /∈ I and all ve
tors S ∈ {−1, 1}|I|,

|〈aj , A
+t
I S〉| 6= 1 (UC)ie for all x0 su
h that AI has full rank and for all j /∈ I

|〈aj , d0〉| 6= 1 (8)where d0 is the ve
tor de�ned in se
tion 1.2.3 by (7). In words, the 
orrelation between any signve
tor and the proje
tion of aj on the subspa
e spanned by (ai)i∈I is never exa
tely 1 or −1.This 
ondition implies that there is no ve
tor x0 su
h that F (x0) = 1 and no ve
tors su
h thatERC(I(x0)) = 0.The main 
ontribution of this paper is Theorem 1 whi
h provides a ne
essary and su�
ient
ondition for x0 to be identi�able for the set of matri
es A satisfying 
ondition (UC).Theorem 1 Suppose that A satis�es 
ondition (UC). Then x0 is identi�able if and only if x0 ∈ K,where K is the 
losure of F . 4



More pre
isely, the 
ondition x0 ∈ K is always a su�
ient 
ondition for x0, to be identi�bale. If Asatis�es the (UC) 
ondition, it be
omes also a ne
essary 
ondition.Theorem 1 allows then to de�ne the mapping ϕ
ϕ

{

Im (A) −→ K
y 7−→ x solution of problem P1(y)

(9)The mapping ϕ is a non-linear inverse of the linear map A. The following theorem 
ontrols the
ontinuity of ϕ.Theorem 2 If A satis�es 
ondition (UC), then ϕ is uniformly Lips
hitz, hen
e 
ontinuous.The set K is 
omposed of any ve
tor that 
an be extented to yield a ve
tor belonging to F . Thismeans that for any ve
tor x0 ∈ K there is a ve
tor x1 whose support is disjoint from the one of x0su
h that x0 + x1 = x2 ∈ F .Condition x0 ∈ K 
annot be easily veri�ed. To 
ir
umvent this di�
ulty se
tion 4 proposes asemi-greedy algorithm termed SupportExtension, whi
h exploits the above 
hara
terization of Kto re
ognize those ve
tors whi
h are in K. More pre
isely, the su

ess of this algorithm guaranteesthat x0 ∈ K, but its failure does not ensure that x0 /∈ K. A
tually, simulations did not provide anyidenti�able x0 su
h that the algorithm fails, but they may exist.The study of the relaxed formulation (6) asso
iated to problem P1(y) is at the heart of theproof of Theorem 1 and 2. These two optimization problems are 
losely linked and Theorem 1leads to the following result.Theorem 3 If A satis�es 
ondition (UC), for any y ∈ R
n and γ > 0, the minimizer x(γ) of

1

2
‖y − Ax‖22 + γ ‖x‖1is unique and belongs to K.A
tually, Theorem 1 leads to a more general result than Theorem 3. Indeed, with a similar proof,it 
an be shown that if A sati�es (UC), for any 
losed set D, the set of solutions of

min
x
‖x‖1 under the 
onstraint Ax ∈ D P1(D)is in
luded in K. Moreover, if D is stri
lty 
onvex, then the solution of P1(D) is unique and belongsto K. It follows that, if A sati�es (UC), the solutions of the following minimization problem, see[6℄

min
x
‖x‖1 under the 
onstraint ∥∥At(y −Ax)∥∥

∞
6 γbelong to K.1.4 Relation to prior workOne of the �rst approa
hes dealing with this identi�ability problem proposes a bound on ‖x0‖0based on the 
oheren
e of matrix A, see se
tion 1.2.1. This bound (2) is often pessimisti
. Twoapproa
hes to improve over this result 
an be distinguished. The �rst one adds hypotheses on thematrix A. Hen
e, if A obeys some restri
tive 
onditions, bound (2) may be improved. It is the pointof view of 
ompressed sensing, see se
tion 1.2.2. Su
h an approa
h, provides bounds on |supp (x0) |to guarantee identi�ability, and also ensures the equivalen
e between P0(y) and P1(y). It also hasthe drawba
k to give pessimisti
 bounds in many situations, see [7, Theorem 1.6℄. CompressedSensing provides good asymptoti
 bounds whi
h 
an be worse than (2).The se
ond approa
h abandons the idea of a uniform bound on |supp (x0) | and uses supp (x0)itself and sometimes even sign (x0). These approa
hes followed by Gribonval and Nielsen [20℄,Fu
hs [18℄ and Tropp [23℄ may explain why many ve
tors that are not so sparse are identi�able,but do not ensure the equivalen
e between problems P0(y) and P1(y). This paper improves overthe results of Tropp and Fu
hs by providing a ne
essary and su�
ient 
ondition for identi�abilityfor a large set of matri
es A. 5



This work may be viewed a 
omplementary approa
h to Compressed Sensing : whereas Com-pressed Sensing needs a strong hyopthesis on A and gives strong results of re
overy, stability andequivalen
e between P0(y) and P1(y), this work proposes near minimal hypotheses on A and givestight 
onditions for the ℓ1 re
overy, with minimal stability results and no equivalen
e betweenP0(y) and P1(y).Following Fu
hs [18, 19℄ and Tropp [23℄, this papers fo
uses on the relaxed and 
onvex problem
min
x

1

2
‖y −Ax‖22 + γ ‖x‖1 P1(y, γ)More pre
isely, it investigates the properties of the solutions of P1(y, γ) for small γ. This problemis refered to as P1(y, γ) to spe
ify the se
ond member y and the parameter γ. A solution of P1(y, γ)will be denoted x(γ).This relaxed formulation P1(y, γ) is parti
ularly well adapted to deal withobservations 
orrupted by an additional noise y = Ax0 + w, but 
an also give information aboutthe solution of P1(Ax0).As previously mentionned, this formulation is equivalent, under appropriate 
orresponden
e ofparameters γ and ε, to (3) used by Candès et al. to develop some Compressed Sensing results [4℄and also by Donoho, Elad Temlyakov [11℄ and others.Even if the �nal 
ondition x ∈ K is derived from algebrai
 relationships satis�ed by the solutionsof P1(Ax, γ), it is 
learly related to the topologi
al properties of the set F . It turns out that it is alsonaturally linked to the topologi
al 
ondition proposed by Donoho [9℄. Hen
e ∀x, 〈u,A+t

I sign (x̄)〉 =
1 is the equation of a hyperplane P 
ontaining all signed a
tive ve
tors asso
iated to x, i.e. if
i ∈ supp (x), sign (x(i)) ai ∈ P . Condition F (x) < 1 ensures that all ina
tive ve
tors (aj)j /∈I(x)belong to the same half-spa
e "below" the hyperplane P . P is then one of the hyperplanes de�ningthe 
onvex hull of the polytope formed by the ve
tors (±aj)j6p. Moreover if x 
an be extentedinto a ve
tor x1 ∈ F , one 
an de�ne a hypperplane P 
ontaining all signed and a
tive ve
torsasso
iated to x1 su
h that all (±aj)j /∈I(x1) belong to the same half-spa
e de�ned by P , i.e. P isone of the hyperplanes de�ning the 
onvex hull of (±aj)j6p.Hen
e if A satis�es 
ondition (UC), both our 
hara
terization of identi�ability and the oneproposed by Donoho [9℄ are equivalent. In fa
t, this paper sheds light on the relation between thealgebrai
 and the analyti
al point of view on this 
hara
terization. It also provides a 
onditionensuring uni
ity and a fast algorithm to 
he
k the identi�ability of a ve
tor x.Se
tion 4 devoted to the numeri
al experiments shows that there are many identi�able x0 thatdo not satisfy any of the previous 
onditions reviewed above. The di�erent bounds derived fromthe mutual 
oheren
e (2), the ERC or the CS theory are a
tually too pessimisti
. This pessimismis ne
essary to get these bounds to be uniform over the support or, even worse, over the 
ardinalof the support. We will see that for a given sparsity or a given support, most of ve
tors may beidenti�able and only a small fra
tion of them may not.Hen
e, this new approa
h sheds light on those identi�able ve
tors x0 that are not very sparse.In parti
ular, it gives 
lues to understand why CS 
an be used with a good probability of su

essbeyond theoreti
al bounds.All results presented here hold true provided that A satis�es 
ondition (UC). Indeed, as previ-ously said, the uni
ity of the solution is important to de�ne the identi�ability, and 
ondition (UC)ensures this uniqueness. It turns out that this 
ondition is not really restri
tive. In parti
ular if theve
tors ai are independent and randomly generated a

ording to a probability law with a density,the probability that A satis�es (UC) is exa
tly 1.2 Geometri
 insightThe analyti
al details look more 
ompli
ated than the simple underlying geometry. Hen
e, beforegiving a proof of Theorem 1, some insight may be gleaned by 
onsidering the geometry underlyingthe set K and 
ondition (UC) for n = 2 and n = 3. In this se
tion A is supposed to satisfy 
ondition(UC), Im (A) = R

n and the ve
tors (ai)j6p belong to the unit sphere S of R
2 or R

3. We denote
B = (bj)j62p = (±ai)i6p and bj = σjaψ(j), where σj ∈ {−1, 1} and ψ(j) 6 p.By de�nition, F is a �nite union of half-
ones of various dimensions, ea
h half-
one beingde�ned by positions and signs of non-zero 
omponents. Consequently K is also a union of 
losed6



half-
ones. This se
tion exempli�es these half-
ones when n = 2 and n = 3 and gives a geometri
alinterpretation of the fun
tion ϕ as a bije
tion between two sets of 
ones.For a given set J ⊂ {1, · · · , 2p}, a half-
one CJ in R
n by

CJ =







∑

j∈J

λjbj with λj > 0, ∀j ∈ J







(10)and a half-
one KJ in R
p

KJ =







∑

j∈J

σjλjδψ(j) with λj > 0, ∀j ∈ J







. (11)Hen
e CJ is the image of KJ by A, ∀J ⊂ {1, · · · , 2p}.The following theorem explains how appli
ation ϕ indu
es a tiling of sets Im (A) and K.Theorem 4 For n = 2 and n = 3, there is a set P su
h that
R
n = ∪J∈P C̄J and K = ∪J∈PK̄J (12)where C̄J and K̄J are the 
losure sets of CJ and KJ . Moreover, for all J ∈ P, ϕ a
ts as a linearbije
tion from CJ to KJ .The purpose of the two following subse
tions is to des
ribe the set P for n = 2 and n = 3. Morepre
isely, it is shown that ∀J ∈ P KJ ⊂ F , from whi
h it is dedu
ed that KJ is the image of CJby ϕ using Theorem 1.2.1 Example in two dimensions n = 2First, we note that 
ondition (UC) implies that (bj)j62p are all dis
tin
t. Let's de�ne the set

P = {1, · · · , 2p}2 by P = {J = (j, l) su
h that B ∩ CJ = ∅}.One 
an noti
e that (j, l) ∈ P if and only if bj and bl 
orrespond to two 
ons
utive points of theset B on the unit 
ir
le S. Hen
e one gets
R

2 = ∪J∈P C̄J . (13)We now prove that for any I ∈ P , KI ∈ F . Suppose J = {j, l} ∈ P and x0 ∈ KJ . Let's denote
I = {ψ(j), ψ(l)} the support of x0. Sin
e (bj)j62p are dis
tin
t, rank(AI) = 2 and is then maximal.The ve
tor d0 is de�ned by d0 = A+t

I sign (σj , σl), it is spanned by bj and bl and satis�es
〈d0, aψ(j)〉 = sign (σj) i.e. 〈d0, bj〉 = 1

〈d0, aψ(l)〉 = sign (σl) i.e. 〈d0, bl〉 = 1This ve
tor d0 belongs to the bise
tor of bj and bl.
−ai−ai

aiai

−aj−aj

ajaj

d0

d0

d0

d0

x(i) > 0 and x(j) < 0 x(i) > 0 and x(j) > 0 x(i) < 0 and x(j) > 0 x(i) < 0 and x(j) < 0Figure 1: Four di�erent 
on�gurations of 
oe�
ients (x0(i), x0(j)) and the 
orresponding d0.7



−b j

−b

b j

b

d0

0

0

| u, d0 | < 1

S1(x )

S2(x )Figure 2: Example of ve
tor d0 and 
aps S1(x0) and S2(x0) for a ve
tor x0 ∈ Kj,l.The set of ve
tors u su
h that 〈u, d0〉 = 1 is the 
hord (bj , bl). Hen
e, from the de�nition of d0,one has
S1(x0) = S∩{u su
h that 〈u, d0〉 > 1} = S∩CJ and S2(x0) = S∩{u su
h that 〈u, d0〉 < −1} = −S1(x0)

S1 and S2 
orrespond to the ar
s shown with the red lines in Figure 2.Thus, a ve
tor x0 belongs to F if and only if
F (x0) = max

k/∈I
|〈ak, d0〉| < 1Hen
e

x0 ∈ F ⇐⇒ (B ∩ S1(x0) = ∅ and B ∩ S2(x0) = ∅)

⇐⇒ B ∩ CJ = ∅,be
ause the set B is anti-symmetri
, i.e. B = −B. Hen
e, x0 ∈ F if and only if J ∈ P , and then
−b j

−b

b j

b

d0

| u, d0 | < 1

0

0

S1(x )

S2(x )

bk2

bk3

bk1 −b j

−b

b j

b

d0

| u, d0 | < 1

0

0

S1(x )

S2(x ) bk1

bk2

bk3Figure 3: On the left, (S1(x0) ∪ S2(x0)) ∩ B = ∅ and then x0 ∈ F , on the right S2(x0) ∩ B 6= ∅and then x0 /∈ F .
KJ ⊂ F if and only if J ∈ P . Thus ∪J∈PKJ ⊂ F implying that ∪J∈PK̄J ⊂ K.For all y ∈ R

2, from (13) there exists some J ∈ P su
h that y ∈ C̄J and then there is x ∈ K̄Jsu
h that y = Ax. Sin
e x ∈ K, from Theorem 1, it is 
on
luded that ϕ(y) = x. Hen
e, ∀x ∈ R
p,

ϕ(Ax) ∈ ∪J∈PKJ and then K ⊂ ∪J∈PKJ , that is K = ∪J∈PKJ and F = K. Moreover ∀x ∈ KJ ,
J = {j, l}, Ax = AI x̄ where I = {ψ(j), ψ(l)} we have x̄ = A+

I AI x̄. Hen
e ∀y ∈ CJ , ϕ(y) = A+
I yand then ϕ is linear from CJ to KJ . It follows that ∀(y1, y2) ∈ (R2)2,

‖ϕ(y1)− ϕ(y2)‖2 6 max
J∈P

∥

∥A+
I

∥

∥

2,2
‖y1 − y2‖2 with ∥

∥A+
I

∥

∥

2,2
= max

x∈S

∥

∥A+
I x
∥

∥

2
(14)Thus, maxJ∈P

∥

∥A+
I

∥

∥

2,2
is the best Lips
hitz 
onstant asso
iated to the fun
tion ϕ.8



C3

K3

C2

K2C1

K1

−a1

−a2

−e2

−e1

−e3

e3

e1

e2−

a3

a1
a3

a2

x AxFigure 4: When n = 2 and p = 3, the map ϕ a
ts as a bije
tion 
one by 
one and sends the unitdisk onto a manifold of R
3.

−a1

−a2

−e2

−e1

−e3

e3

e1

e2−

a3

a1
a3

a2

x AxFigure 5: Right: The 
ones KJ ⊂ F 
orrespond to the edges, here in red, of the unit ℓ1-ball. Left:The images by A of these edges are the (red) edges of the 
onvex hull of the polytope (±aj)j6p.2.2 Example in three dimensions n = 3We now investigate the 
ase n = 3 where (ai)i6p and ‖aj‖2 = 1, ∀j 6 p. To give a geometri
intuition of what happens in dimension 3, some properties of spheri
al triangulation are re
alledin the following. To begin, de�nitions of fa
ets and spheri
al 
aps are given.De�nition 4 Let (xl)l6n ∈ S a set of ve
tors on the unit sphere and J ⊂ {1, · · · , n}, su
h thatpoints (xj)j∈J are 
oplanar and su
h that dim(Span(xj)j∈J ) = 3. The set (xj)j∈J is 
alled a fa
etof the set (xl)l6n. There is a ve
tor x su
h that for all j ∈ J , 〈xj , x〉 = 1. The spheri
al 
ap SJasso
iated to the fa
et (xj)j∈J is de�ned by
SJ = {u su
h that 〈u, x〉 > 1} ∩ S (15)Then one de�nes a general triangulation on the sphere S.De�nition 5 A triangulation T of (xi)i6n ∈ R

3 is a set of triplets (i, j, k) with an adja
en
erelationship. If (i, j, k) ∈ T , the segments (i, j), (j, k) and (k, i) belong to two triangles.A spheri
al Delaunay triangulation is de�ned byDe�nition 6 A spheri
al Delaunay triangulation of a set (xi)i6n ∈ S is a triangulation T su
hthat for any J = (i, j, k) ∈ T , no ve
tors xl, for l /∈ J belongs to the 
ap SJ , SJ ∩ (xl)l6n = ∅.9



This de�nition is an extension of the de�nition of a Delaunay triangulation in the plane, whereinteriors of 
ir
um
ir
les of triangles of the triangulation for points (xi)i6n do not interse
t the set
(xi)i6n.

d0

| u, d0 | < 1

aj

ak

ai

Figure 6: Example of 3D spheri
al 
aps asso
iated to a ve
tor x su
h that ‖x‖0 = 3 and x(i) >
0, x(j) > 0 and x(k) > 0.

ai

Ci,j,k

aj

ak

Figure 7: Example of a 
one Ci,j,k belonging to the set T .The following lemma is needed to ensure that, for a spheri
al Delaunay triangulation, the onlypoints bj on the border of a spheri
al 
ap SJ are bj , for any j ∈ J . This lemma a
tually guaranties,under the hypothesis (UC), the uni
ity of the spheri
al Delaunay triangulation. The proof of thelatter assertion is omitted here.Lemma 1 Assume that A satis�es (UC) and T is a spheri
al Delaunay triangulation of the set
B. For all J = (i, j, k) ∈ T ,

S̄J ∩ B = {bi, bj, bk} (16)that is if the 
ap SJ is de�ned by (15), ∀m /∈ J, 〈bm, u〉 < 1 and then ∀l 6 2p, 〈bl, u〉 6 1.Proof: Let's de�ne x0 = σiδψ(i) + σjδψ(j) + σkδψ(k), and I = (ψ(i), ψ(j), ψ(k)) its support.
A satis�es 
ondition (UC), then ∀m /∈ I, |〈am, d0〉| 6= 1, where d0 = AI(A

t
IAI)

−1sign (σi, σj , σk).From the de�nition of the spheri
al Delaunay triangulation, SJ∩B = ∅ and then, ∀l 6 2p, 〈d0, bl〉 6

1. Equation 〈u, d0〉 = 1 is that of the plane (bi, bj, bk), sin
e 〈bi, d0〉 = 〈bj , d0〉 = 〈bk, d0〉 = 1. Wethen dedu
e that there are no other points bm satisfying 〈bm, d0〉 > 1, whi
h 
on
ludes the proof.10



For any set of points (xi)i6n in R
3, the triangulation of the 
onvex hull is a spheri
al Delaunaytriangulation and then there is always su
h a triangulation. Let T be the spheri
al Delaunaytriangulation of B. Sin
e T is a triangulation of B, ∀y ∈ R

3, there is J ∈ T su
h that y ∈ C̄J , andthen
R

3 = ∪J∈T C̄J (17)We now prove that ∀J ∈ T , KJ ∈ F . Suppose that J = (i, j, k) ∈ T and x0 ∈ KJ . The set
I = (ψ(i), ψ(j), ψ(k)) is the support of x0. One �rst noti
es that rank(AI) = 3 and then is maximal.Equation 〈u, d0〉 = 1, where d0 = AI(A

t
IAI)

−1sign (σi, σj , σk), is then the equation of the planede�ned by the points (bi, bj , bk). Hen
e 
ondition F (x0) = maxm/∈I |〈am, d0〉| = maxl/∈J |〈bl, d0〉| <
1 is equivalent to assert that S̄J ∩ (B\(bi, bj, bk)) = ∅. Sin
e x0 ∈ KJ , J ∈ T and T is a spheri
alDelaunay triangulation, from Lemma 1, it is straightward to seen that S̄J ∩ (B\(bi, bj, bk)) = ∅.As a 
onsequen
e, F (x0) < 1 i.e. x0 ∈ F . Hen
e ∪J∈TKJ ⊂ F . Using the same arguments as theprevious subse
tion, it is easy to prove that K = ∪J∈T K̄J and that ϕ is linear from CJ to KJ .Here again, inequality (14) holds and maxJ∈P

∥

∥A+
I

∥

∥

2,2
is the best Lips
hitz 
onstant asso
iatedto ϕ. For any dimension n, the set K is a union of 
ones K = ∪J∈PK̄J , where KJ ⊂ F .3 A su�
ient and ne
essary 
ondition of identi�abilityIn this se
tion we givethe proofs of Theorems 1, 2 and 3. The proof of Theorem 1 is split into twopropositions. The �rst one 
orresponding to a su�
ient 
ondition on x0 to be identi�able:Proposition 1 If x0 ∈ K then x0 is identi�able, that is x0 is the unique solution of P1(Ax0).The se
ond one 
orresponds to a ne
essary 
ondition for x0 to be identi�able:Proposition 2 Let A be a matrix satisfying (UC), for any y ∈ Im (A) there is a unique solution

x0 of P1(y), moreover x0 ∈ K.More pre
isely, one proves that if A satis�es 
ondition (UC), for any y ∈ Im (A), the solution ofP1(y) is unique and is in K. After developing the main key ideas giving a �avour of the proof, theproofs of Proposition 1, Proposition 2, Theorem 2 and Theorem 3 are detailed in four subse
tions.Some intermediate te
hni
al lemmas will be needed. For the sake of 
on
iseness, their proofs aredeferred to the appendix awaiting inspe
tion by the genuinely interested reader.3.1 Strategy of proofAs previously mentioned, this paper fo
uses on the properties of the minimizer of P1(y, γ) for asmall γ. A key ingredient of this proof is to noti
e that if x(γ) is the unique minimizer of P1(y, γ),then x(γ) is the unique minimizer of P1(Ax(γ)) that is x(γ) is identi�able.To prove Proposition 1, it is shown that any x0 ∈ F is the unique solution of P1(y1, ε) for asuitable y1 and ε, and then that x0 is identi�able. The rest of the proof relies on the fa
t that anyve
tor x0 ∈ K 
an be extended into a ve
tor x1 ∈ F . To prove Proposition 2, it is argued thatthere is a sequen
e of x(γn), solutions of P1(y, γn) belonging to F and tending to a ve
tor x0 su
hthat y = Ax0.The proof of Theorem 2 uses the fa
t that x(γ), solution of P1(y, γ) varies on a 
ontinuouspie
ewise linear 
urve when γ varies. As a byprodu
t, the proof of this theorem establishes thestability of P1(y, γ) to a small variation of y.To show Theorem 3, it is �rst proved that all solutions of P1(y, γ) have the same image by
A, using 
onvexity. The uni
ity and the fa
t that this solution belongs to K is a 
onsequen
e ofTheorem 1.3.2 If x0 ∈ K, then x0 is identi�ableTo prove that x0 ∈ K is a su�
ient 
ondition for x0 to be identi�able we do not require that Asatis�es 
ondition (UC). The following lemma establishes that x0 ∈ F is a su�
ient 
ondition for
x0 to be identi�able. 11



Lemma 2 If x0 ∈ F , x0 is the unique minimizer of P1(Ax0).Proof: The proof is started by appealing to the following 
lassi
al optimization lemma,whi
h gives su�
ient 
onditions under whi
h a ve
tor x∗ is the unique minimizer of P1(y, γ), see[17, 18℄.Lemma 3 The three following 
onditions are su�
ient for x∗ to be the unique minimizer ofP1(y, γ)1. AtI(y −Ax∗) = γ(sign (x̄∗)),2. |〈aj , y −Ax∗〉| < γ for any ina
tive ve
tor aj asso
iated to x∗,3. AI is full rank.where I is the support of x∗.Moreover x∗ satis�es the following impli
it relationship:
x̄∗ = A+

I y − γ(A
t
IAI)

−1sign (x̄∗) . (18)Let x0 ∈ F , and AI be the asso
iated a
tive matrix and ε > 0 su
h that
sign

(

x̄0 + ε(AtIAI)
−1sign (x̄0)

)

= sign (x̄0) . (19)If ε is small enough the previous relation (19) always holds.Let x1 be the ve
tor satisfying I(x1) = I(x0) = I and de�ned by x̄1 = x̄0 + ε(AtIAI)
−1sign (x̄0)and y1 = Ax1. By 
onstru
tion x1 ∈ F and y1 −Ax0 = εAI(A

t
IAI)

−1sign (x̄0) and then
AtI(y1 − Ax0) = εAtIAI(A

t
IAI)

−1sign (x̄0) = εsign (x̄0) .Moreover, for all ina
tive ve
tor aj ,
|〈aj , y1 −Ax0〉| = ε|〈aj, AI(A

t
IAI)

−1sign (x̄0)〉| 6 εF (x0) < ε.Then Lemma 3 implies that x0 is the unique minimizer of P1(y1, ε).Then, for any x2 ∈ R
p,

1

2
‖y1 −Ax2‖

2
2 + ε ‖x2‖1 >

1

2
‖y1 −Ax0‖

2
2 + ε ‖x0‖1 . (20)In parti
ular, if Ax2 = Ax0, the relation (20) implies that ‖x2‖1 > ‖x0‖1, i.e. x0 is identi�ablewhi
h 
on
ludes the proof of the lemma.Let x0 ∈ K, and let x2 ∈ R

p su
h that Ax0 = Ax2 and ‖x2‖1 6 ‖x0‖1. Sin
e x0 ∈ K, there is ave
tor x1 whose support is disjoint from that of x0, su
h that x0 + x1 = x3 ∈ F . Let x4 = x2 + x1,by de�nition Ax4 = Ax3 and
‖x4‖1 6 ‖x2‖1 + ‖x1‖1 6 ‖x0‖1 + ‖x1‖1 = ‖x3‖1 , (21)whi
h implies, from lemma 2 that x4 = x3 and then x2 = x0. That is, x0 is identi�able.3.3 If x0 is identi�able, x0 ∈ KIn this subse
tion, A is supposed to satisfy 
ondition (UC). As mentionned in the strategy of theproof, subse
tion 3.1, we start by showing that under 
ondition (UC), a solution x(γ) of P1(y, γ)is in F , for small γ.Let y ∈ Im (A), γn > 0 a sequen
e of real numbers de
aying to zero, and x(γn) a sequen
eof solutions of P1(y, γn). Su
h a sequen
e does not need to be uniquely de�ned and an arbitrarysolution is 
hosen for ea
h γn. Up to the extra
tion of a sub-sequen
e, it is supposed that thesequen
e x(γn) 
onverges to some x0. From the de�nition of x(γn), ‖y −Ax(γn)‖22 +γn ‖x(γn)‖1 6

γn ‖z‖1, where z is a ve
tor su
h that y = Az and then ‖y −Ax(γn)‖2 → 0 when γn → 0 and then
Ax0 = y. Let n0 su
h that ∀n > n0, I(x0) ⊂ I(x(γn)). From now, it is assumed that n > n0. Weuse the following optimization lemma (see e.g. Fu
hs [18℄) and 
ondition (UC) to prove that therank of the a
tive matrix AI asso
iated to x(γn) is maximum.12



Lemma 4 A ne
essary and su�
ient 
ondition for x(γ) to be a minimizer of P1(y, γ) is that x(γ)satis�es the two following 
onditions
AtI(y − AI x̄(γ)) = γsign (x̄(γ)) , (22)

|〈ak, y −AI x̄(γ)〉| 6 γ for all ina
tive ve
tors (ak)k/∈I . (23)where I = supp (x(γ)) and x̄(γ) is the ve
tor obtained by keeping the non-zero 
omponents of x(γ).Let's suppose AI does not have a full rank. There exists a set J ⊂ I and an index k ∈ I \ J su
hthat |J | = rank(AJ ) = rank(AI) and ak ∈ Span(aj)j∈J , i.e. ak = AIA
+
I ak. Moreover, (22) impliesthat

AtJ (y −Ax(γn)) = γnsign (x̄J (γn))where x̄J (γn) is the ve
tor extra
ted from x(γn) whose 
omponents are indexed by J . From (22),it is also dedu
ed that
γn = |〈ak, y −Ax(γn)〉|

= |〈AJA
+
J ak, y −Ax(γn)〉|

= |〈ak, A
+t
J AtJ (y −Ax(γn))〉|

= γn|〈ak, A
+t
J sign (x̄J (γn))〉|and then |〈ak, A+t

J sign (x̄J (γn))〉| = 1, whi
h is impossible sin
e A satis�es 
ondition (UC). Hen
e,the rank of AI is maximum and AtIAI is non-singular.From (22), it follows that̄
x(γn) = A+

I y − γn(A
t
IAI)

−1sign (x̄(γn)) .Then for all j /∈ I
〈aj , y −Ax(γn)〉 = 〈aj , y −AIA

+
I y − γnAI(A

t
IAI)

−1sign (x̄(γn))〉.Sin
e I(x0) ⊂ I(x(γn)), one has x̄0 = A+
I AI x̄0 and then AIA+

I y = AIA
+
I AI x̄0 = AI x̄0 = y whi
hgives

〈aj , y −Ax(γn)〉 = −γn〈aj , A
+t
I sign (x̄(γn))〉.Using (23),

|〈aj , A
+t
I sign (x̄(γn))〉| 6 1.Sin
e A satis�es (UC),

|〈aj , A
+t
I sign (x̄(γn))〉| 6= 1and then

|〈aj , A
+t
I sign (x̄(γn))〉| < 1It follows from Lemma 3 that x(γn) is the unique solution of P1(y, γn) and x(γn) ∈ F . Hen
e, x0the limit of elements of F , belongs to K.Using Proposition 1, x0 is then the unique solution of P1(Ax0) whi
h 
on
ludes the proof ofProposition 2.3.4 Proof of theorem 2Let y0 and y1 be two elements of Im (A). If y0 and y1 are 
lose enough, the two asso
iatedminimizers x0 = ϕ(y0) and x1 = ϕ(y1) are also 
lose. More pre
isely, it will be shortly shown thatthere is a 
onstant C, independent of y0 and y1, su
h that

‖x1 − x0‖2 6 C ‖y1 − y0‖2 (24)owing to the properties of the minimizer of P1(y, γ).Let x0(γ) (resp. x1(γ)) denotes the minimizer of P1(y0, γ) (resp P1(y1, γ)). For all γ > 0,
‖x0 − x1‖2 6 ‖x0 − x0(γ)‖2 + ‖x0(γ)− x1(γ)‖2 + ‖x1 − x1(γ)‖2The following lemma bounds ‖x0 − x0(γ)‖2 and ‖x1 − x1(γ)‖2.13



Lemma 5 For all y ∈ R
n, x(γ), the minimizer P1(y, γ), is a 
ontinuous fun
tion of γ and liveson a polygonal path. Moreover x(γ) is C0-Lips
hitz where C0 does not depend on y.A proof of this lemma 
an be found in the appendix. This lemma is at the heart of the homotopymethod, see for example [22, 15℄It follows from this lemma that for all γ > 0

‖x0 − x1‖2 6 2C0γ + ‖x0(γ)− x1(γ)‖2 .To bound ‖x0(γ)− x1(γ)‖2, the stability of the minimization problem P1(y, γ) to a small additivenoise is exploited. This is formally summarised in the following lemma.Lemma 6 There exists two real positive numbers C1 and C2 su
h that ∀y0 ∈ R
n if ‖y1 − y0‖2 6

ε 6 ε0 for a noise level ε0 > 0, then,
‖x1(C1ε)− x0(C1ε)‖2 6 C2ε. (25)The proof of this lemma is given in the appendix B.Hen
e, armed with Lemma 5 and 6, it follows that

‖x0 − x1‖2 6 2C0C1ε+ C2ε = (2C0C1 + C2) ‖y1 − y0‖2 .whi
h 
on
ludes the proof.Unfortunatly, at this point of our work, one does not have any 
ontrol on the numbers C0, C1and C2 and the Lips
hitz property is essentialy a theoreti
al result and 
annot stand for a resultof robustness to noise. Nevertheless, empiri
al �ndings from the numeri
al experiments 
learlydemonstrate that, most of the time, there is a real stability to a small noise. Note that sin
e the
ondition x0 ∈ K is sharp to ensure identi�ability of x0, it seems di�
ult to prove a strong stabilityto noise.3.5 Proof of Theorem 3In many situations su
h as signal pro
essing, statisti
s and model sele
tion [?, ?℄ for example, theobservations y are 
orrupted by noise, y = Ax0 +w, or x0 is not exa
tely sparse. A way to estimate
x0 from y in this non-ideal situation, is to look at x(γ), where γ depends on the noise level ε. Thatis why the solution x(γ) of P1(y, γ) is interesting by itself, not only to 
hara
terize the solution ofP1(y) by lowering γ to 0. The properties of the solutions x(γ) to P1(y, γ), has been already studiedin statisti
s although in the over-determined setting p < n, see the homotopy method of Osborneet al. [22℄, and LARS/LASSO of Efron at al. [15℄.Theorem 3 ensures that, if A satis�es 
ondition (UC), x(γ) is always uniquely de�ned andbelongs to K.Proof: Let y ∈ R

n, γ > 0 and x1 and x2 be two solutions of P1(y, γ). One ne
essarily has
Ax1 = Ax2. Indeed, suppose that Ax1 6= Ax2. Let x3 = 1

2 (x1 + x2), from the 
onvexity of thenorm map x 7→ ‖x‖1
‖x3‖1 6

1

2
(‖x1‖1 + ‖x2‖1) (26)From the stri
t 
onvexity of the mapping Z 7→ ‖y − Z‖22

‖y −Ax3‖
2
2 <

1

2

(

‖y −Ax1‖
2
2 + ‖y −Ax2‖

2
2

) (27)and then
1

2
‖y −Ax3‖

2
2 + γ ‖x3‖1 <

1

2
‖y −Ax1‖

2
2 + γ ‖x1‖1whi
h 
ontradi
ts the initial de�nition of x1.Hen
e if there are two minimizers x1 and x2 we ne
essarily have Ax1 = Ax2 and then ‖x1‖1 =

‖x2‖1.Sin
e x1 is a minimizer of P1(y, γ), x1 is also a minimizer of P1(Ax1). We dedu
e from Theorem1 that x1 ∈ K and that x1 is the unique minimizer of P1(y). Thus x2 = x1 and x1 is the uniqueminimizer of P1(y, γ). 14



4 Algorithm and numeri
al experiments4.1 Algorithm SupportExtensionThe 
ondition x0 ∈ F is dire
tly veri�able, sin
e there is an expli
it formula to de�ne F (x0) evenif the 
omputation may be instable if the matrix AI is badly 
onditioned. There is however nostraightforward expli
it formula guaranteeing that x0 ∈ K.This se
tion proposes a semi-greedy algorithm to 
he
k whether x0 ∈ K. This algortihm is builtupon the following proposition.Proposition 3 Let x0 ∈ R
p, and A a matrix satisfying 
ondition (UC), if there exists a ve
tor

x1 ∈ F su
h that x1 is an extension of x0, and su
h that for all j ∈ I(x1)\I(x0)

sign (x1(j)) = −sign (v(j))where v is the ve
tor whose support is equal to the support of x1 de�ned by v̄ = (AtIAI)
−1sign (x̄1),where I = I(x1), then there is some γ0 > 0 su
h that for all γ 6 γ0, the solution x(γ) of P1(Ax0, γ)is unique and

x(γ) = x0 − γv.In the following, the notation F+(x0) = F (x1) is used.To prove this proposition, it is su�
ient to 
he
k that x0 − γv satis�es the three 
onditions ofLemma 3 for small γ.The algorithm SupportExtension extends ve
tor x0 into a ve
tor x1 adding or removing itera-tively 
omponents to x1 in su
h a way that the quantity
F (x1) = max

j /∈I=I(x1)
|〈aj , A

+t
I sign (x̄1)〉|de
reases.The main steps of the support extension algorithm are summarized as follows:Algorithm 1 SupportExtension1: Set x1 ← x0, I ← I(x1).2: while AI does not have full rank and F (x1) > 1 do3: Compute

j0 = arg max
j /∈I
|〈aj , A

+t
I sign (x̄1)〉|4: x1(j0)← sign

(

(A+
I aj0)

tsign (x̄1)
), I ← I(x1)5: v̄ ← (AtIAI)

−1sign (x̄1),6: For all k ∈ I\I(x0) su
h that
v(k)x1(k) > 07: Set x1(k)← 0, I ← I(x1).8: end whileIf the algorithm terminates by �nding a ve
tor x1 su
h that F (x1) < 1, then x0 ∈ K. However,if the algorithm stops only be
ause the matrix AI has full rank, then it is possible that x0 /∈ K.To 
he
k the e�
ien
y of SupportExtension, 200 000 
ouples of matri
es-ve
tors (A, x) have beenrandomly 
hosen with di�erent matrix sizes and di�erent sparsity levels. For ea
h 
ouple, thealgorithm SupportExtension and the ℓ1 minimization solver SolveBP of the matlab toolbox Sparse-Lab http://sparselab.stanford.edu have been applied. The �nding of this experiment wasthat identi�ability as revealed by the algorithm SupportExtension 
oin
ided with exa
t re
overy bySolveBP for all ve
tors, ex
ept one identi�able ve
tor that was not re
ognized by SupportExtension.4.2 Computational 
omplexityThe bulk of 
omputational 
omplexity of this algorithm is invested in the matrix inversion (AtIAI)

−1at ea
h step, whi
h is a d × d matrix, where d = |I|. If p ≫ n, 
omputing all s
alar produ
ts15



〈aj , A
+t
I sign (x̄1)〉 may be more time-
onsuming 
osting O(pn) �ops. But this situation has notbeen tested. Sin
e rankAI 6 n and AI has full rank one always has d 6 n. Moreover, numeri
alexperiments show that the removal steps 
orresponding to v(k)x1(k) > 0 are rare and the numberof steps is in pra
ti
e always bounded by n. Hen
e the 
omputational 
omplexity is O(n3).Some simpli�ed versions of SupportExtension have been tested, omiting the element removal stepor sele
ting several indi
es j0 at ea
h step. These versions are faster but may fail to re
ognize asmall number of identi�able ve
tors.4.3 Comparison to other 
riteriaThe identi�bality 
riteria reviewed in the introdu
tory part of the paper, namely F, ERC and
oheren
e C have been 
ompared. Sin
e these 
riteria 
an be ranked as

(‖x‖0 6 C(A)) =⇒ ERC(I(x)) > 0 =⇒ F (x) < 1 =⇒ F+(x) < 1 (28)they are 
ompared pairwise. To do so, a matrix size is �xed (e.g.n = 300, p = 1200) and matri
es
A are randomly generated from the uniform spheri
al ensemble. For ea
h matrix A, ea
h supportsize s between 1 and 150, a ve
tor x0 is generated su
h that ‖x0‖0 = s with random signs. Forea
h matrix A and ve
tor x0, the solution of P1(Ax0) is denoted x⋆. The identi�ability of x0 ismeasured by

RA(x0) = 1−
1

2s
‖sign (x̄⋆)− sign (x̄0)‖0where x̄ is the ve
tor extra
ted from x keeping only the s largest 
omponents in magnitude.Obviously, 0 ≤ RA(x0) ≤ 1 and RA(x0) = 1 
orresponds to an identi�able ve
tor. The quantity

F+
A (x0) is estimated by SupportExtension algorithm. To ease the 
omparison between all 
riteriaone de�nes CA(x0) = 1

2 (1+1/C(A))−‖x0‖0 and to esae the 
omparison between ERC, F and F+one also de�nes FA(x0) = 1− F (x0) and F+
A (x0) = 1− F+(x0).Ea
h point on ea
h plot of Figure 8 
orresponds to a randomly generated triplet (A, s, x0). Theplots of the top row of Figure (8) 
ompare ea
h 
riterion to its su

essor a

ording to the rankingrelation (28). The shaded re
tangle on ea
h plot delimits the ve
tors x0 for whi
h the 
riterionon the abs
issa fails to re
ognize them as identi�able, whereas the 
riterion on the ordinate axissu

eeds in identifying them. These plots 
learly 
on�rm the ranking relation (28) of these 
riteriain terms of their ability to properly re
ognize identi�able ve
tors. In parti
ular, F+

A is 
learlybetter than F and is then a sharper test of exa
t re
overy by ℓ1 minimization.The plots of the se
ond row of Figure 8 depi
t the exa
t re
overy su

ess measure RA as afun
tion of ea
h identi�ability 
riterion. The 
riterion F+ is strikingly better than its 
ompetitors,showing a sharp phase transition at 1 as expe
ted. F+ is the only 
riterion showing this behaviourwhile the other 
riteria fail to positively test many identi�able ve
tors (shown in the gray shadedre
tangles).Another way to see the gap between 
onditions ERC > 0, F < 1 and F+ < 1 is to 
ompare theproportion of ve
tors, for a given sparsity, that satisfy these 
onditions. By proportion, we meanthat for a given sparsity d the number of half 
ones of ve
tors with the same non-zero 
omponentsand the same signs is 2d
(

d
p

). Among these 
ones, some 
orrespond to ve
tors satisfying some ofthe three above 
riteria. The goal of this experiment is to estimate the proportion of these 
ones.In this simulation, a size of matrix is �xed (here 200 × 1000). For ea
h sparsity d, 5000 
ouples
(A, x) are randomly generated as in the previous test, and the three 
iteria ERC > 0, F < 1 and
F+ < 1 are 
omputed (F+ < 1 is estimated by the algorithm SupportExtension). Figure 9 depi
tsthe proportions of ve
tors satisfying ea
h of the three 
riteria as a fun
tion of the sparsity d. This�gure does not ensure that there is no ve
tors x that are not identi�able when ‖x‖0 6 35, it onlyshows that they are not numerous. A
tually one 
an build ve
tors that are not identi�able withless than 16 non-zero 
omponents using a greedy algorithm �nding a sparse ve
tor x0 su
h that
‖d0‖2 =

∥

∥AI(A
t
IAI)

−1sign (x̄0)
∥

∥

2
is as large as possible.
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+Figure 8: First row: pairwise 
omparison of identi�ablity 
riteria C, ERC, F and F+. The shadedre
tangle on ea
h plot delimits the ve
tors x0 for whi
h the 
riterion on the abs
issa fails to re
ognizethem as identi�able, whereas the 
riterion on the ordinate axis su

eeds in identifying them. Se
ondrow: exa
t re
overy su

ess measure RA as a fun
tion of ea
h identi�ability 
riterion. The shadedre
tangles show those ve
tors that are positively tested as identi�able by the 
orresponding 
riterion.JF: A
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ript.Appendix A - Proof of Lemma 5From theorem 3, we know that x(γ) is uniquely de�ned. Borrowing the arguments of the proofof proposition 2, one obtain that the support and the sign of x(γ) varies only a �nite numbers oftimes. More pre
isely x(γ1) and x(γ2) are the two minimizers of P1(y, γ1) and P1(y, γ2) with thesame support and sign, one 
an verify using Lemma 4 that ∀γ ∈ [γ1, γ2],

x̄(γ) = A+
I y − γ(A

t
IAI)

−1sign (x̄(γ1)) (29)where AI is the a
tive matrix asso
iated to x(γ1) and x(γ2). Hen
e x(γ) is on the segment
[x(γ1), x(γ2)].We denote (γi)i the �nite sequen
e of values 
orresponding to a variation of the support of
x(γ); that is (γi)i are the values at the breakpoints of the polygonal path of x(γ). The fun
tion
x(γ) is then lo
ally a�ne, hen
e 
ontinuous, ex
ept at points γi.It remains to show that x(γ) is 
ontinuous on the left and on the right of points γi.Let γi0 be any of these points. For all γ ∈]γi0−1, γi0 [, x(γ) 
an be written x(γ) = xi0−1−γvi0−1.Let's denote x∗ = xi0−1 − γi0vi0−1.By 
onstru
tion, the support of x∗ is in
luded in the support of x(γ) for γ ∈]γi0−1, γi0 [. Fur-thermore, x∗ satis�es both 
onditions of Lemma 4 with γ = γi0 . Then, x∗ = x(γi0 ). Using similararguments, we 
an also show that x(γi0 ) is the limit of x(γ) when γ tends to γi0 on the right. Wethen obtain that x(γ) is a pie
ewise a�ne and 
ontinuous fun
tion of γ.Sin
e for all y and γ > 0, x(γ) = A+

I y − γ(A
t
IAI)

−1sign (x(γ)) and sin
e (AtIAI)
−1sign (x(γ))
an take a �nite number of values, there's a real number C0 depending on A but not on y, su
hthat x(γ) is C0-Lips
hitz. This 
on
ludes the proof.17
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Figure 9: Proportions of ve
tors satisfying ea
h of the three 
riteria ERC > 0, F < 1 and F+ < 1as a fun
tion of sparsity d. The bla
k line 
orresponds to the 
ondition ERC > 0, the green line to
F < 1 and the red one to F+ < 1.Appendix B - Proof of Lemma 6Let y0 ∈ Im (A) and x0 = ϕ(y0), the solution of P1(y0). We denote x0(γ) the solution ofP1(y0, γ).From lemma 5, x(γ) lives on a polygonal path, and from the proof of proposition 2, one knowsthat x(γn) ∈ F for a sequen
e of γn tending to zero, thus one 
an dedu
e that there is a nonnegative real number γ0 and a ve
tor v su
h that ∀γ ∈]0, γ0[ su
h that x0(γ) ∈ F , supp (x0) ⊂
supp (x0(γ)) = supp (x0(γ0)) = I and x0(γ) = x0 + γv. One 
an suppose γ0 6

xmin

2‖v‖
∞

, where xmindenotes the smallest absolute value of non zero 
omponent of x0.Moreover for γ 6 γ0 and for all ina
tive ve
tor (aj)j /∈I ,
|atj(y −AI x̄0(γ))| 6 γF (x0(γ0)) = γF+ < γ. (30)For a matrix B, one denotes ‖B‖2,∞ = sup

x 6=0

‖Bx‖∞
‖x‖2

.Let ε < γ0vmin

2‖A+

I ‖2,∞

and y1 ∈ Im (A) su
h that ‖y1 − y2‖2 6 ε, where vmin denotes the smallestabsolute value of non zero 
omponent of v. For all γ ∈ [
2ε‖A+

I ‖2,∞

vmin
, γ0], one de�nes ve
tor x∗1(γ)whose support is equal to I and de�ned by

x̄∗1(γ) = x̄0 + γv̄ +A+
I (y1 − y0) (31)where x̄ is obtained keeping 
omponents of x indexed by I. Hen
e, with this de�nition, x̄0 mayhave some zeros 
omponents.To prove x∗1(γ) is the solution of P1(y1, γ), one �rst shows that sign (x̄∗1(γ)) = sign (x̄0(γ)).

‖γv̄‖∞ 6
xmin

2
(32)

∥

∥A+
I (y1 − y0)

∥

∥

∞
6
∥

∥A+
I

∥

∥

2,∞
ε 6

γvmin

2
6
xmin

4
(33)Hen
e x̄∗1(γ) is the sum of three ve
tors x̄0, γv̄ and A+

I (y1 − y0). The sign of this sum will begiven by x̄0(i) if it's non zero and by γv̄(i) if it is. Then, if for i ∈ I, x0(i) 6= 0, then
sign (x∗1(γ)(i)) = sign (x0(i)) = sign (x0(γ)(i)) (34)18



else if for j ∈ I, x0(j) = 0, then
sign (x∗1(γ)(j)) = sign (γv(j)) = sign (x0(γ)(j)) (35)Hen
e, sign (x̄∗1(γ)) = sign (x̄0(γ)).Using lemma 4 one proves that x∗1(γ) is the solution of P1(y1, γ), if moreover

ε 6
γ(1− F+)

maxj ‖aj‖2
(36)On a �rst hand we have

AtI(y1 −AI x̄
∗
1(γ)) = AtI(y0 −AI x̄0(γ)) +AtI(y1 − y0 −AIA

+
I (y1 − y0))

= γsign (x̄0(γ))

= γsign (x̄∗1(γ)) .On a se
ond hand, for all ina
tive ve
tor (aj)j /∈I , we have
|atj(y1 −AI x̄

∗
1(γ))| 6 |a

t
j(y0 −AI x̄0(γ))|+ |a

t
j(y1 − y0 +AIA

+
I (y1 − y0))|

6 γF+ + ε ‖aj‖2
6 γand then x∗1(γ) = x1(γ) is the solution of P1(y1, γ). Finnally if γ 6 γ0 and

ε 6 min

(

γ(1− F+)

maxj ‖aj‖2
,

γvmin

2
∥

∥A+
I

∥

∥

2,∞

)

=
γ

C1
(37)then,

‖x1(γ)− x0(γ)‖2 =
∥

∥A+
I (y1 − y0)

∥

∥

2
6 C2ε. (38)Constants C1 and C2 
an take only a �nite number of values and then taking γ = maxx0

(C1)ε,whi
h is always possible if ε 6 ε0 = γ0
max(C1)
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