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ON THE BASE LOCUS OF THE LINEAR SYSTEM OF GENERALIZED

THETA FUNCTIONS

CHRISTIAN PAULY

Abstract. Let Mr denote the moduli space of semi-stable rank-r vector bundles with trivial
determinant over a smooth projective curve C of genus g. In this paper we study the base
locus Br ⊂ Mr of the linear system of the determinant line bundle L over Mr, i.e., the set of
semi-stable rank-r vector bundles without theta divisor. We construct base points in Bg+2 over
any curve C, and base points in B4 over any hyperelliptic curve.

1. Introduction

Let C be a complex smooth projective curve of genus g and let Mr denote the coarse moduli
space parametrizing semi-stable rank-r vector bundles with trivial determinant over the curve
C. Let L be the determinant line bundle over the moduli space Mr and let Θ ⊂ Picg−1(C)
be the Riemann theta divisor in the degree g − 1 component of the Picard variety of C. By
[BNR] there is a canonical isomorphism |L|∗

∼
−→ |rΘ|, under which the natural rational map

ϕL : Mr 99K |L|∗ is identified with the so-called theta map

θ : Mr 99K |rΘ|, E 7→ θ(E) ⊂ Picg−1(C).

The underlying set of θ(E) consists of line bundles L ∈ Picg−1(C) with h0(C, E ⊗ L) > 0. For
a general semi-stable vector bundle E, θ(E) is a divisor. If θ(E) = Picg−1(C), we say that E

has no theta divisor. We note that the indeterminacy locus of the theta map θ, i.e., the set of
bundles E without theta divisor, coincides with the base locus Br ⊂ Mr of the linear system
|L|.

Over the past years many authors [A], [B2], [He], [Hi], [P], [R], [S] have studied the base
locus Br of |L| and their analogues for the powers |Lk|. For a recent survey of this subject we
refer to [B1].

It is natural to introduce for a curve C the integer r(C) defined as the minimal rank for which
there exists a semi-stable rank-r(C) vector bundle with trivial determinant over C without
theta divisor (see also [B1] section 6). It is known [R] that r(C) ≥ 3 for any curve C and that
r(C) ≥ 4 for a generic curve C. Our main result shows the existence of vector bundles of low
ranks without theta divisor.

Theorem 1.1. We assume that g ≥ 2. Then we have the following bounds.

(1) r(C) ≤ g + 2.
(2) r(C) ≤ 4, if C is hyperelliptic.

The first part of the theorem improves the upper bound r(C) ≤ (g+1)(g+2)
2

given in [A]. The
statements of the theorem are equivalent to the existence of a semi-stable rank-(g + 2) (resp.
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rank-4) vector bundle without theta divisor — see section 2.1 (resp. 2.2). The construction of
these vector bundles uses ingredients which are already implicit in [Hi].

Theorem 1.1 seems to hint towards a dependence of the integer r(C) on the curve C.

Notations: If E is a vector bundle over C, we will write H i(E) for H i(C, E) and hi(E) for
dim H i(C, E). We denote the slope of E by µ(E) := deg E

rkE
, the canonical bundle over C by K

and the degree d component of the Picard variety of C by Picd(C).

2. Proof of Theorem 1.1

2.1. Semi-stable rank-(g + 2) vector bundles without theta divisor. We consider a line
bundle L ∈ Pic2g+1(C). Then L is globally generated, h0(L) = g + 2 and the evaluation bundle
EL, which is defined by the exact sequence

(1) 0 −→ E∗

L −→ H0(L) ⊗OC
ev
−→ L −→ 0,

is stable (see e.g. [Bu]), with deg EL = 2g + 1, rkEL = g + 1 and µ(EL) = 2 − 1
g+1

.

A cohomology class e ∈ Ext1(LK−1, EL) = H1(EL⊗KL−1) determines a rank-(g +2) vector
bundle Ee given as an extension

(2) 0 −→ EL −→ Ee −→ LK−1 −→ 0.

Proposition 2.1. For any non-zero class e, the rank-(g + 2) vector bundle Ee is semi-stable.

Proof. Consider a proper subbundle A ⊂ Ee. If A ⊂ EL, then µ(A) ≤ µ(EL) = 2 − 1
g+1

by stability of EL, so the subbundles of EL cannot destabilize Ee. If A * EL, we introduce
S = A ∩ EL ⊂ EL and consider the exact sequence

0 −→ S −→ A −→ LK−1(−D) −→ 0,

where D is an effective divisor. If rkS = g+1 or S = 0, we easily conclude that µ(A) < µ(Ee) = 2.
If rkS < g +1 and S 6= 0, then stability of EL gives the inequality µ(S) < µ(EL) = 2− 1

g+1
. We

introduce the integer δ = 2rkS − deg S. Then the previous inequality is equivalent to δ ≥ 1.
Now we compute

µ(A) =
deg S + deg LK−1(−D)

rkS + 1
≤

2rkS − δ + 3

rkS + 1
= 2 +

1 − δ

rkS + 1
≤ 2 = µ(Ee),

which shows the semi-stablity of Ee. �

We tensorize the exact sequence (1) with L and take the cohomology

(3) 0 −→ H0(E∗

L ⊗ L) −→ H0(L) ⊗ H0(L)
µ

−→ H0(L2) −→ 0.

Note that h1(E∗

L ⊗ L) = h0(EL ⊗ KL−1) = 0 by stability of EL. The second map µ is the
multiplication map and factorizes through Sym2H0(L), i.e.,

Λ2H0(L) ⊂ H0(E∗

L ⊗ L) = ker µ.

By Serre duality a cohomology class e ∈ Ext1(LK−1, EL) = H1(EL ⊗ KL−1) = H0(E∗

L ⊗ L)∗

can be viewed as a hyperplane He ⊂ H0(E∗

L ⊗ L). Then we have the following
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Proposition 2.2. If Λ2H0(L) ⊂ He, then the vector bundle Ee satisfies

h0(Ee ⊗ λ) > 0, ∀λ ∈ Picg−3(C).

Proof. We tensorize the exact sequence (2) with λ ∈ Picg−3(C) and take the cohomology

0 −→ H0(EL ⊗ λ) −→ H0(Ee ⊗ λ) −→ H0(LK−1λ)
∪e
−→ H1(EL ⊗ λ) −→ · · ·

Since deg LK−1λ = g, we can write LK−1λ = OC(D) for some effective divisor D. It is enough
to show that h0(Ee ⊗ λ) > 0 holds for λ general. Hence we can assume that h0(LK−1λ) =
h0(OC(D)) = 1.

If h0(EL ⊗ λ) > 0, we are done. So we assume h0(EL ⊗λ) = 0, which implies h1(EL ⊗λ) = 1
by Riemann-Roch. Hence we obtain that h0(Ee ⊗ λ) > 0 if and only if the cup product map

∪e : H0(OX(D)) −→ H1(EL ⊗ λ) = H0(E∗

L ⊗ L(−D))∗

is zero. Furthermore ∪e is zero if and only if H0(E∗

L ⊗ L(−D)) ⊂ He. Now we will show the
inclusion

(4) H0(E∗

L ⊗ L(−D)) ⊂ Λ2H0(L).

We tensorize the exact sequence (1) with L(−D) and take cohomology

0 −→ H0(E∗

L ⊗ L(−D)) −→ H0(L) ⊗ H0(L(−D))
µ

−→ H0(L2(−D)) −→ · · ·

Since h0(E∗

L ⊗ L(−D)) = 1, we conclude that h0(L(−D)) = 2 and H0(E∗

L ⊗ L(−D)) =
Λ2H0(L(−D)) ⊂ Λ2H0(L).

Finally the proposition follows: if Λ2H0(L) ⊂ He, then by (4) H0(E∗

L ⊗ L(−D)) ⊂ He for
general D, or equivalently h0(Ee ⊗ λ) > 0 for general λ ∈ Picg−3(C). �

We introduce the linear subspace Γ ⊂ Ext1(LK−1, EL) defined by

Γ := ker
(
Ext1(LK−1, EL) = H0(E∗

L ⊗ L)∗ −→ Λ2H0(L)∗
)
,

which has dimension g(g−1)
2

> 0. Then for any non-zero cohomology class e ∈ Γ and any

γ ∈ Pic2(C) satisfying γg+2 = L2K−1 = det Ee, the rank-(g + 2) vector bundle

Ee ⊗ γ−1

has trivial determinant, is semi-stable by Proposition 2.1 and has no theta divisor by Proposition
2.2.

2.2. Hyperelliptic curves. In this subsection we assume that C is hyperelliptic and we denote
by σ the hyperelliptic involution. The construction of a semi-stable rank-4 vector bundle without
theta divisor has been given in [Hi] section 6 in the case g = 2, but it can be carried out for any
g ≥ 2 without major modification. For the convenience of the reader, we recall the construction
and refer to [Hi] for the details and the proofs.

Let w ∈ C be a Weierstrass point. Any non-trivial extension

0 −→ OC(−w) −→ G −→ OC −→ 0

is a stable, σ-invariant, rank-2 vector bundle with deg G = −1. By [Hi] Theorem 4 a cohomology
class e ∈ H1(Sym2G) determines a symplectic rank-4 bundle

0 −→ G −→ Ee −→ G∗ −→ 0.
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Moreover it is easily seen that, for any non-zero class e, the vector bundle Ee is semi-stable. By
[Hi] Lemma 16 the composite map

DG : PH1(Sym2G) −→ M4
θ

−→ |4Θ|, e 7→ θ(Ee)

is the projectivization of a linear map

D̃G : H1(Sym2G) −→ H0(Picg−1(C), 4Θ).

The involution i(L) = KL−1 on Picg−1(C) induces a linear involution on |4Θ| with eigenspaces
|4Θ|±. Note that 4Θ ∈ |4Θ|+. We now observe that θ(E) ∈ |4Θ|+ for any symplectic rank-4
vector bundle E — see e.g. [B2]. Moreover we have the equality θ(σ∗E) = i∗θ(E) for any vector

bundle E . These two observations imply that the linear map D̃G is equivariant with respect to

the induced involutions σ and i. Since im D̃G ⊂ H0(Picg−1(C), 4Θ)+, we obtain that one of the

two eigenspaces H1(Sym2G)± is contained in the kernel ker D̃G, hence give base points for the
theta map. We now compute as in [Hi] using the Atiyah-Bott-fixed-point formula

h1(Sym2G)+ = g − 1, h1(Sym2G)− = 2g + 1.

One can work out that H1(Sym2G)+ ⊂ ker D̃G. Hence any Ee with non-zero e ∈ H1(Sym2G)+

is a semi-stable rank-4 vector bundle without theta divisor.
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