
HAL Id: hal-00164735
https://hal.science/hal-00164735v1

Preprint submitted on 23 Jul 2007 (v1), last revised 28 Jan 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistency of the group Lasso and multiple kernel
learning

Francis Bach

To cite this version:

Francis Bach. Consistency of the group Lasso and multiple kernel learning. 2007. �hal-00164735v1�

https://hal.science/hal-00164735v1
https://hal.archives-ouvertes.fr


ha
l-

00
16

47
35

, v
er

si
on

 1
 -

 2
3 

Ju
l 2

00
7

Consistency of the group Lasso and multiple kernel learning

Francis R. Bach francis.bach@mines.org

Centre de Morphologie Mathématique
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Abstract

We consider the least-square regression problem with regularization by a block 1-norm,
i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem,
referred to as the group Lasso, extends the usual regularization by the 1-norm where all
spaces have dimension one, where it is commonly referred to as the Lasso. In this paper,
we study the asymptotic model consistency of the group Lasso. We derive necessary and
sufficient conditions for the consistency of group Lasso under practical assumptions, such
as model misspecification. When the linear predictors and Euclidean norms are replaced
by functions and reproducing kernel Hilbert norms, the problem is usually referred to as
multiple kernel learning and is commonly used for learning from heterogeneous data sources
and for non linear variable selection. Using tools from functional analysis, and in particular
covariance operators, we extend the consistency results to this infinite dimensional case
and also propose an adaptive scheme to obtain a consistent model estimate, even when the
necessary condition required for the non adaptive scheme is not satisfied.

1. Introduction

Regularization has emerged as a dominant theme in machine learning and statistics. It pro-
vides an intuitive and principled tool for learning from high-dimensional data. Regulariza-
tion by squared Euclidean norms or squared Hilbertian norms has been thoroughly studied
in various settings, from approximation theory to statistics, leading to efficient practical al-
gorithms based on linear algebra and very general theoretical consistency results (Tikhonov
and Arsenin, 1997, Wahba, 1990, Hastie et al., 2001, Steinwart, 2001, Cucker and Smale,
2002).

In recent years, regularization by non Hilbertian norms has generated considerable inter-
est in linear supervised learning, where the goal is to predict a response as a linear function
of covariates; in particular, regularization by the 1-norm (the sum of absolute values), a
method commonly referred to as the Lasso (Tibshirani, 1994, Osborne et al., 2000), allows
to perform variable selection. However, regularization by non Hilbertian norms cannot be
solved empirically by simple linear algebra and instead leads to general convex optimiza-
tion problems and much of the early effort has been dedicated to algorithms to solve the
optimization problem efficiently. In particular, the Lars algorithm of Efron et al. (2004)
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allows to find the entire regularization path (i.e. the set of solutions for all values of the
regularization parameters) at the cost of a matrix inversion.

As the consequence of the optimality conditions, regularization by 1-norm leads to
sparse solutions, i.e., loading vectors with many zeros. Recent works (Zhao and Yu, 2006,
Yuan and Lin, 2007, Zou, 2006) have looked precisely at the model consistency of the
Lasso, i.e., if we know that the data were generated from a sparse loading vector, does the
Lasso actually recover it when the number of data points grows? In the case of a fixed
number of covariates, the Lasso does recover the sparsity pattern if and only if a certain
simple condition on the generating covariance matrices is verified (Yuan and Lin, 2007). In
particular, in low correlation settings, the Lasso is indeed consistent. However, in presence
of strong correlations, the Lasso cannot be consistent, shedding light on potential problems
of such procedures for variable selection. Adaptive versions where data-dependent weights
are added to the 1-norm allow to keep the consistency in all situations (Zou, 2006).

A cousin to the Lasso is the group Lasso, where the covariates are assumed to be clustered
in groups, and instead of summing the absolute values of each individual loading, the sum of
Euclidean norms of the loadings in each group is used. Intuitively, this should drive all the
weights in one group to zero together, and thus lead to group selection (Yuan and Lin, 2006).
In Section 2, we extend the consistency results of the Lasso to the group Lasso, showing
that similar correlation conditions are necessary and sufficient conditions for consistency.
The passage from groups of size one to groups of larger sizes leads however to a slightly
weaker result as we can not get a single necessary and sufficient condition (in Section 2.4,
we show that the stronger result similar to the Lasso is not true as soon as one group has
dimension larger than one). In our proofs, we relax the assumptions usually made for such
consistency results, i.e., that the model is completely well-specified (conditional expectation
of the response which is linear in the covariates and constant conditional variance). In the
context of misspecification, which is a common situation when applying methods such as
the ones presented in this paper, we simply prove convergence to the best linear predictor
(which is assumed to be sparse), both in terms of loading values and sparsity patterns.

The group Lasso essentially replaces groups of size one by groups of size larger than
one. It is natural in this context to allow the size of each group to grow unbounded, i.e.,
to replace the sum of Euclidean norms by a sum of appropriate Hilbertian norms. When
the Hilbert spaces are reproducing kernel Hilbert spaces (RKHS), this procedure turns out
to be equivalent to learn the best convex combination of a set of basis kernels, where each
kernel corresponds to one Hilbertian norm used for regularization (Bach et al., 2004a). This
framework, referred to as multiple kernel learning (Bach et al., 2004a), has applications
in kernel selection, data fusion from heterogeneous data sources and non linear variable
selection (Lanckriet et al., 2004a). In this latter case, multiple kernel learning can exactly
be seen as variable selection in a generalized additive model (Hastie and Tibshirani, 1990).
We extend the consistency results of the group Lasso to this non parametric case, by using
covariance operators and appropriate notions of functional analysis. These notions allow
to carry out the analysis entirely in “primal/input” space, while the algorithm has to work
in “dual/feature” space to avoid infinite dimensional optimization. Throughout the paper,
we will always go back and forth between primal and dual formulations, primal formulation
for analysis and dual formulation for algorithms.
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The paper is organized as follows: in Section 2, we present the consistency results for the
group Lasso, while in Section 3, we extend these to Hilbert spaces. Finally, we present the
adaptive scheme in Section 4 and illustrate our set of results with simulations on synthetic
examples in Section 5.

2. Consistency of the group-Lasso

We consider the prediction problem of Y ∈ R from X ∈ R
p, where X has a block structure

with m blocks: X = (X1, . . . ,Xm) with each Xj ∈ R
pj , and

∑m
j=1 pj = p. The only

assumptions that we make on the joint distribution PXY are the following:

(A1) X and Y have finite fourth order moments: E‖X‖4 < ∞ and E‖Y ‖4 < ∞.

(A2) The joint matrix of second order moments ΣXX = EXX⊤ ∈ R
p×p is invertible.

(A3) We let w ∈ R
p denote any minimizer of E(Y − X⊤w)2. We assume that E((Y −

w⊤X)2|X) is almost surely greater than σ2
min > 0. We let denote J = {j,wj = 0} the

sparsity pattern of w.1

The assumption (A3) does not state that E(Y |X) is a linear function of X and that the
conditional variance is constant, as is commonly done in most works dealing with consistency
for linear supervised learning. We simply assume that given the best linear predictor of Y
given X (defined by w), there is a still a strictly positive amount of variance in Y . If (A2) is
satisfied, then the loading vector w is uniquely defined and is equal to w = (EXX⊤)−1

EXY .
Note that throughout this paper, we do not include a constant term, but we could do so
by adding a constant random variable as a group of size one. In particular, all moment
matrices are never centered and we will refer to second order moment matrices as non
centered covariance matrices, or simply covariance matrices.

We often use the notation ε = Y −w⊤X. In terms of (non centered) covariance matrices,
our assumption (A3) leads to: Σεε|X = E(εε|X) > σ2

min and ΣεX = EεX = 0 (but ε might
not in general be independent from X).

We always assume that the number m of groups is fixed and finite. Considering cases
where m is allowed to grow with the number of observed data points, in the line of Mein-
shausen and Yu (2006), is outside the scope of this paper.

Notations Throughout this paper, we consider block covariance matrices ΣXX with m2

blocks ΣXiXj , i, j = 1, ,̇m. We refer to the submatrix composed of all blocks indexed by
sets I, J as ΣXIXJ

. Similarly, our loadings are vectors defined following block structure,
w = (w1, . . . , wm) and we denote wI the elements indexed by I.

2.1 Group-Lasso

We consider independent and identically distributed (i.i.d.) data (xi, yi) ∈ R
p × R, i =

1, . . . , n, sampled from PXY and the data are given in the form of matrices Ȳ ∈ R
n and

X̄ ∈ R
n×p and we write X̄ = (X̄1, . . . , X̄m) where each X̄j ∈ R

n×pj . Throughout this paper,

1. Note that throughout this paper, we use boldface fonts for population quantities.
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we make the same i.i.d. assumption; dealing with non identically distributed or dependent
data and extending our results in those situations are left for future research.

We consider the following optimization problem:

min
w∈Rp

1

2n
‖Ȳ − X̄w‖2 + λn

m
∑

j=1

dj‖wj‖,

where dj is a set of strictly positive fixed weights. Note that considering weights in the
block 1-norm is important in practice as those have an influence regarding the consistency
of the estimator (see Section 4 for further details). Note that we can rewrite 1

2n‖Ȳ − X̄w‖2

as follows:
1

2n
‖Ȳ − X̄w‖2 =

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw,

where Σ̂Y Y = 1
n Ȳ ⊤Ȳ , Σ̂Y X = 1

n Ȳ ⊤X̄ and Σ̂XX = 1
nX̄⊤X̄ are empirical (non centered)

covariance matrices. Our optimization problem is thus equivalent to:

min
w∈Rp

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw + λn

m
∑

j=1

dj‖wj‖. (1)

We denote ŵ any minimizer of Eq. (1). We refer to ŵ as the group-Lasso estimate2. Note
that with probability tending to one, if (A2) is satisfied (i.e., if ΣXX is invertible), there is
a unique minimum.

Problem (1) is a non-differentiable convex optimization problem, for which classical tools
from convex optimization (Boyd and Vandenberghe, 2003) lead to the following optimality
conditions (see proof in Appendix A.1):

Proposition 1 A vector w ∈ R
p with sparsity pattern J = J(w) = {j, wj 6= 0} is optimal

for problem (1) if and only if

∀j ∈ Jc,
∥

∥

∥
Σ̂XjXw − Σ̂XjY

∥

∥

∥
6 λndj , (2)

∀j ∈ J, Σ̂XjXw − Σ̂XjY = −wj
λndj

‖wj‖
. (3)

2.2 Algorithms

Efficient exact algorithms exist for the regular Lasso, i.e., for the case where all group
dimensions pj are equal to one. They are based on the piecewise linearity of the set of
solutions as a function of the regularization parameter λn (Efron et al., 2004). For the
group Lasso, however, the path is only piecewise differentiable, and following such a path is
not as efficient as for the Lasso. Other algorithms have been designed to solve problem (1)
for a single value of λn, in the original group Lasso setting (Yuan and Lin, 2006) and in
the multiple kernel setting (Bach et al., 2004a,b, Sonnenburg et al., 2006, Rakotomamonjy
et al., 2007). In this paper, we study path consistency of the group Lasso and of multiple
kernel learning, and in simulations we use the publicly available code for the algorithm
of Bach et al. (2004b), that computes an approximate but entire path, by following the
piecewise smooth path with predictor-corrector methods.

2. We use the convention that all “hat” notations correspond to data-dependent and thus n-dependent
quantities, so we do not need the explicit dependence on n.
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2.3 Consistency results

We consider the following two conditions:

max
i∈Jc

1

di

∥

∥

∥
ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥
< 1, (4)

max
i∈Jc

1

di

∥

∥

∥
ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥
6 1, (5)

where Diag(dj/‖wj‖) denotes the block-diagonal matrix (with block sizes pj) with
dj

‖wj‖
Ipj

on the diagonal, and wJ denotes the concatenation of the loadings indexed by J. These are
conditions on both the input (through the joint covariance matrix ΣXX) and on the weight
vector w. Note that, when all blocks have size 1, this corresponds to the conditions derived
for the Lasso (Zhao and Yu, 2006, Yuan and Lin, 2007, Zou, 2006). Note also the difference
between the strong condition (4) and the weak condition (5). For the Lasso, with our
assumptions, Yuan and Lin (2007) has shown that the strong condition (4) is necessary and
sufficient for path consistency of the Lasso; i.e., the path of solutions consistently contains
an estimate which is both consistent for the 2-norm (regular consistency) and the 0-norm
(consistency of patterns), if and only if condition (4) is satisfied.

In the case of the group Lasso, even with a finite fixed number of groups, our results are
not as strong, as we can only get the strict condition as sufficient and the weak condition
as necessary. In Section 2.4, we show that this cannot be improved in general. More
precisely the following theorem, proved in Appendix B.1, shows that if the condition (4) is
satisfied, any regularization parameter that satisfies a certain decay conditions will lead to
a consistent estimator; thus the strong condition (4) is sufficient for path-consistency:

Theorem 2 Assume (A1), (A2) and (A3). If condition (4) is satisfied, then for any
sequence λn such that λn → 0 and λnn1/2 → +∞, then the group-Lasso estimate ŵ defined
in Eq. (1) converges in probability to w and the sparsity pattern J(ŵ) = {j, ŵj 6= 0}
converges in probability to J (i.e., P (J(ŵ) = J) → 1).

The following theorem, proved in Appendix B.2, states that if there is a consistent
solution on the path, then the weak condition (5) must be satisfied.

Theorem 3 Assume (A1), (A2) and (A3). If there exists a (possibly data-dependent) se-
quence λn such that ŵ converges to w and J(ŵ) converges to J in probability, then condition
(5) is satisfied.

On the one hand, Theorem 2 states that under the “low correlation” condition (4), the
group Lasso is indeed consistent. On the other hand, the result (and the similar one for the
Lasso) is rather disappointing regarding the applicability of the group Lasso as a practical
group selection method, as Theorem 3 states that if the weak correlation condition (5) is
not satisfied, we cannot have consistency.

Moreover, this is to be contrasted with a thresholding procedure of the joint least-
square estimator, which is also consistent with no conditions (but the invertibility of ΣXX),
if the threshold is properly chosen (smaller than the smallest norm ‖wj‖ for j ∈ J or with
appropriate decay conditions). However, the Lasso and group Lasso do not have to set such
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a threshold, and empirical evidence shows that in the finite sample case, they do perform
better (Tibshirani, 1994), in particular in the case where the number m of groups is allowed
to grow (Meinshausen and Yu, 2006). In this paper we focus on the extension from uni-
dimensional groups to multi-dimensional groups for finite number of groups m and leave
the possibility of letting m grow with n for future research.

Finally, by looking carefully at condition (4) and (5), we can see that if we were to
increase the weight dj for j ∈ Jc and decrease the weights otherwise, we could always be
consistent: this however requires the (potentially empirical) knowledge of J and this is
exactly the idea behind the adaptive scheme that we present in Section 4.

2.4 Refinements of sufficient condition

Our current results state that the strict condition (4) is sufficient for path-consistency of the
group Lasso, while the weak condition (5) is only necessary. When all groups have dimension
one, then the strict condition is also necessary (Yuan and Lin, 2007). The main technical
reason for this difference is that in dimension one, the set of vectors of unit norm is discrete,
and thus regular squared norm consistency leads to estimates of the signs of the loadings
(i.e., their normalized versions ŵj/‖ŵj‖) which are ultimately constant. When groups have
size larger than one, then ŵj/‖ŵj‖ will not be ultimately constant (just consistent) and
this added dependence on data leads to the following refinement of Theorem 2 (see proof
in Appendix B.3):

Theorem 4 Assume (A1), (A2) and (A3). Assume the weak condition (5) is satisfied

and that for all i ∈ Jc such that 1
di

∥

∥

∥
ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥
= 1, we have

∆⊤ΣXJXiΣXiXJ
Σ−1

XJXJ
Diag

[

dj/‖wj‖

(

Ipj −
wjw

⊤
j

w⊤
j wj

)]

∆ > 0, (6)

with ∆ = −Σ−1
XJXJ

Diag(dj/‖wj‖)wJ. Then for any sequence λn such that λn → 0 and

λnn1/4 → +∞, then the group-Lasso estimate ŵ defined in Eq. (1) converges in probability
to w and the sparsity pattern J(ŵ) = {j, ŵj 6= 0} converges in probability to J.

This theorem is of lower practical significance than Theorem 2 and Theorem 3. It merely
shows that the link between strict/weak conditions and sufficient/necessary conditions are
in a sense tight (as soon as there exists j ∈ J such that pj > 1, it is easy to exhibit examples
where Eq. (6) is or is not satisfied). The previous theorem does not contradict the fact that
condition (4) is necessary for path-consistency in the Lasso case: indeed, if wj has dimension

one, then Ipj −
wjw

⊤

j

w⊤

j wj
is always equal to zero, and thus Eq. (6) is never satisfied. Note that

when condition (6) is an equality, we could still refine the condition by using higher orders
in the asymptotic expansions presented in Appendix B.3.

2.5 Loading independent sufficient condition

Condition (4) depends on the loading vector w and on the sparsity pattern J, which are
both a priori unknown. In this section, we consider sufficient conditions that do not depend
on the loading vector, but only on the sparsity pattern J and of course on the covariance
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matrices. The following condition is sufficient for consistency of the group-lasso, for all
possible loading vectors w with sparsity pattern J:

C(ΣXX , d,J) = max
i∈Jc

max
∀j∈J, ‖uj‖=1

∥

∥

∥

∥

1

di
ΣXiXJ

Σ−1
XJXJ

Diag(dj)uJ

∥

∥

∥

∥

< 1. (7)

As opposed to the Lasso case, C(ΣXX , d,J) cannot be readily computed in closed form,
but we have the following upper bound:

C(ΣXX , d,J) 6 max
i∈Jc

1

di

∑

j∈J

dj

∥

∥

∥

∥

∥

∑

k∈J

ΣXiXk

(

Σ−1
XJXJ

)

kj

∥

∥

∥

∥

∥

,

where for a matrix M , ‖M‖ denotes its maximal singular value (also known as its spectral
norm). This leads to the following sufficient condition for consistency of the group-Lasso
(which extends the condition of Yuan and Lin (2007)):

max
i∈Jc

1

di

∑

j∈J

dj

∥

∥

∥

∥

∥

∑

k∈J

ΣXiXk

(

Σ−1
XJXJ

)

kj

∥

∥

∥

∥

∥

< 1. (8)

Note that testing the existence of a set of weights d such that Eq. (8) is true is a linear
programming problem. Moreover, given a set of weights d, better sufficient conditions than
Eq. (8) may be obtained by solving a convex optimization problem:

Proposition 5 The quantity max
∀j∈J, ‖uj‖=1

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj)uJ

∥

∥

∥

2
is upperbounded by

max
M<0, trMii=1

trM
(

Diag(dj)Σ
−1
XJXJ

ΣXJXiΣXiXJ
Σ−1

XJXJ
Diag(dj)

)

, (9)

where M is a matrix defined by blocks following the block structure of ΣXJXJ
. Moreover,

the bound is also equal to

min
λ∈Rm, Diag(dj)Σ

−1

XJXJ
ΣXJXi

ΣXiXJ
Σ−1

XJXJ
Diag(dj)4Diag(λ)

λ⊤1m.

Proof We let denote M = uu⊤ < 0. Then if all uj for j ∈ J have norm 1, then we have
trMjj = 1 for all j ∈ J. This implies the convex relaxation. The second problem is easily
obtained as the convex dual of the first problem (Boyd and Vandenberghe, 2003).

Note that for the Lasso, the convex bound in Eq. (9) is tight and leads to the bound given
above in Eq. (8) and by Yuan and Lin (2007). For the Lasso, Zhao and Yu (2006) consider
several particular patterns of dependencies using Eq. (8). Note that this condition (and
not the condition in Eq. (7)) is independent from the dimension and thus does not readily
lead to rules of thumbs allowing to set the weight dj as a function of the dimension pj ;
several rules of thumbs have been suggested, that loosely depend on the dimension on the
blocks, in the context of the linear group Lasso (Yuan and Lin, 2006) or multiple kernel
learning (Bach et al., 2004b); we argue in this paper, that weights should also depend on
the response as well (see Section 4).
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2.6 Alternative formulation to the group-Lasso

Following Bach et al. (2004a), we can instead consider regularization by the square of the
block 1-norm:

min
w∈Rp

1

2n
‖Ȳ − X̄w‖2 +

1

2
µn





m
∑

j=1

dj‖wj‖





2

.

This leads to the same path of solutions, but it is better behaved because each variable
which is not zero is still regularized by the squared norm. The alternative version has also
two advantages: (a) it has very close links to more general frameworks for learning the kernel
matrix from data (Lanckriet et al., 2004b), and (b) it is essential in our proof of consistency
in the functional case. We also get the equivalent formulation by using empirical covariance
matrices:

min
w∈Rp

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw +

1

2
µn





m
∑

j=1

dj‖wj‖





2

. (10)

The following proposition gives the optimality conditions for the convex optimization prob-
lem defined in Eq. (10) (see proof in Appendix A.2):

Proposition 6 A vector w ∈ R
p with sparsity pattern J = {j, wj 6= 0} is optimal for

problem (10) if and only if

∀j ∈ Jc,
∥

∥

∥Σ̂XjXw − Σ̂XjY

∥

∥

∥ 6 µndj (
∑

i di‖wi‖) , (11)

∀j ∈ J, Σ̂XjXw − Σ̂XjY = −µn (
∑

i di‖wi‖)
djwj

‖wj‖
. (12)

Note the correspondence at the optimum between optimal solutions of the two optimization
problems in Eq. (1) and Eq. (10) through λn = µn (

∑

i di‖wi‖). As far as consistency
results are concerned, Theorem 3 immediately applies to the alternative formulation because
the regularization paths are the same. For Theorem 2, it does not readily apply. But
since the relationship between λn and µn at optimum is λn = µn (

∑

i di‖wi‖) and that
∑

i di‖ŵi‖ converges to a constant whenever ŵ is consistent, it does apply as well with
minor modifications (in particular, to deal with the case where J is empty, which requires
µn = ∞).

3. Covariance operators and multiple kernel learning

We now extend the previous consistency results to the case of non-parametric estimation,
where each group is a potentially infinite dimensional space of functions. Namely, the
non parametric group Lasso aims at estimating a sparse linear combination of functions of
separate random variables, and can then be seen as a variable selection in a generalized
additive model (Hastie and Tibshirani, 1990). Moreover, as shown in Section 3.5, the non-
parametric group Lasso may also be seen as equivalent to learning a convex combination of
kernels, a framework referred to as multiple kernel learning (MKL).

In this nonparametric context, covariance operators constitute appropriate tools for
the statistical analysis and are becoming standard in the theoretical analysis of kernel
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methods (Fukumizu et al., 2004, Gretton et al., 2005, Fukumizu et al., 2007, Caponnetto
and de Vito, 2005). The following section reviews important concepts. For more details,
see Baker (1973) and Fukumizu et al. (2004).

3.1 Review of covariance operator theory

In this section, we first consider a single set X and a positive definite kernel k on X ,
associated with the reproducing kernel Hilbert space (RKHS) F of functions from X to
R (see, e.g., Schölkopf and Smola (2001) or Berlinet and Thomas-Agnan (2003) for an
introduction to RKHS theory). The Hilbert space and its dot product 〈·, ·〉 are such that
for all x ∈ X , then k(·, x) ∈ F and for all f ∈ F , 〈k(·, x), f〉 = f(x), which leads to the
reproducing property 〈k(·, x), k(·, y)〉 = k(x, y) for any (x, y) ∈ X × X .

Covariance operator and norms Given a random variable X on X with bounded
second order moment, i.e., such that Ek(X,X) < ∞, we can define the (non centered)
covariance operator as the bounded linear operator ΣXX from F to F such that for all
(f, g) ∈ F × F ,

〈f,ΣXXg〉 = E(f(X)g(X)).

The operator ΣXX is auto-adjoint, non-negative and Hilbert-Schmidt, i.e., for any orthonor-
mal basis (ep)p>1 of F , then

∑∞
p=1 ‖ΣXXep‖

2 is finite; in this case, the value does not depend
on the chosen basis and is referred to as the square of the Hilbert-Schmidt norm. The norm
that we use by default in this paper is the operator norm ‖ΣXX‖ = supf∈F , ‖f‖=1 ‖ΣXXf‖,
which is dominated by the Hilbert-Schmidt norm. Note that in the finite dimensional case,
the (non centered) covariance operator is exactly the (non centered) covariance matrix, and
the Hilbert-Schmidt norm is the Frobenius norm, while the operator norm is the maximum
singular value (also referred to as the spectral norm).

Empirical estimators Given data xi, i = 1, . . . , n sampled i.i.d. from PX , then the em-
pirical estimate Σ̂XX of ΣXX is defined such that 〈f, Σ̂XXg〉 is the empirical (non centered)
covariance between f(X) and g(X), which leads to:

Σ̂XX =
1

n

n
∑

i=1

k(·, xi) ⊗ k(·, xi),

where u ⊗ v is the operator defined by 〈f, (u ⊗ v)g〉 = 〈f, u〉〈g, v〉. If we further assume
that the fourth order moment is finite, i.e., Ek(X,X)2 < ∞, then the estimate is uniformly
consistent i.e., ‖Σ̂XX −ΣXX‖ = Op(n

−1/2) (see Fukumizu et al. (2007) and Appendix C.1),
which generalizes the usual result of finite dimension.3

Cross-covariance and joint covariance operators Covariance operator theory can be
extended to cases with more than one random variables (Baker, 1973). In our situation, we
have m input spaces X1, . . . ,Xm and m random variables X = (X1, . . . ,Xm) and m RKHS
F1, . . . ,Fm.

3. A random variable Zn is said to be of order Op(an) if for any η > 0, there exists M > 0 such that
supn P (|Zn| > Man) < η. See Van der Vaart (1998) for further definitions and properties of asymptotics
in probability.
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If we assume that Ekj(Xj ,Xj) < ∞, for all j = 1, . . . ,m, then we can naturally define
the cross-covariance operators ΣXiXj from Fj to Fi such that ∀(fi, fj) ∈ Fi ×Fj ,

〈fi,ΣXiXjfj〉 = E(fi(Xi)fj(Xj)).

These are also Hilbert-Schmidt operators, and if we further assume that Ekj(Xj ,Xj)
2 < ∞,

for all j = 1, . . . ,m, then the natural empirical estimators converges to the population
quantities in Hilbert-Schmidt and operator norms at rate Op(n

−1/2). We can now define
a joint block covariance operator on F = F1 × · · · × Fm following the block structure
of covariance matrices in Section 2. As in the finite dimensional case, it leads to a joint
covariance operator ΣXX and we can refer to sub-blocks as ΣXIXJ

for the blocks indexed
by I and J .

Moreover, we can define the bounded (i.e., with finite operator norm) correlation oper-

ators through ΣXiXj = Σ
1/2
XiXi

CXiXjΣ
1/2
XjXj

(Baker, 1973). Throughout this paper we will
make the assumption that those operators CXiXj are compact for i 6= j: compact oper-
ators can be characterized as limits of finite rank operators or as operators that can be
diagonalized on a countable basis with spectrum composed of a sequence tending to zero
(see, e.e., Brezis (1980)). This implies that the joint operator CXX , naturally defined on
F = F1 × · · · × Fm, is of the form “identity plus compact”. It thus has a minimum and a
maximum eigenvalue which are both between 0 and 1 (Brezis, 1980). If those eigenvalues are
strictly greater than zero, then the operator is invertible, as are all the square sub-blocks.
Moreover, the joint correlation matrix is lower-bounded by a strictly positive constant times
the identity operator.

Translation invariant kernels A particularly interesting ensemble of RKHS in the con-
text of nonparametric estimation is the set of translation invariant kernels defined over
X = R

p, where p > 1, of the form k(x, x′) = q(x′ − x) where q is a function on R
p with

pointwise nonnegative integrable Fourier transform (which implies that q is continuous).
In this case, the associated RKHS is F = {q1/2 ∗ g, g ∈ L2(Rp)}, where q1/2 denotes the
inverse Fourier transform of the square root of the Fourier transform of q and ∗ denotes
the convolution, and L2(Rp) denotes the space of square integrable functions. The norm is
equal to

‖f‖2 =

∫

|F (ω)|2

Q(ω)
dω,

where F and Q are the Fourier transforms of f and q (Wahba, 1990, Schölkopf and Smola,
2001). Functions in the RKHS are then functions with appropriately integrable derivatives.
In this paper, when using infinite dimensional kernels, we use the Gaussian kernel kτ (x, x′) =

qτ (x − x′) = exp(−‖x−x′‖2

2τ2 ).

One-dimensional Hilbert spaces In this paper, we also consider real random variables
Y and ε embedded in the natural Euclidean structure of real numbers (i.e., we consider
the linear kernel on R). In this setting the covariance operator ΣXjY from R to Fj can
be canonically identified as an element of Fj . Throughout this paper, we always use this
identification.
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3.2 Problem formulation

We assume in this section and in the remaining of the paper that Xj ∈ Xj where Xj is
any set on which we have a reproducible kernel Hilbert spaces Fj , associated with the
positive kernel kj : Xj × Xj → R. We now make the following assumptions, that extends
the assumptions (A1), (A2) and (A3). For each of them, we detail the main implications
as well as common natural sufficient conditions. The first two conditions (A4) and (A5)
depend solely on the input variables, while the two other ones, (A6) and (A7) consider the
relationship between X and Y .

(A4) For each j = 1 . . . ,m, Fj is a separable reproducing kernel Hilbert space associated
with kernel kj , and the random variables kj(·,Xj) have finite fourth-order moment,
i.e., Ekj(Xj ,Xj)

2 < ∞.

This is a non restrictive assumption in many situations; for example, when (a) Xj = R
pj

and the kernel function (such as the Gaussian kernel) is bounded, and when (b) Xj is a
compact subset of R

pj and the kernel is any continuous function such as linear or polynomial.
This implies notably, as shown in Section 3.1, that we can define covariance, cross-covariance
and correlation operators that all Hilbert-Schmidt (Baker, 1973, Fukumizu et al., 2007) and
can all be estimated at rate Op(n

−1/2).

(A5) All cross-correlation operators are compact and the joint correlation operator CXX is
invertible.

This is also a condition uniquely on the input spaces and not on Y . Following Fukumizu et al.
(2007), a simple sufficient condition is that we have measurable spaces and distributions
with joint density pX (and marginal distributions pXi(xi) and pXiXj (xi, xj)) and that the
mean square contingency between all pairs of variables is finite, i.e.

E

{

pXiXj(xi, xj)

pXi(xi)pXj (xj)
− 1

}

< ∞.

The contingency is a measure of statistical dependency (Renyi, 1959), and thus this sufficient
condition simply states that two variables Xi and Xj cannot be too dependent. In the
context of multiple kernel learning for heterogeneous data fusion, this corresponds to having
sources which are heterogeneous enough. Essentially, we use this assumption to make sure
that the functions f1, . . . , fm are unique. This ensures the non existence of any set of
functions f1, . . . , fm in F1, . . . ,Fm, such that Efj(Xj)

2 > 0 and a linear combination is zero
on the support of the random variables. In the context of generalized additive models, this
assumption is referred to as the empty concurvity space assumption (Hastie and Tibshirani,
1990).

(A6) There exists functions f = (f1, . . . , fm) ∈ F = F1 × · · · × Fm and a function h of
X = (X1, . . . ,Xm) such that E(Y |X) =

∑m
j=1 fj(Xj) + h(X) with Eh(X)2 < ∞ and

Eh(X)fj(Xj) = 0 for all j = 1, . . . ,m and fj ∈ Fj . We assume that E((Y −f(X))2|X)
is almost surely greater than σ2

min > 0 and smaller than σ2
max < ∞. We let denote

J = {j, fj = 0} the sparsity pattern of f .
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This assumption on the conditional expectation of Y given X is not the most general and
follows common assumptions in approximation theory (see, e.g., Caponnetto and de Vito
(2005), Cucker and Smale (2002) and references therein). It allows misspecification, but it
essentially requires that the conditional expectation of Y given sums of measurable functions
of Xj is attained at functions in the RKHS, and not merely measurable functions. Dealing
with more general assumptions requires to consider consistency for norms weaker than
the RKHS norms (Caponnetto and de Vito, 2005, Steinwart, 2001), and is left for future
research. Note also, that to simplify proofs, we assume a finite upper-bound σ2

max on the
residual variance.

(A7) For all j, ∃gj ∈ Fj such that fj = Σ
1/2
XjXj

gj , i.e., each fj is in the range of Σ
1/2
XjXj

.

This technical condition, already used by Caponnetto and de Vito (2005), which concerns
all RKHS independently, ensures that we obtain consistency for the norm of the RKHS
(and not another weaker norm) for the least-squares estimates. Note also that it implies
that Efj(Xj)

2 > 0. For practical cases, this is not a restrictive assumption. Indeed, for
finite dimensional Hilbert spaces, this is always true. For the common situation where
Xj = R

pj , PXj (the marginal distribution of Xj) has a density pXj(xj) with respect to
the Lebesgue measure and the kernel is of the form kj(xj , x

′
j) = qj(xj − x′

j), we have the
following proposition (proved in Appendix C.5):

Proposition 7 Assume X = R
p and X is a random variable on X with distribution PX

that has a strictly positive density pX(x) with respect to the Lebesgue measure. Assume
k(x, x′) = q(x − x′) for a function q ∈ L2(Rp) has an integrable pointwise positive Fourier
transform, with associated RKHS F . If f can be written as f = q ∗ g (convolution of q and

g) with
∫ g(x)2

pX(x)dx < ∞, then f ∈ F is in the range of the square root Σ
1/2
XX of the covariance

operator.

The previous proposition gives natural conditions regarding f and pX . Indeed, the condition
∫ g(x)2

pX(x)dx < ∞ corresponds to a natural support condition, i.e., f should be zero where X
has no mass, otherwise, we will not be able to estimate f ; note the similarity with the usual
condition regarding the variance of importance sampling estimation (Brémaud, 1999).

Notations Throughout this section, we refer to functions f = (f1, . . . , fm) ∈ F = F1 ×
· · ·×Fm and the joint covariance operator ΣXX . In the following, we always use the norms
of the RKHS. When considering operators, we use the operator norm. We also refer to a
subset of f indexed by J through fJ .

3.3 Nonparametric group Lasso

Given i.i.d data (xij , yi), i = 1, . . . , n, j = 1, . . . ,m, where each xij ∈ Xj, our goal is to
estimate consistently the functions fj and which of them are zero. We let denote X̄ and Ȳ
the data matrices. We consider the following problem:

min
f∈F

1

2n

n
∑

i=1



yi −

m
∑

j=1

fj(xji)





2

+
µn

2





m
∑

j=1

dj‖fj‖





2

.
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We obtain a similar formulation to Eq. (10), where empirical covariance matrices are re-
placed by empirical covariance operators:

min
f∈F

1

2
Σ̂Y Y − 〈f, Σ̂XY 〉 +

1

2
〈f, Σ̂XXf〉 +

µn

2





m
∑

j=1

dj‖fj‖





2

. (13)

We let denote f̂ any minimizer of Eq. (13), and we refer to it as the non parametric group
Lasso estimate, or also the multiple kernel learning estimate. Note that by Proposition 11,
the previous problem has indeed minimizers.

Note that formally, the finite and infinite dimensional formulation in Eq. (10) and
Eq. (13) are the same, and this is the main reason why covariance operators are very prac-
tical tools for the analysis. Furthermore, we have the corresponding proposition regarding
optimality conditions (see proof in Appendix A.3):

Proposition 8 A function f ∈ F with sparsity pattern J = J(f) = {j, fj 6= 0} is optimal
for problem (13) if and only if

∀j ∈ Jc,
∥

∥

∥Σ̂XjXf − Σ̂XjY

∥

∥

∥ 6 µndj (
∑

i di‖fi‖) , (14)

∀j ∈ J, Σ̂XjXf − Σ̂XjY = −µn (
∑

i di‖fi‖)
djfj

‖fj‖
. (15)

A consequence (and in fact the first part of the proof) is that an optimal function f must be
in the range of Σ̂XY and Σ̂XX , i.e., an optimal f is supported by the data; that is, each fj

is a linear combination of functions kj(x, xij), i = 1, . . . , n. This is a rather circumvoluted
way of presenting the representer theorem (Wahba, 1990), but this is the easiest for the
theoretical analysis of consistency. However, to actually compute the estimate f̂ from data,
we need the usual formulation with dual parameters (see Section 3.5).

Moreover, one important conclusion is that all our optimization problems in spaces
of functions can be in fact transcribed into finite-dimensional problems. In particular,
all notions from multivariate differentiable calculus may be used without particular care
regarding the infinite dimension.

3.4 Consistency results

We consider the following strict and weak conditions, which correspond to condition (4)
and (5) in the finite dimensional case:

max
i∈Jc

1

di

∥

∥

∥
Σ

1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥
< 1, (16)

max
i∈Jc

1

di

∥

∥

∥
Σ

1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥
6 1, (17)

where Diag(dj/‖fj‖) denotes the block-diagonal operator (with block sizes pj) with opera-

tors
dj

‖fj‖
IFj on the diagonal. Note that this is well-defined because CXX is invertible and

that it reduces to Eq. (4) and Eq. (5) for finite dimensional spaces. The following theorems
give necessary and sufficient conditions for the path consistency of the nonparametric group
Lasso (see proofs in Appendix C.2 and Appendix C.3):
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Theorem 9 Assume (A4), (A5) , (A6), (A7) and that J is not empty. If condition
(16) is satisfied, then for any sequence µn such that µn → 0 and µnn1/2 → +∞, then any
sequence of nonparametric group Lasso estimates f̂ converges in probability to f and the
sparsity pattern J(f̂) = {j, f̂j 6= 0} converges in probability to J.

Theorem 10 Assume (A4), (A5) , (A6), (A7) and that J is not empty. If there exists
a (possibly data-dependent) sequence µn such f̂ converges to f and Ĵ converges to J in
probability, then condition (17) is satisfied.

Essentially, the results in finite dimension also hold when groups have infinite dimen-
sions. We leave the extensions of the refined results in Section 2.4 to future work. Condition
(16) might be hard to check in practice since it involves inversion of correlation operators;
see Section 3.6 for an estimate from data.

3.5 Multiple kernel learning formulation

Proposition 8 does not readily lead to an algorithm for computing the estimate f̂ . In
this section, following Bach et al. (2004a), we link the group Lasso to the multiple kernel
learning framework (Lanckriet et al., 2004b, Pontil and Micchelli, 2005, Rakotomamonjy
et al., 2007) Problem (13) is an optimization problem on a potentially infinite dimensional
space of functions. However, the following proposition shows that it reduces to a finite
dimensional problem that we now precise (see proof in Appendix A.4):

Proposition 11 The dual of problem (13) is

max
α∈Rn

{

−
1

2n
‖Ȳ − nµnα‖2 −

1

2µn
max

i=1,...,m

α⊤Kiα

d2
i

}

, (18)

where (Ki)ab = ki(xa, xb) are the kernel matrices in R
n×n, for i = 1, . . . ,m. Moreover, the

dual variable α ∈ R
n is optimal if and only if there exists η ∈ R

m
+ such that

∑m
j=1 ηjd

2
j = 1

and




m
∑

j=1

ηjKj + nµnIn



α = Ȳ , (19)

∀j ∈ {1, . . . ,m},
α⊤Kjα

d2
j

< max
i=1,...,m

α⊤Kiα

d2
i

⇒ ηj = 0. (20)

the optimal function may then be written as fj = ηj
∑n

i=1 αikj(·, xij).

Since the problem in Eq. (18) is strictly convex, there is a unique dual solution α. Note
that Eq. (19) corresponds to the optimality conditions for the least-square problem:

min
f∈F

1

2
Σ̂Y Y − 〈f, Σ̂XY 〉 +

1

2
〈f, Σ̂XXf〉+

1

2
µn

m
∑

j=1

‖wj‖
2

ηi
,

whose dual problem is:

max
α∈Rn







−
1

2n
‖Ȳ − nµnα‖2 −

1

2µn
α⊤





m
∑

j=1

ηiKi



α







,
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and unique solution is α = (
∑m

j=1 ηjKj + nµnIn)−1Ȳ . That is, the solution of the MKL
problem leads to dual parameters α and set of weights η > 0 such that α is the solution to the
least-square problem with kernel K =

∑m
j=1 ηjKj . Bach et al. (2004a) has shown in a very

similar context (hinge loss instead of the square loss) that the optimal η in Proposition 11
can be obtained as the minimizer of

J(η) = max
α∈Rn

−
1

2n
‖Ȳ − nµnα‖2 −

1

2µn
α⊤





m
∑

j=1

ηjKj



α,

with respect to η > 0 such that
∑m

j=1 ηjd
2
j = 1. This formulation allows to derive probably

approximately correct error bounds (Lanckriet et al., 2004b, Bousquet and Herrmann, 2003).
Besides, this formulation allows η to be negative, as long as the matrix

∑m
j=1 ηjKj is positive

semi-definite. However, theoretical advantages of such a possibility still remain unclear.

3.6 Estimation of correlation condition (16)

Condition (4) is simple to compute while the non parametric condition (16) might be hard
to check even if all densities are known. The following proposition shows that we can

consistently estimate the quantities
∥

∥

∥
Σ

1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥
given i.i.d. sam-

ples (see proof in Appendix C.4):

Proposition 12 Assume κn → 0 and κnn1/2 → ∞. Let α =
(

∑

j∈J
Kj + nκnIn

)−1
Ȳ and

η̂j = 1
dj

(α⊤Kjα)1/2. We Then, for all i, the norm
∥

∥

∥
Σ

1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥

is consistently estimated by:
∥

∥

∥

∥

∥

∥

K
1/2
j





∑

j∈J

Kj + nκnIn





−1



∑

j∈J

1

η̂j
Kj



α

∥

∥

∥

∥

∥

∥

. (21)

In Section 5, we use this proposition with n = 10, 000 to empirically check that the condi-
tion (17) is not satisfied.

4. Adaptive multiple kernel learning

In previous sections, we have shown that specific necessary and sufficient conditions are
needed for path consistency of the group Lasso and multiple kernel learning. The following
procedure, adapted from the adaptive Lasso of Zou (2006), leads to a two-step procedure
that always achieves consistency, with no condition such as Eq. (16). We first begin by the
consistency of the least-square estimate (see proof in Appendix C.6):

Theorem 13 Assume (A4), (A5), (A6), (A7), (A5). The unique minimizer f̂LS
κn

of

1

2
Σ̂Y Y − Σ̂Y Xf +

1

2
〈f, Σ̂XXf〉 +

κn

2

m
∑

j=1

‖fj‖
2,

converges in probability to f if κn → 0 and κnn1/2 → 0. Moreover, we have ‖f̂LS
κn

− f‖ =

Op(κ
1/2
n + κ−1

n n−1/2).
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Since the least-square estimate is consistent and we have an upper bound on its conver-
gence rate, we follow Zou (2006) and use it to defined adaptive weights dj for which we get
consistency without any conditions on the value of the correlation operators.

Theorem 14 Assume (A4), (A5), (A6), (A7), (A5). Let f̂LS
n−1/3

be the least-square esti-

mate with regularization parameter proportional to n−1/3, as defined in Theorem 13. Let f̂
denote any minimizer of

1

2
Σ̂Y Y − Σ̂Y Xf +

1

2
〈f, Σ̂XXf〉 +

µ0n
−1/3

2





m
∑

j=1

‖(f̂LS
κn

)j‖
−γ‖fj‖





2

.

For any γ > 1, f̂ converges to f and J(f̂) converges to J in probability.

Theorem 14 allows to set up a specific set of weights dj . This provides a principled way
to define data adaptive weights, that allows to solve (at least theoretically) the potential
consistency problems of the usual MKL framework (see Section 5 for illustration on synthetic
examples).

In the context of multiple kernel learning, the following proposition gives the expression
for the solution of the least-square problem, necessary for the computation of adaptive
weights in Theorem 14.

Proposition 15 The solution of the least-square problem in Theorem 13 is given by

∀j, fLS
j =

n
∑

i=1

αikj(·, xij) with α =





m
∑

j=1

Kj + nκnIn





−1

Ȳ

with norms ‖fLS
j ‖ =

(

α⊤Kjα
)1/2

, j = 1, . . . ,m.

Other weighting schemes have been suggested, based on various heuristics. A notable one is
the normalization of kernel matrices by their trace (Lanckriet et al., 2004b), which leads to
dj = (trΣ̂XjXj )

1/2 = ( 1
n trKj)

1/2. Bach et al. (2004b) have observed empirically that such
normalization might lead to suboptimal solutions and consider weights dj that grow with
the empirical ranks of the kernel matrices. In this paper, we give theoretical arguments that
indicate that weights which do depend on the data are more appropriate and work better
(see Section 5 for examples).

5. Simulations

In this section, we illustrate the consistency results obtained in this paper with a few simple
simulations on synthetic examples. In the finite dimensional group case, we generated a
joint random covariance matrix for 6 groups of size 3, obtained by sampling the entries of
its square root from independent standard normal distributions; three non zero loadings
were also sampled from independent standard normal distributions. Finally, we chose a
noise level of standard deviation 1/2. For cases when the correlation conditions (4) and (5)
were or were not satisfied, we then tried different weighting schemes, i.e., different ways of
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Figure 1: Regularization paths for the group Lasso for three weighting schemes (with corre-
lation condition satisfied): (left) unit weights, (center) adaptive weights, (right)
weights corresponding to unit trace constraint. For each of the three plots, plain
curves correspond to values of estimated η̂j, dotted curves to population values
ηj , and bold curves to model consistent estimates. As expected, all weighting
schemes lead to correct model selection for at least some parts of the paths.

setting the weights dj of the block 1-norm: unit weights, weights equal to dj = (trΣ̂XjXj )
1/2

(which corresponds to unit trace constraint on the kernel matrix), and adaptive weights as
defined in Section 4. In Figure 1 and Figure 2, we plot the approximate regularization paths
corresponding to 200 i.i.d. samples, computed by the algorithm of Bach et al. (2004b). We
only plot the values of the estimated variables η̂j , j = 1, . . . ,m for the alternative formulation
in Section 2.6, which are proportional to ‖ŵj‖ and normalized so that

∑m
j=1 η̂jd

2
j = 1 (note

that the values of ηj depends on dj so that even the population values may be different for
different weighting schemes, even when applied on the same data). We compare them to
the population values ηj : both in terms of values, and in terms of their sparsity pattern (ηj

is zero for the weights which are equal to zero).

In Figure 1, the strict correlation condition (4) was selected to be satisfied for the
unit weighting scheme, thus, as expected the unit weighting scheme leads to correct model
selection for at least some parts of the paths. In the example we show, the condition (4)
was also satisfied for the unit trace scheme; and the adaptive weights also perform well.
However, in Figure 2, where the weak condition (5) was not satisfied, none of the two
response-independent schemes are selecting the correct model, while the adaptive weights
do.

For the non parametric case, we followed the same approach and we generated 6 corre-
lated Gaussian real random variables (with covariance matrix with condition number 100).
We then selected three zero functions and the three functions shown in Figure 3 and a
Gaussian kernel with bandwidth τ equal to one, for each dimension. We selected a covari-
ance matrix such that the condition (17), as estimated in Section 3.6 from 10,000 samples,
was not satisfied. In Figure 4, we show the regularization paths from 400 i.i.d. samples.
As expected the adaptive weighting scheme manages to obtain a model consistent estimate.
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Figure 2: Regularization paths for the group Lasso for three weighting schemes (with cor-
relation condition not satisfied): (left) unit weights, (center) adaptive weights,
(right) weights corresponding to unit trace constraint. For each of the three
plots, plain curves correspond to values of estimated η̂j , dotted curves to popu-
lation values ηj , and bold curves to model consistent estimates. In this situation,
only the adaptive weights leads to correct model selection for at least some parts
of the paths.
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Figure 3: Functions to be estimated in the synthetic non parametric group Lasso experi-
ments.

However, such schemes should be used with care, as there is one added free parameter (the
regularization parameter κ of the least-square estimate used to define the weights): if chosen
too large, all adaptive weights are equal, and thus there is no adaptation, while if chosen
too small, the least-square estimate is overfit (this is the case in the right plot of Figure 4).

6. Conclusion

In this paper, we have extended some of the theoretical results of the Lasso to the group
Lasso, for finite dimensional groups and infinite dimensional groups. In particular, under
practical assumptions regarding the distributions the data are sampled from, we provide
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Figure 4: Regularization paths for the nonparametric group Lasso for three weighting
schemes (with correlation condition not satisfied): (left) unit trace weights, (cen-
ter) adaptive weights obtained with κ = 10−3, (right) adaptive weights obtained
with κ = 10−6. For each of the three plots, plain curves correspond to values of
estimated η̂j , dotted curves to population values ηj , and bold curves to model
consistent estimates. In this situation, only the adaptive weights with reasonable
regularization parameter κ leads to correct model selection for at least some parts
of the paths.

necessary and sufficient conditions for model consistency of the group Lasso and its non-
parametric version, multiple kernel learning.

The current work could be extended in several ways: first, a more detailed study of
the limiting distributions of the group Lasso and adaptive group Lasso estimators could be
carried and then extend the analysis of Zou (2006) or Juditsky and Nemirovski (2000), Wu
et al. (2007), in particular regarding convergence rates. Second, our results should extend
to generalized linear models, such as logistic regression (Meier et al., 2006). Finally, it is of
interest to let the number m of groups or kernels to grow unbounded and extend the results
of Zhao and Yu (2006), Meinshausen and Yu (2006) to the group Lasso.

Appendix A. Proof of optimization results

In this appendix, we give detailed proofs of the various propositions on optimality conditions
and dual problems.

A.1 Proof of Proposition 1

We rewrite problem in Eq. (1), in the form

min
w∈Rp, v∈Rm

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw + λn

m
∑

j=1

djvj,
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with constraints ∀j, ‖wj‖ 6 vj . In order to deal with these constraints we use the tools from
conic programming with the second-order cone, also known as the “ice cream” cone (Boyd
and Vandenberghe, 2003). We consider the Lagrangian with dual variables (βj , γj) ∈ R

pj×R

such that ‖βj‖ 6 γj :

L(w, v, β, γ) =
1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw + λnd⊤v − β⊤w − γ⊤v.

The derivatives with respect to primal variables are

∇wL(w, v, β, γ) = Σ̂XXw − Σ̂XY − β,

∇vL(w, v, β, γ) = λnd − γ.

At optimality, primal and dual variables are completely characterized by w and β. Since
the dual and the primal problems are strictly feasible, strong duality holds and the KKT
conditions for reduced primal/dual variables (w, β) are

∀j, ‖βj‖ 6 λndj (dual feasibility) , (22)

∀j, βj = Σ̂XjXw − Σ̂XjY (stationarity) , (23)

∀j, β⊤
j wj + ‖wj‖λndj = 0 (complementary slackness) . (24)

Complementary slackness for the second order cone has special consequences: w⊤
j βj +

‖wj‖λndj = 0 if and only if (Boyd and Vandenberghe, 2003, Lobo et al., 1998), either
(a) wj = 0, or (b) wj 6= 0, ‖βj‖ = λndj and ∃ηj > 0 such that wj = −

ηj

λn
βj (anti-

proportionality), which implies βj = −wj
λndj

‖wj‖
and ηj = ‖wj‖/dj . This leads to the propo-

sition.

A.2 Proof of Proposition 6

We follow the proof of Proposition 1 and of Bach et al. (2004a). We rewrite problem in
Eq. (10), in the form

min
w∈Rp, v∈Rm, t∈R

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw +

1

2
µnt2,

with constraints that ∀j, ‖wj‖ 6 vj and d⊤v 6 t. We consider the Lagrangian with dual
variables (βj , γj) ∈ R

pj × R and δ ∈ R+ such that ‖βj‖ 6 γj :

L(w, v, β, γ, δ) =
1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw +

1

2
µnt2 − β⊤w − γ⊤v + δ(d⊤v − t).

The derivatives with respect to primal variables are

∇wL(w, v, β, γ) = Σ̂XXw − Σ̂XY − β,

∇vL(w, v, β, γ) = δd − γ,

∇tL(w, v, β, γ) = µnt − δ.
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At optimality, primal and dual variables are completely characterized by w and β. Since
the dual and the primal problems are strictly feasible, strong duality holds and the KKT
conditions for reduced primal/dual variables (w, β) are

∀j, βj = Σ̂XjXw − Σ̂XjY (stationarity - 1) , (25)

∀j,

m
∑

j=1

dj‖wj‖ =
1

µn
max

i=1,...,m

‖βi‖

di
(stationarity - 2) , (26)

∀j,

(

βj

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

‖βi‖

di
= 0 (complementary slackness) . (27)

Complementary slackness for the second order cone implies that:

(

βj

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

‖βi‖

di
= 0,

if and only if, either (a) wj = 0, or (b) wj 6= 0 and
‖βj‖
dj

= max
i=1,...,m

‖βi‖

di
, and ∃ηj > 0 such

that wj = −ηjβj/µn, which implies ‖wj‖ =
ηjdj

µn
max

i=1,...,m

‖βi‖

di
.

By writing ηj = 0 if wj = 0 (i.e., in order to cover all cases), we have from Eq. (26)
∑m

j=1 dj‖wj‖ = 1
µn

max
i=1,...,m

‖βi‖

di
, which implies

∑m
j=1 d2

jηj = 1 and thus ∀j, ηj ∝
‖wj‖/dj
∑

i di‖wi‖
.

This leads to βj = −wjµn/ηj = −
wj

‖wj‖

∑n
i=1 di‖wi‖. The proposition follows.

A.3 Proof of Proposition 8

By following the usual proof of the representer theorem (Wahba, 1990), we obtain that
each optimal function fj must be supported by the data points, i.e., there exists α ∈ R

m×n

such that for all j = 1, . . . ,m, fj =
∑n

i=1 αjik(·, xij). When using this representation back
into Eq. (13), we obtain an optimization problem that only depends on φj = G⊤

j αj for

j = 1, . . . , n where Gj denotes any square root of the kernel matrix Kj , i.e. Kj = GjG
⊤
j .

This problem is exactly the finite dimensional problem in Eq. (10), where X̄j is replaced by
Gj and wj by φj . Thus Proposition 6 applies and we can easily derive the current proposition
by expressing all terms through the functions fj. Note that in this proposition, we do not
show that the αj are all proportional to the same vector, as is done in Appendix A.4.

A.4 Proof of Proposition 11

We prove the proposition in the linear case. Going to the general case, can be done in the
same way as done in Appendix A.3. We simply need to add a new variable u = X̄w and to
“dualize” it. That is, we rewrite problem in Eq. (10), in the form

min
w∈Rp, v∈Rm, t∈R, u∈Rn

1

2n
‖Ȳ − u‖2 +

1

2
µnt2,
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with constraints that ∀j, ‖wj‖ 6 vj and d⊤v 6 t and X̄w = u. We consider the Lagrangian
with dual variables (βj , γj) ∈ R

pj × R and δ ∈ R+ such that ‖βj‖ 6 γj, and α ∈ R
n:

L(w, v, u, β, γ, α, δ) =
1

2n
‖Ȳ −u‖2+µnα⊤(u−X̄w)+

1

2
µnt2−

m
∑

j=1

{

β⊤
j wj + γjvj

}

+δ(d⊤v−t).

The derivatives with respect to primal variables are

∇wL(w, v, u, β, γ, α) = −µnX̄⊤α − β

∇vL(w, v, u, β, γ, α) = δd − γ

∇tL(w, v, u, β, γ, α) = µnt − δ

∇uL(w, v, u, β, γ, α) =
1

n
(u − Ȳ + µnnα).

Equating them to zero, we get the dual problem in Eq. (18). Since the dual and the primal
problems are strictly feasible, strong duality holds and the KKT conditions for reduced
primal/dual variables (w,α) are

∀j, X̄w − Ȳ + µnnα = 0 (stationarity - 1) , (28)

∀j,

m
∑

j=1

dj‖wj‖ = max
i=1,...,m

(α⊤Kiα)1/2

di
(stationarity - 2) , (29)

∀j,

(

−X̄⊤
j α

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

(α⊤Kiα)1/2

di
= 0 (complementary slackness) .(30)

Complementary slackness for the second order cone goes leads to:

(

−X̄⊤
j α

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

(α⊤Kiα)1/2

di
= 0,

if and only if, either (a) wj = 0, or (b) wj 6= 0 and
(α⊤Kjα)1/2

dj
= max

i=1,...,m

(α⊤Kiα)1/2

di
, and

∃ηj > 0 such that wj = −ηj

(

−X̄⊤
j α
)

, which implies ‖wj‖ = ηjdj max
i=1,...,m

(α⊤Kiα)1/2

di
.

By writing ηj = 0 if wj = 0 (to cover all cases), we have from Eq. (29),
∑m

j=1 dj‖wj‖ =

max
i=1,...,m

(α⊤Kiα)1/2

di
, which implies

∑m
j=1 d2

jηj = 1. The proposition follows from the fact

that at optimality, wj = −ηj − X̄⊤
j α

Appendix B. Detailed proofs for the group Lasso

In this appendix, detailed proofs of the consistency results for the finite dimensional case
(Theorems 2 and 3) are presented. Some of the results presented in this appendix are corol-
laries of the more general results in Appendix C, but their proofs in the finite dimensional
case are much simpler.
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B.1 Proof of Theorem 2

We begin with a lemma, which states that if we restrict ourselves to the covariates which
we are after (i.e., indexed by J), we get a consistent estimate as soon as λn tends to zero:

Lemma 16 Let w̃J any minimizer of

1

2n
‖Ȳ − X̄JwJ‖

2 + λn

∑

j∈J

dj‖wj‖ =
1

2
Σ̂Y Y − Σ̂Y XJ

wJ +
1

2
w⊤

J Σ̂XJXJ
wJ + λn

∑

j∈J

dj‖wj‖.

If λn → 0, then w̃J converges to wJ in probability.

Proof If λn tends to zero, then the cost function defining w̃J converges to Fn(wJ) =
1
2ΣY Y −ΣY XJ

wJ + 1
2w⊤

J
ΣXJXJ

wJ whose unique (because ΣXJXJ
is positive definite) global

minimum is wJ (true generating value). The convergence of w̃J is thus a simple consequence
of standard results in M -estimation (Van der Vaart, 1998, Fu and Knight, 2000).

We now prove Theorem 2. Let w̃J be defined as in Lemma 16. We extend it by zeros
on Jc. We already know from Lemma 16 that we have consistency in squared norm. We
now need to prove that the probability that w̃ is optimal for problem in Eq. (1) is tending
to one.

By definition of w̃J, the optimality condition (3) is satisfied. We now need to verify
optimality condition (2). Denoting ε = Y − w⊤X, we have:

Σ̂XY = Σ̂XXw + Σ̂Xε =
(

ΣXX + Op(n
−1/2)

)

w + Op(n
−1/2) = ΣXXJ

wJ + Op(n
−1/2),

because of classical results on convergence of empirical covariances to covariances (Van der
Vaart, 1998), which are applicable because we have the fourth order moment condition
(A1). We thus have:

Σ̂XY − Σ̂XXJ
w̃J = ΣXXJ

(wJ − w̃J) + Op(n
−1/2). (31)

From the optimality condition Σ̂XJY − Σ̂XJXJ
w̃J = λn Diag(dj/‖w̃j‖)w̃J defining w̃J and

Eq. (31), we obtain:

w̃J − wJ = −λnΣ−1
XJXJ

Diag(dj/‖w̃j‖)w̃J + Op(n
−1/2). (32)

Therefore,

Σ̂XJcY − Σ̂XJcXJ
w̃J = ΣXJcXJ

(wJ − w̃J) + Op(n
−1/2) by Eq. (31) ,

= λnΣXJcXJ
Σ−1

XJXJ
Diag(dj/‖w̃j‖)w̃J + Op(n

−1/2) by Eq. (32).

Since w̃ is consistent, and λnn1/2 → +∞, then for each i ∈ Jc,

1

diλn

(

Σ̂XiY − Σ̂XiXJ
w̃J

)
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converges in probability to ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ which is of norm strictly smaller

than one because condition (4) is satisfied. Thus the probability that w̃ is indeed optimal,
which is equal to

P

{

∀i ∈ Jc,
1

diλn

∥

∥

∥Σ̂XiY − Σ̂XiXJ
w̃J

∥

∥

∥ 6 1

}

>
∏

i∈Jc

P

{

1

diλn

∥

∥

∥Σ̂XiY − Σ̂XiXJ
w̃J

∥

∥

∥ 6 1

}

is tending to 1, which implies the theorem.

B.2 Proof of theorem 3

We prove the theorem by contradiction, by assuming that there exists i ∈ Jc such that

1

di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ > 1.

Since with probability tending to one J(ŵ) = J, with probability tending to one, we have
from optimality condition (3):

ŵJ = Σ̂−1
XJXJ

(

Σ̂XJY − λn Diag(dj/‖ŵj‖)ŵJ

)

,

and thus

Σ̂XiY − Σ̂XiXJ
ŵJ = Σ̂XiY − Σ̂XiXJ

Σ̂−1
XJXJ

Σ̂XJY + λnΣ̂XiXJ
Σ̂−1

XJXJ
Diag(dj/‖ŵj‖)ŵJ

= An + Bn.

The second term Bn in the last expression (divided by λn) converges to

v = ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ ∈ R

pj ,

because ŵ is assumed to converge in probability to w and empirical covariance matrices
converge to population covariance matrices. By assumption ‖v‖ > di, which implies that

the probability P

{

(

v
‖v‖

)⊤
(Bn/λn) > (di + ‖v‖)/2)

}

converges to one.

The first term is equal to:

An = Σ̂XiY − Σ̂XiXJ
Σ̂−1

XJXJ
Σ̂XJY

= Σ̂XiXJ
w − Σ̂XiXJ

Σ̂−1
XJXJ

Σ̂XJXJ
w + Σ̂Xiε − Σ̂XiXJ

Σ̂−1
XJXJ

Σ̂XJε

= Σ̂Xiε − Σ̂XiXJ
Σ̂−1

XJXJ
Σ̂XJε

= Σ̂Xiε − ΣXiXJ
Σ−1

XJXJ
Σ̂XJε + op(n

−1/2)

=
1

n

n
∑

k=1

εk

(

xki − ΣXiXJ
Σ−1

XJXJ
xkJ

)

+ op(n
−1/2) = Cn + op(n

−1/2)

The random variable Cn is a mean of i.i.d. random variables with finite variance. Thus,
by the central limit theorem, it is asymptotically normal (Van der Vaart, 1998). We thus
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simply need to compute the mean and the variance of Cn. We have ECn = 0 because
E(Xε) = ΣXε = 0, and

var(Cn) = EC2
n = E(E(C2

n|X̄))

= E

[

1

n2

n
∑

k=1

E(ε2
k|X̄)

(

xki − ΣXiXJ
Σ−1

XJXJ
xkJ

)2
]

< E

[

1

n2

n
∑

k=1

σ2
min

(

xki − ΣXiXJ
Σ−1

XJXJ
xkJ

)2
]

=
1

n
σ2

min

(

ΣXiXi − ΣXiXJ
Σ−1

XJXJ
ΣXJXi

)

.

Thus n1/2Cn is asymptotically normal with mean 0 and covariance matrix larger than
σ2

minΣXi|XJ
= σ2

min × (ΣXiXi − ΣXiXJ
Σ−1

XJXJ
ΣXJXi) which is positive definite (because this

is the conditional covariance of Xi given XJ and ΣXX is assumed invertible). Therefore
P (n1/2v⊤An > 0) converges to 1/2, which implies that P ( v

‖v‖
⊤(An + Bn)/λn > (di +

‖v‖)/2) is asymptotically bounded below by 1/2. Thus since ‖(An + Bn)/λn‖ >
v

‖v‖
⊤(An +

Bn)/λn > (di + ‖v‖)/2 > di implies that ŵ is not optimal, we get a contradiction, which
concludes the proof.

B.3 Proof of Theorem 4

We first prove the following refinement of Lemma 16:

Lemma 17 Let w̃J any minimizer of

1

2n
‖Ȳ − X̄JwJ‖

2 + λn

∑

j∈J

dj‖wj‖ =
1

2
Σ̂Y Y − Σ̂Y XJ

wJ +
1

2
w⊤

J Σ̂XJXJ
wJ + λn

∑

j∈J

dj‖wj‖.

If λn → 0 and λnn1/2 → ∞, then 1
λn

(w̃J − wJ) converges in probability to

∆ = −Σ−1
XJXJ

Diag(dj/‖wj‖)wJ.

Proof We write w̃J = wJ + λn∆̃. ∆̃ is the minimizer of the following function:

F (∆) = Σ̂Y XJ
(wJ + λn∆) +

1

2
(wJ + λn∆)⊤Σ̂XJXJ

(wJ + λn∆) + λn

∑

j∈J

dj‖wj + λn∆j‖

= λnΣ̂Y XJ
∆ +

λ2
n

2
∆⊤Σ̂XJXJ

∆ + λnw
⊤
J Σ̂XJXJ

∆ + λn

∑

j∈J

dj (‖wj + λn∆j‖ − ‖wj‖) + cst

= λnΣ̂εXJ
∆ +

λ2
n

2
∆⊤Σ̂XJXJ

∆ + λn

∑

j∈J

dj (‖wj + λn∆j‖ − ‖wj‖) + cst,

by using Σ̂Y XJ
= w⊤

J
Σ̂XJXJ

+ Σ̂εXJ
. The first term is Op(n

−1/2λn) = op(λ
2
n), while the last

ones are equal to ‖wj + λn∆j‖ − ‖wj‖ = λn
wj

‖wj‖
⊤
∆j + op(λn). Thus

F (∆)/λ2
n =

1

2
∆⊤ΣXJXJ

∆ +
∑

j∈J

djwj

‖wj‖

⊤

∆j + op(1).
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By Lemma 16, ŵJ is Op(1) and the limiting function has an unique minimum; standard
results in M-estimation shows that ∆̃ converges in probability to the minimum of the last
expression which is exactly ∆ = −Σ−1

XJXJ
Diag(dj/‖wj‖)wJ.

We now turn to the proof of Theorem 4. We follow the proof of Theorem 2. Given w̃
defined through Lemma 16 and 17, we need to satisfy optimality condition (3) for all i ∈ Jc,

with probability tending to one. For all those i such that 1
di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ <

1, then we know from Appendix B.1, that the optimality condition is indeed satisfied. We

now focus on those i such that 1
di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ = 1, and for which we

have the condition in Eq. (6). From Eq. (32) and the few arguments that follow, we get
that

Σ̂XiY − Σ̂XiXJ
w̃J = λnΣXiXJ

Σ−1
XJXJ

Diag(dj/‖w̃j‖)w̃J + Op(n
−1/2) (33)

Moreover, we have from Lemma 17 and standard differential calculus, i.e., the gradient and

the Hessian of the function v 7→ ‖v‖ are v/‖v‖ and 1
‖v‖

(

I − vv⊤

v⊤v

)

:

w̃j

‖w̃j‖
=

wj

‖wj‖
+

λn

‖wj‖

(

Ipj −
wjw

⊤
j

w⊤
j wj

)

∆j + op(λn). (34)

From Eq. (33) and Eq. (34), we get:

1

λn
(Σ̂XiY − Σ̂XiXJ

w̃J) = ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ + op(λn)

+λnΣXiXJ
Σ−1

XJXJ
Diag

[

dj/‖wj‖

(

Ipj −
wjw

⊤
j

w⊤
j wj

)]

∆ + Op(n
−1/2λ−1

n ).

Since λn = op(n
−1/4), we have Op(n

−1/2λ−1
n ) = op(λn). Thus, since we assumed that

‖ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ‖ = di, we have:

∥

∥

∥

∥

1

λn
(Σ̂XiY − Σ̂XiXJ

w̃J)

∥

∥

∥

∥

2

= d2
i + op(λn)

−2λn∆⊤ΣXJXiΣXiXJ
Σ−1

XJXJ
Diag

(

dj/‖wj‖(Ipj −
wjw

⊤
j

w⊤
j wj

)

)

∆,

which is asymptotically strictyl smaller than d2
i if Eq. (6) is satisfied, which proves optimality

and concludes the proof.

Appendix C. Detailed proofs for the non parametric formulation

We first prove lemmas that will be useful for further proofs, and then prove the consistency
results for the non parametric case.
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C.1 Useful lemmas on empirical covariance operators

We have the following lemma, proved by Fukumizu et al. (2007), which states that the
empirical covariance estimator converges in probability at rate Op(n

−1/2) to the population
covariance operators:

Lemma 18 Assume (A4) and (A6). Then ‖Σ̂XX − ΣXX‖ = Op(n
−1/2) (for the operator

norm), ‖Σ̂XY − ΣXY ‖ = Op(n
−1/2) and ‖Σ̂Xε‖ = Op(n

−1/2).

The following lemma is useful in several proofs:

Lemma 19 Assume (A4). Then

∥

∥

∥

∥

(

Σ̂XX + µnI
)−1

ΣXX − (ΣXX + µnI)−1 ΣXX

∥

∥

∥

∥

= Op(n
−1/2µn),

and

∥

∥

∥

∥

(

Σ̂ + µnI
)−1

Σ̂XX − (ΣXX + µnI)−1 ΣXX

∥

∥

∥

∥

= Op(n
−1/2µn).

Proof We have:
(

Σ̂XX + µnI
)−1

ΣXX − (ΣXX + µnI)−1 ΣXX

=
(

Σ̂XX + µnI
)−1

(ΣXX − Σ̂XX) (ΣXX + µnI)−1 ΣXX

This is the product of operators whose norms are respectively upper bounded by µ−1
n ,Op(n

−1/2)
and 1, which leads to the first inequality (we use ‖AB‖ 6 ‖A‖‖B‖). The second inequality
follows along similar lines.

Note that the two previous lemma also hold for any suboperator of ΣXX , i.e., for ΣXJXJ
.

Lemma 20 Assume (A4), (A7) and (A5). There exists hJ ∈ FJ such that fJ = Σ
1/2
XJXJ

hJ .

Proof The range condition implies that

fJ = Diag(Σ
1/2
XjXj

)gJ = Diag(Σ
1/2
XjXj

)C
1/2
XJXJ

C
−1/2
XJXJ

gJ.

The result follows from the identity ΣXJXJ
= Diag(Σ

1/2
XjXj

)C
1/2
XJXJ

(Diag(Σ
1/2
XjXj

)C
1/2
XJXJ

)∗ and

the fact that if ΣXJXJ
= UU∗ and f = Uα then there exists β such that f = Σ

1/2
XJXJ

β (Baker,
1973).

C.2 Proof of Theorem 9

We now extend Lemma 16 to covariance operators, which requires to use the alternative
formulation and a slower rate of decrease for the regularization parameter:

Lemma 21 Let f̃J be any minimizer of

1

2
Σ̂Y Y − Σ̂Y XJ

fJ +
1

2
〈fJ, Σ̂XJXJ

fJ〉 +
µn

2





∑

j∈J

dj‖fj‖





2

.

If µn → 0 and µnn1/2 → +∞, then ‖f̃J − fJ‖ converges to zero in probability. Moreover for

any ηn such that ηn ≫ µ
1/2
n + µ−1

n n−1/2 then ‖f̃J − fJ‖ = Op(ηn).
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Proof Note that from Pontil et al. (2007), we have:





∑

j∈J

dj‖fj‖





2

6





∑

j∈J

dj‖fj‖





∑

j∈J

dj‖fj‖
2

‖fj‖
,

with equality if and only if ‖fj‖ = ‖fj‖ for all j ∈ J. We consider the unique minimizer f̄J

of the following cost function, built by replacing the regularization by its upperbound,

F (fJ) =
1

2
Σ̂Y Y − Σ̂Y XJ

fJ +
1

2
〈fJ, Σ̂XJXJ

fJ〉 +
µn

2





∑

j∈J

dj‖fj‖





∑

j∈J

dj‖fj‖
2

‖fj‖
.

Since it is a regularized least-squares problem, we have:

f̄J =
(

Σ̂XJXJ
+ µnD

)−1 (

Σ̂XJXJ
fJ + Σ̂XJε

)

,

where D =
(

∑

j∈J
dj‖fj‖

)

Diag(dj/‖fj‖). Note that D is upperbounded and lowerbounded

(as an auto-adjoint operator) by strictly positive constants times the identity operator, i.e.,
DmaxI < D < DminI. We now prove that f̄J − fJ is converging to zero in probability. We
have:

(

Σ̂XJXJ
+ µnD

)−1
Σ̂XJε = Op(n

−1/2µ−1
n ), (35)

because of Lemma 18 and

∥

∥

∥

∥

(

Σ̂XJXJ
+ µnD

)−1
∥

∥

∥

∥

6 D−1
minµ

−1
n . Moreover, similarly, we have

(

Σ̂XJXJ
+ µnD

)−1
Σ̂XJXJ

fJ −
(

Σ̂XJXJ
+ µnD

)−1
ΣXJXJ

fJ = Op(n
−1/2µ−1

n ). (36)

Besides, by Lemma 19,

(

Σ̂XJXJ
+ µnD

)−1
ΣXJXJ

fJ − (ΣXJXJ
+ µnD)−1 ΣXJXJ

fJ = Op(n
−1/2µ−1

n ). (37)

Thus f̄J − fJ = V + Op(n
−1/2µ−1

n ), where

V =
[

(ΣXJXJ
+ µnD)−1 ΣXJXJ

− I
]

fJ = − (ΣXJXJ
+ µnD)−1 µnDfJ.

We have

‖V ‖2 = µ2
n〈fJ,D (ΣXJXJ

+ µnD)−2 DfJ〉

6 D2
maxµ

2
n〈fJ, (ΣXJXJ

+ µnDminI)−2 fJ〉

6 D2
maxµn〈fJ, (ΣXJXJ

+ µnDminI)−1 fJ〉

6 D2
maxµn〈hJ,ΣXJXJ

(ΣXJXJ
+ µnDminI)−1 hJ〉 by Lemma 20,

6 D2
maxµn‖hJ‖

2.
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Finally we obtain ‖f̄J − fJ‖ = Op(µ
1/2
n + n−1/2µ−1

n ).

We now consider the cost function defining f̃J:

Fn(fJ) =
1

2
Σ̂Y Y − Σ̂Y XJ

fJ +
1

2
〈fJ, Σ̂XJXJ

fJ〉 +
µn

2





∑

j∈J

dj‖fj‖





2

.

We have (note that although we seem to take infinite dimensional derivatives, everything
can be done in the finite subspace spanned by the data):

Fn(fJ) − F (fJ) =
µn

2









∑

j∈J

dj‖fj‖





2

−





∑

j∈J

dj‖fj‖





∑

j∈J

dj‖fj‖
2

‖fj‖



 ,

∇fi
Fn(fJ) −∇fi

F (fJ) = µn









∑

j∈J

dj‖fj‖





difi

‖fi‖
−





∑

j∈J

dj‖fj‖





difi

‖fi‖



 .

Since the right hand side of the previous equation corresponds to a continuously differen-
tiable function of fJ around fJ (with upper-bounded derivatives around fJ), we have:

‖∇fi
Fn(f̄J) − 0‖ 6 Cµn‖fJ − f̄J‖ = µnOp(µ

1/2
n + n−1/2µn).

Moreover, on the ball of center f̄J and radius ηn such that ηn ≫ µ
1/2
n + µ−1

n n−1/2 (to
make sure that it asymptotically contains f̄J, which implies that on the ball each fj, j ∈ J
are bounded away from zero), and ηn ≪ 1 (so that we get consistency), we have a lower

bound on the second derivative of
(

∑

j∈J
dj‖fj‖

)

. Thus for any element of the ball,

Fn(fJ) > Fn(f̄J) + 〈∇fJFn(f̄J), (fJ − f̄J)〉 + Cµn‖fJ − f̄J‖
2,

where C is a constant > 0. This implies that the value of Fn(fJ) on the edge of the ball is
larger than

Fn(f̄J) + ηnµnOp(µ
1/2
n + n−1/2µ−1

n ) + Cη2
nµn,

Thus if η2
nµn ≫ ηnµ

3/2
n and η2

nµn ≫ n−1/2ηn, then we must have all minima inside the
ball of radius ηn (because with probability tending to one, the value on the edge is greater
than one value inside and the function is convex) which implies that the global minimum

of Fn is at most ηn away from f̄J and thus since f̄J is O(µ
1/2
n ) away from fJ, we have the

consistency if
ηn ≪ 1 and ηn ≫ µ1/2

n + n−1/2µ−1
n ,

which concludes the proof of the lemma.

We now prove Theorem 9. Let f̃J be defined as in Lemma 16. We extend it by zeros on
Jc. We already know the squared norm consistency by Lemma 16. We need to prove that
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with probability tending to one f̃ is optimal for problem in Eq. (13). We have by the first
optimality condition for f̃J:

Σ̂XJY − Σ̂XJXJ
f̃J = µn‖f̃‖d Diag(dj/‖f̃j‖)f̃J,

where we use the notation ‖f‖d =
∑m

j=1 dj‖fj‖. We thus have by solving for f̃J and using

Σ̂XJY = Σ̂XJXJ
fJ + Σ̂XJε:

f̃J =
(

Σ̂XJXJ
+ µnDn

)−1 (

Σ̂XJXJ
fJ + Σ̂XJε

)

,

with the notation Dn = ‖f̃‖d Diag(dj/‖f̃j‖). We can now put that back into Σ̂XJcY −

Σ̂XJcXJ
f̃J and show that this will have small enough norm with probability tending to one.

We have for all i ∈ Jc:

Σ̂XiY − Σ̂XiXJ
f̃J = Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1 (

Σ̂XJXJ
fJ + Σ̂XJε

)

= −Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJXJ

fJ

+Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε

= −Σ̂XiXJ
fJ + Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
µnDnfJ

+Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε

= Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
µnDnfJ

+Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε

= An + Bn.

The first term An (divided by µn) is equal to

An

µn
= Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
DnfJ.

We can replace Σ̂XiXJ
in An

µn
by ΣXiXJ

at cost Op(n
−1/2µ

−1/2
n ) because 〈fJ,Σ−1

XJXJ
fJ〉 < ∞

(by Lemma 20). Also, we can replace Σ̂XJXJ
in An

µn
by ΣXJXJ

at cost Op(n
1/2µ−1

n ) as a
consequence of Lemma 19. Those two are op(1) by assumptions on µn. Thus,

An

µn
= ΣXiXJ

(ΣXJXJ
+ µnDn)−1 DnfJ + op(1).

Furthermore, we let denote D = ‖f‖d Diag(dj/‖fj‖). From Lemma 21, we know that Dn −
D = op(1). Thus we can replace Dn by D at cost op(1) to get:

An

µn
= ΣXiXJ

(ΣXJXJ
+ µnD)−1 DfJ + op(1) = Cn + op(1).
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We now show that this last deterministic term Cn ∈ Fi converges to:

C = Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
DgJ,

where, from (A7), fj = Σ
1/2
XjXj

gj . We have

Cn − C = Σ
1/2
XiXi

CXiXJ

[

Diag(Σ
1/2
XjXj

) (ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

) − C−1
XJXJ

]

DgJ

= Σ
1/2
XiXi

CXiXJ
KnDgJ.

where Kn = Diag(Σ
1/2
XjXj

) (ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

) − C−1
XJXJ

. Moreover, we have:

Diag(Σ
1/2
XjXj

)CXJXJ
Kn = −µnD (ΣXJXJ

+ µnD)−1 Diag(Σ
1/2
XjXj

).

Following Fukumizu et al. (2007), the range of the operator
(

Σ
1/2
XiXi

CXiXJ

)∗
= CXJXiΣ

1/2
XiXi

is included in the closure of the range of Diag(ΣXjXj ) (which is equal to the range of
ΣXJXJ

by Lemma 20). For any vJ ∈ FJ in the intersection of two ranges, we have vJ =
CXJXJ

Diag(ΣXjXj )uJ (note that CXJXJ
is invertible), and thus

〈KnDgJ, vJ〉 = 〈KnDgJ, CXJXJ
Diag(ΣXjXj)uJ〉

= 〈−µnD (ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

)DgJ, uJ〉

which Op(µ
1/2
n ) and thus tends to zero. Since this holds for all elements in the intersection

of the ranges, Lemma 9 by Fukumizu et al. (2007) implies that ‖Cn −C‖ converges to zero.

We now simply need to show that the second term Bn is dominated by µn. We have:

‖Σ̂Xiε‖ = Op(n
−1/2) and ‖Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε‖ 6 ‖Σ̂Xiε‖, thus, because con-

dition (4) is satisfied and µnn1/2 → +∞, then Bn = op(µn) and thus for for each i ∈ Jc,

1

diµn‖f‖d

(

Σ̂XiY − Σ̂XiXJ
f̃J

)

converges in probability to a limit with norm strictly smaller than one. Thus

P

{

1

diµn‖f‖d

∥

∥

∥
Σ̂XiY − Σ̂XiXJ

f̃J

∥

∥

∥
6 1

}

is tending to 1, which implies the theorem (using the same arguments than in the proof of
Theorem 2 in Appendix B.1).

C.3 Proof of Theorem 10

Before proving the analog of the second group-Lasso theorem, we need the following ad-
ditional proposition, which states that consistency of the patterns can only be achieved if
µnn1/2 → ∞ (even if chosen in a data dependent way).
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Proposition 22 Assume (A4), (A5), (A6), (A7) and that J is not empty. If f̂ is con-
verging in probability to f and J(f̂) converges in probability to J, then µnn1/2 → ∞ in
probability.

Proof We give a proof by contradiction, and we thus assume that there exists M > 0 such
that lim infn→∞ P(µnn1/2 < M) > 0. This imposes that there exists a subsequence which
is almost surely bounded by M (Durrett, 2004). Thus, we can take a further subsequence
which converges to a limit µ0 ∈ [0,∞). We now consider such a subsequence (and still use
the notation of the original sequence for simplicity).

With probability tending to one, we have the optimality condition (15):

Σ̂XJε + Σ̂XJXJ
fJ = Σ̂XJY = Σ̂XJXJ

f̂J + µn‖f̂‖d Diag(dj/‖f̂j‖)f̂J.

If we let denote Dn = n1/2µn‖f̂‖d Diag(dj/‖f̂j‖), we get:

DnfJ =
[

Σ̂XJXJ
+ Dnn−1/2

]

n1/2
[

fJ − f̂J

]

+ n1/2Σ̂XJε,

which can be approximated as follows (we denote D = ‖f‖d Diag(dj/‖fj‖)):

µ0DfJ + op(1) = ΣXJXJ
n1/2

[

fJ − f̂J

]

+ op(1) + n1/2Σ̂XJε,

We can now write for i ∈ Jc:

n1/2
(

Σ̂XiY − Σ̂XiXJ
f̂J

)

= n1/2Σ̂Xiε + Σ̂XiXJ
n1/2(fJ − f̂J)

= n1/2Σ̂Xiε + ΣXiXJ
n1/2(fJ − f̂J) + op(1).

We now consider an arbitrary vector wJ ∈ FJ, such that ΣXJXJ
wJ is different from zero

(such vector exists because ΣXJXJ
6= 0). Since the range of ΣXJXi is included in the range

of ΣXJXi (Baker, 1973), there exists vi ∈ Fi such that ΣXJXivi = ΣXJXJ
wJ. Note that

since ΣXJXJ
wJ is different from zero, we must have Σ

1/2
XiXi

vi 6= 0. We have:

n1/2〈vi, Σ̂XiY − Σ̂XiXJ
f̂J〉 = n1/2〈vi, Σ̂Xiε〉 + 〈wJ,ΣXJXJ

n1/2(fJ − f̂J) + op(1)

= n1/2〈vi, Σ̂Xiε〉 + 〈wJ, µ0DfJ − n1/2Σ̂XJε〉 + op(1)

= 〈wJ, µ0DfJ〉 + n1/2〈vi, Σ̂Xiε〉 − n1/2〈wJ, Σ̂XJε〉 + op(1)

The random variable En = n1/2〈vi, Σ̂Xiε〉 − n1/2〈wJ, Σ̂XJε〉 is the sum of i.i.d random vari-
ables with finite second moment. It is thus asymptotically normal, and we simply need to
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compute its mean and variance. The mean is zero and we have:

En =
1

n1/2

n
∑

k=1



vi(xki) −
∑

j∈J

wj(xkj)



 εk,

E(E2
n|X̄) =

1

n

n
∑

k=1



vi(xki) −
∑

j∈J

wj(xkj)





2

E(ε2
k|X̄)

>
1

n

n
∑

k=1



vi(xki) −
∑

j∈J

wj(xkj)





2

σ2
min

= σ2
min〈vi, Σ̂XiXivi〉 + σ2

min〈wJ, Σ̂XJXJ
wJ〉 − 2σ2

min〈vi, Σ̂XiXJ
wJ〉, and thus

EE2
n > σ2

min〈vi,ΣXiXivi〉 + σ2
min〈wJ,ΣXJXJ

wJ〉 − 2σ2
min〈vi,ΣXiXJ

wJ〉

= σ2
min〈vi,ΣXiXivi〉 − σ2

min〈vi,ΣXiXJ
wJ〉.

The operator C−1
XJXJ

CXJXi has the same range as CXJXJ
(because C is invertible), and

is thus included in the closure of the range of Diag(Σ
1/2
XjXj

) (Baker, 1973). Thus for any

u ∈ Fi, C−1
XJXJ

CXJXiu can be expressed as a limit of terms of the form Diag(Σ
1/2
XjXj

)t. We
thus have that

〈u,CXiXJ
Diag(Σ

1/2
XjXj

)wJ〉 = 〈u,CXiXJ
C−1

XJXJ
CXJXJ

Diag(Σ
1/2
XjXj

)wJ〉

can be expressed as a limit of terms of the form

〈t,Diag(Σ
1/2
XjXj

)CXJXJ
Diag(Σ

1/2
XjXj

)wJ〉 = 〈t,ΣXJXJ
wJ〉 = 〈t,ΣXJXivi〉

= 〈t,Diag(Σ
1/2
XjXj

)CXJXiΣ
1/2
XiXi

vi〉 → 〈u,CXiXJ
C−1

XJXJ
CXJXiΣ

1/2
XiXi

vi〉.

This implies that CXiXJ
Diag(Σ

1/2
XjXj

)wJ = CXiXJ
C−1

XJXJ
CXJXiΣ

1/2
XiXi

vi, and thus we have:

EE2
n > σ2

min〈vi,ΣXiXivi〉 − σ2
min〈vi,Σ

1/2
XiXi

CXiXJ
Diag(Σ

1/2
XjXj

)wJ〉

= σ2
min〈vi,ΣXiXivi〉 − σ2

min〈vi,Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
CXJXiΣ

1/2
XiXi

vi〉

= σ2
min〈Σ

1/2
XiXi

vi, (I − CXiXJ
C−1

XJXJ
CXJXi)Σ

1/2
XiXi

vi〉.

By assumption (A5), the operator I−CXiXJ
C−1

XJXJ
CXJXi is lower bounded by a strictly pos-

itive constant times the identity matrix, and thus, since Σ
1/2
XiXi

vi 6= 0, we have EE2
n > 0. This

implies that n1/2〈vi, Σ̂XiY − Σ̂XiXJ
f̂J〉 converges to a normal distribution with strictly pos-

itive variance. Thus the probability P

(

n1/2〈vi, Σ̂XiY − Σ̂XiXJ
f̂J〉 > di‖f̂‖d‖vi‖ + 1

)

con-

verges to a strictly positive limit (note that ‖f̂‖d can be replaced by ‖f‖d without changing
the result). Since µnn1/2 → µ0 < ∞, this implies that

P

(

µ−1
n 〈vi, Σ̂XiY − Σ̂XiXJ

f̂J〉 > di‖f̂‖d‖vi‖
)
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is asymptotically strictly positive (i.e. has a strictly positive lim inf). Thus the optimality
condition (14) is not satisfied with non vanishing probability, which is a contradiction and
proves the proposition.

We now go back to the proof of Theorem 10. We prove by contradiction, by assuming
that there exists i ∈ Jc such that

1

di

∥

∥

∥Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥ > 1.

Since with probability tending to one J(f̂) = J, with probability tending to one, we have
from optimality condition (15), and the usual line of arguments:

Σ̂XiY − Σ̂XiXJ
f̂J = µnΣ̂XiXJ

(

Σ̂XJXJ
+ µn‖f̂‖d Diag(dj/‖f̂j‖)

)−1
Σ̂XJXJ

f

+Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ
+ ‖f̂‖dµn Diag(dj/‖f̂j‖)

)−1
Σ̂XJε.

Following the same argument as in the proof of Theorem 9, (and because µnn1/2 → +∞
as a consequence of Proposition 22), the first term in the last expression (divided by µn)
converges to

vi = Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
‖f‖d Diag(dj/‖fj‖)gJ

By assumption ‖vi‖ > di‖f‖f . We have the second term:

Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ
+ µn‖f̂‖d Diag(dj/‖f̂j‖)

)−1
Σ̂XJε

= Op(n
−1/2) − Σ̂XiXJ

(

Σ̂XJXJ
+ µn‖f‖d Diag(dj/‖fj‖)

)−1
Σ̂XJε + Op(n

−1/2).

The remaining term can be bounded as follows:

E

(

∥

∥

∥

∥

Σ̂XiXJ

(

Σ̂XJXJ
+ µn‖f‖d Diag(dj/‖fj‖)

)−1
Σ̂XJε

∥

∥

∥

∥

2

|X̄

)

6
σ2

max

n

∥

∥

∥

∥

Σ̂XiXJ

(

Σ̂XJXJ
+ µn‖f‖d Diag(dj/‖fj‖)

)−1
Σ̂

1/2
XJXJ

∥

∥

∥

∥

2

6
σ2

max

n
trΣ̂XiXi ,

which implies that the full expectation is O(n−1) (because our operators are trace-class, i.e.
have finite trace). Thus the remaining term is Op(n

−1/2) and thus negligible compared to

µn, therefore 1
µn‖f̂‖d

(

Σ̂XiY − Σ̂XiXJ
f̂J

)

converges in probability to a limit which is of norm

strictly greater than di. Thus there is a non vanishing probability of being strictly larger
than di, which implies that with non vanishing probability, the optimality condition (14) is
not satisfied, which is a contradiction. This concludes the proof.
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C.4 Proof of Proposition 12

Note that the estimator defined in Eq. (21) is exactly equal to
∥

∥

∥Σ̂XiXJ
(Σ̂XJXJ

+ κnI)−1 Diag(dj/‖(f̂
LS
κn

)j‖)(f̂
LS
κn

)J

∥

∥

∥ .

Using Theorem 13 and the arguments from Appendix C.2, we get the consistency result.

C.5 Range condition of covariance operators

We let denote C(q) the convolution operator by q on the space of real functions on R
p

and T (p) the pointwise multiplication by p(x). In this appendix, since we look at different
Hilbertian products of functions on R

p, we use the notations 〈·, ·〉F and 〈·, ·〉L2(pX) and
〈·, ·〉L2(Rp) for the dot products in the RKHS F , the space L2(pX) of square integrable
functions with respect to p(x)dx, and the space L2(Rp) of square integrable functions with
respect to the Lebesgue measure. With our assumptions, for all f̃ , g̃ ∈ L2(Rp), we have

〈f̃ , g̃〉L2 = 〈C(q)1/2f̃ , C(q)1/2g̃〉F .

Denote by {λk}k≥1 and {ek}k≥1 the eigenvalues and the eigenvectors of the covariance
operator ΣXX , respectively. Since pX(x) was assumed to be strictly positive, all eigenvalues

are strictly positive. For k > 1, set fk = λ
−1/2
k ek. By construction, for any k, ℓ > 1,

λkδk,ℓ = 〈ek,Σeℓ〉F =

∫

p(x)ek(x)eℓ(x)dx

= λ
1/2
k λ

1/2
ℓ

∫

pX(x)fk(x)fℓ(x)dx = λ
1/2
k λ

1/2
ℓ 〈fk, fℓ〉L2(pX) .

Thus {fk}k>1 is an orthonormal sequence in L2(pX). Let f = C(q)g for g ∈ L2(Rp). Note

that f is in the range of Σ
1/2
XX if and only if

〈

f,Σ−1f
〉

is finite. We have:

〈

f,Σ−1f
〉

=
∞
∑

p=1

λ−1
p 〈ep, f〉

2
F =

∞
∑

p=1

λ−1
p 〈ep, g〉

2
L2(Rp) =

∞
∑

p=1

λ−1
p

(∫

g(x)ep(x)dx

)2

=

∞
∑

p=1

〈

p−1
X g, fp

〉2

L2(pX)
6 ‖p−1

X g‖2
L2(pX) =

∫

g2(x)

pX(x)
dx,

which concludes the proof.

C.6 Proof of Theorem 13

We have:

f̂LS
κn

=
(

Σ̂XX + κnI
)−1

Σ̂XY

and thus:

f̂LS
κn

− f =
(

Σ̂XX + κnI
)−1

Σ̂XX f − f +
(

Σ̂XX + κnI
)−1

Σ̂Xε

= (ΣXX + κnI)−1 ΣXXf − f + Op(n
−1/2κn) from Lemma 19

= − (ΣXX + κnI)−1 κnf + Op(n
−1/2κn).

Since f = Σ
1/2
XXg, we have ‖−(ΣXX + κnI)−1 κnf‖

2 6 Cκn‖g‖
2, which concludes the proof.
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C.7 Proof of Theorem 14

We define f̃ as the minimizer of the same cost function restricted to fJc = 0. Because f̂LS
n−1/3

is consistent, the norms of (f̂LS
n−1/3

)j for j ∈ J are bounded away from zero, and Lemma 21

applies with µn = µ0n
−1/3, i.e., f̃ converges in probability to f and so are the patterns of

zeros (which is obvious by construction of f̃). Moreover, for any η > 0, from Lemma 21, we

have ‖f̃J − fJ‖ = Op(n
−1/6+η) (because µ

−1/2
n + n−1/2µ−1

n = Op(n
−1/6)).

What remains to be shown is that with probability tending to one, f̃ is optimal for the
full problem. We just need to show that with probability tending to one, for all i ∈ Jc,

‖Σ̂Xiε − Σ̂XiXJ
(f̃J − fJ)‖ 6 µn‖f̃‖d‖(f̂

LS
n−1/3)i‖

−γ . (38)

Note that ‖f̃‖d converges in probability to ‖f‖d > 0. Moreover, by Theorem 13, ‖(f̂LS
n−1/3

)i−

fi‖ = Op(n
−1/6). Thus, if i ∈ Jc, i.e., if fi = 0, then ‖(f̂LS

n−1/3
)i‖ = Op(n

−1/6). The left hand

side in Eq. (38) is thus upper bounded by Op(n
−1/2 + n−1/6+η) while the right hand side

is lower bounded asymptotically by n−1/3nγ/6. Thus if −1/6 + η < −1/3 + γ/6, then with
probability tending to one we get the correct optimality condition. As soon as γ > 1, we
can find η small enough and strictly positive, which concludes the proof.
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