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A necessary and sufficient condition

for exact sparse recovery by ℓ1 minimization

Charles Dossal a,
aIMB, Université Bordeaux 1, 351, cours de la Libération, F-33405 Talence cedex (FRANCE)

Abstract

In this paper, a new sharp sufficient condition for exact sparse recovery by ℓ1-penalized minimization from linear

measurements is proposed. The main contribution of this paper is to show that, for most matrices, this condition

is also necessary. Moreover, when the ℓ1 minimizer is unique, we investigate its sensitivity to the measurements

and we establish that the application associating the measurements to this minimizer is Lipschitz-continuous.

Résumé

Une condition nécessaire et suffisante d’identifiabilité parcimonieuse par minimisation ℓ1. Dans cet

article, une nouvelle condition suffisante pour l’identifiabilité parcimonieuse par minimisation ℓ1 pénalisée à partir

de mesures linéaires est proposée. La contribution majeure de ce travail est de prouver que pour la plupart des

matrices, cette condition est aussi nécessaire. Par ailleurs, lorsque le minimiseur du problème ℓ1 est unique, sa

sensibilité aux mesures est étudiée est il montré que l’application qui envoie les mesures sur ce minimiseur est

Lipschitz-continue.

1. Introduction

Let x0 ∈ RN be a vector and A be a real matrix with n rows and N columns. Let y0 be n linear
measurements of x0, i.e. y0 = Ax0 ∈ Rn, where typically n < N . In this paper, we propose a necessary
and sufficient condition ensuring that x0 can be recovered from y0 by solving the following optimization
problem P1(y

0)

min
x∈RN

‖x‖1 such that y = Ax. P1(y)

There is of course a huge literature on the subject, and covering it fairly is beyond the scope of this paper.
We restrict our overview to those works pertaining to ours. For instance, our new condition can be seen
as an extension of [3] and [?]. Indeed, in [3], the following optimization problem (so-called Lasso problem)

min
x∈RN

1

2
‖y − Ax‖2

2 + γ ‖x‖1 . P1(y, γ)

is studied. It is proved that any x0 belonging to the set F is the unique solution of P1(Ax0), where

F =
{

x such that rank(AI) = |I| and ∀j /∈ I, |〈aj , AI(A
t
IAI)

−1sign (xI)〉| < 1
}

,

where I is the support of x, AI the active matrix associated to x, whose columns are those of A indexed by
I, xI are the non-zero components of x and aj is the column of A indexed by j. In the sequel, Span(ai)i∈I

will be denoted VI . The sufficient condition developed in [3] plays a pivotal role in several papers which
investigate support recovery in presence of noise by solving P1(y, γ), e.g. [1,4,2].

In [?], the Exact Recovery Condition ERC is defined. this condition does not depend on the sign but
only on the support of x0 and provides results about the recovery of x0 and stability to noise.

The goal of this paper is to show that the set of vectors that can be recovered by ℓ1 minimization is
exactly, for most matrices, F the closure of F . This result highlights the fact that

max
j /∈I

|〈aj , AI(A
t
IAI)

−1sign (xI)〉| and
∥

∥AI(A
t
IAI)

−1sign (xI)
∥

∥

2

are good indicators of the identifiablility, and brings arguments justifying the success of algorithms de-
veloped in [?] to find very sparse but non-identifiable vectors.
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Before proceeding, let us fix some terminology and definitions. A vector x0 is said identifiable if and
only if it is the unique solution of P1(Ax0).
Definition 1.1 Let (xi)i6N be N points of Rn. These points (xi)i6N are said in general position (GP)
if all affine subspaces of Rn which dimension k < n contain at most k + 1 points xi. A matrix A satisfies
condition (GP ) if for all sign vector S ∈ {−1, 1}N , points (S[i]ai)i6N are in general position.
It can be noticed that for any matrix A, the matrix A + E satisfies condition (GP ) with probability 1
if E is any random perturbation with a an absolutely continuous density with respect to the Lebesgue
measure: with this definition most matrices satisfy condition (GP ).

2. Contributions

The contributions of this paper are summarized as follows.

Theorem 2.1 If x0 ∈ F , then x0 is identifiable.
Theorem 2.2

(i) If x0 is identifiable, and if for all y in a neighborhood of y0 = Ax0 P1(y) has only one solution, then
x0 ∈ F .

(ii) If A satisfies (GP ), for all y ∈ Im (A), P1(y) has a unique solution and x is identifiable if and only
if x ∈ F .

Theorem 2.3 If for all y ∈ Im (A) the solution of P1(y) is unique, the application φ associating y to
this solution is Lipschitz.

3. Preliminary Lemmas

The two following Lemmas can be found in [3].
Lemma 3.1 A vector x∗ is a solution of P1(y, γ) if and only if

At
I(y − Ax∗) = γsign (x∗

I) and ∀j /∈ I |〈aj , y − Ax∗〉| 6 1

where the support of x∗ is denoted by I.
Lemma 3.2 If for a vector x∗ the matrix AI satisfies rank(AI) = |I| and

At
I(y − Ax∗) = γsign (x∗

I) and ∀j /∈ I, |〈aj , AI(A
t
IAI)

−1sign (x∗
I)〉| < 1

then x∗ is the unique minimizer of P1(y, γ).
Lemma 3.3 If x0 is the unique solution of P1(Ax0) then rank(AI) = |I|.

Proof: If there exists h ∈ Ker(A) that is supported on I = I(x0), one has for all t ∈ R, A(x0 + th) =
Ax0. Consequently the application t 7→

∥

∥x0 + th
∥

∥

1
is locally affine in a neighborhood of 0. It follows that

there exists t 6= 0 such that
∥

∥x0 + th
∥

∥

1
6

∥

∥x0
∥

∥

1
.

Lemma 3.4 For all y ∈ Im (A) there exists a solution x to P1(y) such that rank(I) = |I|.
Proof: Let x0 be a solution of P1(y). If rank(I) < |I|, there exists h ∈ Ker(A) that is supported on

I. For a suitable t, I(x0 + th) ( I(x0) and x0 + th is a solution of P1(y).

Lemma 3.5 If x0 ∈ F , then x0 is the unique solution of P1(Ax0)
Proof: Lemma 3.2 shows that x0 is the unique solution of P1(AI(x

0
I + γ(At

IAI)
−1sign

(

x0
I

)

), γ) if
γ > 0 is small enough.

Lemma 3.6 Let y ∈ Im (A) and (γn)n∈N a sequence of positive real numbers tending vers 0. If (xn)n∈N

are some solutions of P1(y, γn) sucht that limn→∞ xn = x0 one gets that x0 is a solution of P1(y).

4. Proofs

4.1. Proof of theorem 2.1

From Lemma 3.5 one has that vectors in F are identifiable. Since AI(A
t
IAI)

−1sign (xI) only depends
on the sign and the support of x, F is a union of cones of various dimensions. It follows that the closure
F of F is exactly equal to the set of vectors x0 that can extented into a vector of F :

2



F =
{

x0 such that ∃x1 such that I(x0) ∩ I(x1) = ∅ and x0 + x1 = x2 ∈ F
}

Let us now suppose that x0 ∈ F , and that there exists x1 such that I(x0) ∩ I(x1) = ∅ and x2 = x0 + x1

belongs to F .
Choose x3 ∈ RN such that Ax0 = Ax3 and define x4 := x3 + x1. We have Ax4 = Ax2 and since x2 ∈ F ,
x2 is the unique solution of P1(Ax2) which implies that ‖x2‖1 < ‖x4‖1. It follows that

∥

∥x2
∥

∥

1
=

∥

∥x0
∥

∥

1
+

∥

∥x1
∥

∥

1
<

∥

∥x4
∥

∥

1
6

∥

∥x3
∥

∥

1
+

∥

∥x1
∥

∥

1
, (1)

which implies
∥

∥x0
∥

∥

1
<

∥

∥x3
∥

∥

1
. That is, x0 is the unique solution of P1(Ax0).

4.2. Proof of theorem 2.2

Proof: Let y ∈ Im(A) and (γn)n∈N a sequence of positive real numbers tending to 0. From Lemma
3.4 we can always choose a solution x(γn) of P1(y, γ) such that the associated active matrix AIn

has a
full rank. Since the number of possible supports and signs is finite, up to an extraction of a subsequence,
we can suppose that all x(γn) share the same support I and the same sign S. From Lemma 3.1, we know
that x(γn) satisfies

x(γn)I = x0
I − γn(At

IAI)
−1S and ∀j /∈ I |〈aj , y − Ax(γn)〉| 6 γ (2)

where x0 is the vector supported on I such that x0
I = (At

IAI)
−1At

Iy. Using Lemma 3.6, x0 is a solu-
tion of P1(y). From (2) we deduce that I(x0) ⊂ I for γn small enough. It follows that y − Ax(γn) =
γAI(A

t
IAI)

−1S = γdI,S and thus ∀j /∈ I, |〈aj , dI,S〉| 6 1
Let us define J to be the set of all indices such that |〈aj , dI,S〉| = 1. One can first notice that I ⊂ J .
We now show that
(i) either (aj)j∈J are linearly dependent and one can build vectors x1 close to x0 such that P1(x

1) has
several solutions, in which case condition (GP ) cannot be satisfied;

(ii) or (aj)j∈J are linearly independent and x(γn) ∈ F and x0 ∈ F and x0 is identifiable.
(i) Suppose that (aj)j∈J are linearly dependent and let ε > 0. Define K ( J such that I ⊂ K and

(ak)k∈K is a basis of VJ = Span(aj)j∈J and j0 ∈ J ∩Kc. Define SK ∈ R|K| by SK = At
KdI,S . Then,

SK is a sign vector and x1 the vector supported on K defined by

x1
K = x0

K +
ε

‖SK‖2

SK

Now choose ε > 0 small enough to ensure that sign
(

x1
I(x0)

)

= sign
(

x0
I(x0)

)

. From definition of x1,

it follows that
∥

∥x0 − x1
∥

∥

2
= ε. For γ small enough the support and the sign of x1 and the vector

x1(γ) supported in K and defined by x1(γ)K = x1
K − γ(At

KAK)−1SK are identical.
We shall prove that x1(γ) is a solution of P1(Ax1, γ) using Lemma 3.1. Indeed

At
K(Ax1 − Ax1(γ)) = γSK

The vector S = At
IdI,S is the common sign of vectors (x(γn))n∈N. Since limn→∞ x(γn) = x0 it

follows that for all i ∈ I(x0) ⊂ I, sign
(

x0[i]
)

= S[i]. Since for all i ∈ I, S[i] = 〈ai, dI,S〉 = SK [i] it

follows that SK = sign
(

x1
K

)

. Moreover sign
(

x1
K

)

= sign
(

x1(γ)K

)

which yields that

At
K(Ax1 − Ax1(γ)) = γsign

(

x1(γ)K

)

Since dI,S ∈ VI ⊂ VK , one has dI,S = AK(At
KAK)−1At

KdI,S = AK(At
KAK)−1SK . If j /∈ K,

|〈aj , Ax1 − Ax1(γ)〉| = γ|〈aj , AK(At
KAK)−1SK〉| = γ|〈aj , dI,S〉| < γ,

and by Lemma 3.1 it follows that x1(γ) is a solution of P1(Ax1, γ). Now Lemma 3.6 shows that x1 is
a solution of P1(Ax1). Choose some h ∈ Ker(A) that is supported on K∪{j0} and such that h[j0] =
S[j0] = at

j0
dI,S . Denote hK the restriction of h on indices K. Since 0 = Ah = S[j0]aj0 + AKhK and

SK = At
KdI,S one has

〈sign
(

x1
K

)

, hK〉 = St
Khk = dt

I,SAKhK = −S[j0]d
t
I,Saj0 = −1

Moreover, for all t ∈ R, A(x1 + th) = Ax1 and for small non negative t
∥

∥x1 + th
∥

∥

1
=

∥

∥x1
∥

∥

1
+ t + t〈sign

(

x1
)

, hK〉 =
∥

∥x1
∥

∥

1
,

which shows that x1 is not the unique minimizer of P1(Ax1).
Notice that for each l ∈ K ∪ {j0}, S[l]al ∈ VK and S[l]al belongs to the affine hyperplan HdI,S

=

3



{u, such that 〈u, dI,S〉 = 1}. Hence at least |K| + 1 points S[l]al belong to an affine subspace
VK ∩HdI,S

which dimension equals to |K| − 1. Therefore, (GP ) is not satisfied.
(ii) Let us now suppose that the (aj)j∈J are linearly independent. Define SJ = At

JdI,S , ∀i ∈ I, S[i] =
SJ [i]. Let x1 be the vector supported on J such that for all i ∈ I(x0), x1[i] = x0[i] and for all
j ∈ J ∩ I(x0)c, x1[j] = SJ [j]. One has sign

(

x1
J

)

= SJ and since dI,S ∈ VI ⊂ VJ , one has dI,S =
AJ(At

JAJ)−1At
JdI,S = AJ(At

JAJ)−1SJ . It follows that for all l /∈ J ,

|〈al, AJ(At
JAJ)−1SJ〉| = |〈al, dI,S〉| < 1

implying that x1 ∈ F and hence x0 ∈ F .

4.3. Proof of theorem 2.3

The proof relies on the following lemma
Lemma 4.1 For all y0 ∈ Im (A), there exists ε0 such that for all y ∈ Im (A) ∩ B(y0, ε0), one has
I(φ(y0)) ⊂ I(φ(y))

Proof: To prove this lemma we will prove that for any y0 ∈ Im (A) and any sequence (yn)n∈N

tending to y0, any subsequence (yun)n∈N such that I(φ(yun)) = Jun
= J is constant, the support J

satisfies J ⊃ I = I(φ(y0)).
Denote by x0 = φ(y0) and I = I(x0). One has x0(I) = (At

IAI)
−1At

Iy
0 = A+

I y0. Let (yn)n∈N a sequence
of elements of Im (A) tending to y0 and xn = φ(yn). Up to an extraction of a subsequence, one can suppose
that for all n ∈ N, I(xn) is constant. Denote by J this common support. Then xn

J = (At
JAJ)−1At

Jyn =
A+

J yn. Let x∞ = limn→∞ xn and x∞
J = A+

J y0. Let zn be the sequence of vectors supported on I defined
by zn

I = A+
I yn. By the definiton of zn, Azn = PVI

yn. Let K be a set such that (ak)k∈K is a basis of
Im (A), and vn the vector supported on K such that vn

K = A+
K(PVI

⊥(yn)). One has

A(zn + vn) = yn and ‖zn + vn‖1 6 ‖zn‖1 + ‖vn‖1

Noticing that
‖vn‖1 =

∥

∥A+
K(PVI

⊥(yn − y0))
∥

∥

1
−→

n→∞
0

One deduces that limn→∞ ‖zn + vn‖1 =
∥

∥x0
∥

∥

1
. Moreover limn→∞ ‖xn‖1 = ‖x∞‖1 and since ‖xn‖1 6

‖zn + vn‖1 we deduce that ‖x∞‖1 6
∥

∥x0
∥

∥

1
and finally x0 = x∞ since x0 = φ(y0). Thus one has I =

I(x0) = I(x∞) ⊂ J which concludes the proof of the lemma.

Let y0 ∈ Im (A). There exists ε0 > 0 such that for all y ∈ Im (A) ∩ B(y0, ε0), there exists J satisfying
I ⊂ J . Moreover x = φ(y) is supported in J and xJ = A+

J y. Since I ⊂ J , one also has x0
J = A+

J y0 and
thus

∥

∥x − x0
∥

∥

2
=

∥

∥A+
J (y − y0)

∥

∥

2
. One deduces that

∀y ∈ Im (A) ∩ B(y0, ε0),
∥

∥φ(y0) − φ(y)
∥

∥

2
6 C

∥

∥y0 − y
∥

∥

2
with C = max

J, rank(AJ )=|J|
λmax(A+

J )

which concludes the proof of the theorem.
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