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ON THE BASE LOCUS OF THE LINEAR SYSTEM OF GENERALIZED

THETA FUNCTIONS

CHRISTIAN PAULY

Abstract. Let Mr denote the moduli space of semi-stable rank-r vector bundles with trivial
determinant over a smooth projective curve C of genus g. In this paper we study the base
locus Br ⊂ Mr of the linear system of the determinant line bundle L over Mr, i.e., the set of
semi-stable rank-r vector bundles without theta divisor. We construct base points in Bg+2 over
any curve C, and base points in B4 over any hyperelliptic curve. We also show that B4 over a
curve of genus 2 consists of 16 reduced points, which are in canonical bijection with the set of
theta-characteristics of C.

1. Introduction

Let C be a complex smooth projective curve of genus g and let Mr denote the coarse moduli
space parametrizing semi-stable rank-r vector bundles with trivial determinant over the curve
C. Let L be the determinant line bundle over the moduli space Mr and let Θ ⊂ Picg−1(C)
be the Riemann theta divisor in the degree g − 1 component of the Picard variety of C. By
[BNR] there is a canonical isomorphism |L|∗

∼
−→ |rΘ|, under which the natural rational map

ϕL : Mr 99K |L|∗ is identified with the so-called theta map

θ : Mr 99K |rΘ|, E 7→ θ(E) ⊂ Picg−1(C).

The underlying set of θ(E) consists of line bundles L ∈ Picg−1(C) with h0(C, E ⊗ L) > 0. For
a general semi-stable vector bundle E, θ(E) is a divisor. If θ(E) = Picg−1(C), we say that E

has no theta divisor. We note that the indeterminacy locus of the theta map θ, i.e., the set of
bundles E without theta divisor, coincides with the base locus Br ⊂ Mr of the linear system
|L|.

Over the past years many authors [A], [B2], [He], [Hi], [P], [R], [S] have studied the base
locus Br of |L| and their analogues for the powers |Lk|. For a recent survey of this subject we
refer to [B1].

It is natural to introduce for a curve C the integer r(C) defined as the minimal rank for which
there exists a semi-stable rank-r(C) vector bundle with trivial determinant over C without theta
divisor (see also [B1] section 6). It is known [R] that r(C) ≥ 3 for any curve C and that r(C) ≥ 4
for a generic curve C. Our first result shows the existence of vector bundles of low ranks without
theta divisor.

Theorem 1.1. We assume that g ≥ 2. Then we have the following bounds.

(1) r(C) ≤ g + 2.
(2) r(C) ≤ 4, if C is hyperelliptic.
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The first part of the theorem improves the upper bound r(C) ≤ (g+1)(g+2)
2

given in [A]. The
statements of the theorem are equivalent to the existence of a semi-stable rank-(g + 2) (resp.
rank-4) vector bundle without theta divisor — see section 2.1 (resp. 2.2). The construction of
these vector bundles uses ingredients which are already implicit in [Hi].

Theorem 1.1 seems to hint towards a dependence of the integer r(C) on the curve C.

In the second part of this paper we specialize to the case g = 2. By a result of Raynaud [R]
we have r(C) = 4 for any curve C. We give a full description of the base locus B4 ⊂ M4.

Theorem 1.2. Let C be a curve of genus 2.

(1) The base locus B4 is of dimension 0, reduced and of cardinality 16.
(2) There exists a canonical bijection between B4 and the set of theta-characteristics of C.

Let Eκ ∈ B4 denote the stable vector bundle associated with the theta-characteristic κ.
Then

Λ2Eκ =
⊕

α∈S(κ)

α, Sym2Eκ =
⊕

α∈J [2]\S(κ)

α,

where S(κ) is the set of 2-torsion line bundles α ∈ J [2] such that κα ∈ Θ ⊂ Pic1(C).
(3) If κ is odd, then Eκ is a symplectic bundle. If κ is even, then Eκ is an orthogonal bundle

with non-trivial Stiefel-Whitney class.
(4) The 16 vector bundles Eκ are invariant under the tensor product with the group J [2].

The 16 base points Eκ already appeared in Raynaud’s paper [R] as Fourier-Mukai transforms
and were further studied in [Hi] and [He], where they are called Raynaud bundles — see section
3.2. We note that for g = 2 the two constructions of Theorem 1.1 coincide and give the 16
Raynaud bundles. We also remark that the restriction of B4 to symplectic rank-4 bundles has
been worked out in [Hi]. The method of this paper is different.

For g = 2 the theta map θ is a generically finite, dominant map [B2]. The degree of this map
is known only for rank-3 bundles (see e.g. [O]). An alternate interpretation of this degree is
given in [BV]. Theorem 1.2 can be applied to compute the degree of θ for rank-4 bundles.

Corollary 1.3. The degree of the rational theta map θ : M4 99K |4Θ| equals 30.

Notations: If E is a vector bundle over C, we will write H i(E) for H i(C, E) and hi(E) for
dim H i(C, E). We denote the slope of E by µ(E) := deg E

rkE
, the canonical bundle over C by K and

the degree d component of the Picard variety of C by Picd(C). We denote by J := Pic0(C) the
Jacobian of C and by J [n] its group of n-torsion points. The divisor Θκ ⊂ J is the translate of
the Riemann theta divisor Θ ⊂ Picg−1(C) by a theta-characteristic κ. The line bundle OJ (2Θκ)
does not depend on κ and will be denoted by OJ (2Θ).

2. Proof of Theorem 1.1

2.1. Semi-stable rank-(g + 2) vector bundles without theta divisor. We consider a line
bundle L ∈ Pic2g+1(C). Then L is globally generated, h0(L) = g + 2 and the evaluation bundle
EL, which is defined by the exact sequence

(1) 0 −→ E∗
L −→ H0(L) ⊗OC

ev
−→ L −→ 0,
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is stable (see e.g. [Bu]), with deg EL = 2g + 1, rkEL = g + 1 and µ(EL) = 2 − 1
g+1

.

A cohomology class e ∈ Ext1(LK−1, EL) = H1(EL⊗KL−1) determines a rank-(g +2) vector
bundle Ee given as an extension

(2) 0 −→ EL −→ Ee −→ LK−1 −→ 0.

Proposition 2.1. For any non-zero class e, the rank-(g + 2) vector bundle Ee is semi-stable.

Proof. Consider a proper subbundle A ⊂ Ee and let S = A ∩ EL ⊂ EL. Then there is an exact
sequence

0 −→ S −→ A −→ LK−1(−D) −→ 0,

where D is an effective divisor. If rkS = g+1 or S = 0, we easily conclude that µ(A) < µ(Ee) = 2.
If rkS < g +1 and S 6= 0, then stability of EL gives the inequality µ(S) < µ(EL) = 2− 1

g+1
. We

introduce the integer δ = 2rkS − deg S. Then the previous inequality is equivalent to δ ≥ 1.
Now we compute

µ(A) =
deg S + deg LK−1(−D)

rkS + 1
≤

2rkS − δ + 3

rkS + 1
= 2 +

1 − δ

rkS + 1
≤ 2 = µ(Ee),

which shows the semi-stablity of Ee. �

We tensorize the exact sequence (1) with L and take the cohomology

(3) 0 −→ H0(E∗
L ⊗ L) −→ H0(L) ⊗ H0(L)

µ
−→ H0(L2) −→ 0.

Note that h1(E∗
L ⊗ L) = h0(EL ⊗ KL−1) = 0 by stability of EL. The second map µ is the

multiplication map and factorizes through Sym2H0(L), i.e.,

Λ2H0(L) ⊂ H0(E∗
L ⊗ L) = ker µ.

By Serre duality a cohomology class e ∈ Ext1(LK−1, EL) = H1(EL ⊗ KL−1) = H0(E∗
L ⊗ L)∗

can be viewed as a hyperplane He ⊂ H0(E∗
L ⊗ L). Then we have the following

Proposition 2.2. If Λ2H0(L) ⊂ He, then the vector bundle Ee satisfies

h0(Ee ⊗ λ) > 0, ∀λ ∈ Picg−3(C).

Proof. We tensorize the exact sequence (2) with λ ∈ Picg−3(C) and take the cohomology

0 −→ H0(EL ⊗ λ) −→ H0(Ee ⊗ λ) −→ H0(LK−1λ)
∪e
−→ H1(EL ⊗ λ) −→ · · ·

Since deg LK−1λ = g, we can write LK−1λ = OC(D) for some effective divisor D. It is enough
to show that h0(Ee ⊗ λ) > 0 holds for λ general. Hence we can assume that h0(LK−1λ) =
h0(OC(D)) = 1.

If h0(EL ⊗ λ) > 0, we are done. So we assume h0(EL ⊗λ) = 0, which implies h1(EL ⊗λ) = 1
by Riemann-Roch. Hence we obtain that h0(Ee ⊗ λ) > 0 if and only if the cup product map

∪e : H0(OX(D)) −→ H1(EL ⊗ λ) = H0(E∗
L ⊗ L(−D))∗

is zero. Furthermore ∪e is zero if and only if H0(E∗
L ⊗L(−D)) ⊂ He. The proposition then will

follow from the inclusion
H0(E∗

L ⊗ L(−D)) ⊂ Λ2H0(L),

which is seen as follows. We tensorize the exact sequence (1) with L(−D) and take cohomology

0 −→ H0(E∗
L ⊗ L(−D)) −→ H0(L) ⊗ H0(L(−D))

µ
−→ H0(L2(−D)) −→ · · ·
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Since h0(E∗
L ⊗ L(−D)) = 1, we conclude that h0(L(−D)) = 2 and H0(E∗

L ⊗ L(−D)) =
Λ2H0(L(−D)) ⊂ Λ2H0(L). �

We introduce the linear subspace Γ ⊂ Ext1(LK−1, EL) defined by

Γ := ker
(
Ext1(LK−1, EL) = H0(E∗

L ⊗ L)∗ −→ Λ2H0(L)∗
)
,

which has dimension g(g−1)
2

> 0. Then for any non-zero cohomology class e ∈ Γ and any

γ ∈ Pic2(C) satisfying γg+2 = L2K−1 = det Ee, the rank-(g + 2) vector bundle

Ee ⊗ γ−1

has trivial determinant, is semi-stable by Proposition 2.1 and has no theta divisor by Proposition
2.2.

2.2. Hyperelliptic curves. In this subsection we assume that C is hyperelliptic and we denote
by σ the hyperelliptic involution. The construction of a semi-stable rank-4 vector bundle without
theta divisor has been given in [Hi] section 6 in the case g = 2, but it can be carried out for any
g ≥ 2 without major modification. For the convenience of the reader, we recall the construction
and refer to [Hi] for the details and the proofs.

Let w ∈ C be a Weierstrass point. Any non-trivial extension

0 −→ OC(−w) −→ G −→ OC −→ 0

is a stable, σ-invariant, rank-2 vector bundle with deg G = −1. By [Hi] Theorem 4 a cohomology
class e ∈ H1(Sym2G) determines a symplectic rank-4 bundle

0 −→ G −→ Ee −→ G∗ −→ 0.

Moreover it is easily seen that, for any non-zero class e, the vector bundle Ee is semi-stable. By
[Hi] Lemma 16 the composite map

DG : PH1(Sym2G) −→ M4
θ

−→ |4Θ|, e 7→ θ(Ee)

is the projectivization of a linear map

D̃G : H1(Sym2G) −→ H0(Picg−1(C), 4Θ).

The involution i(L) = KL−1 on Picg−1(C) induces a linear involution on |4Θ| with eigenspaces
|4Θ|±. Note that 4Θ ∈ |4Θ|+. We now observe that θ(E) ∈ |4Θ|+ for any symplectic rank-4
vector bundle E — see e.g. [B2]. Moreover we have the equality θ(σ∗E) = i∗θ(E) for any vector

bundle E . These two observations imply that the linear map D̃G is equivariant with respect to

the induced involutions σ and i. Since im D̃G ⊂ H0(Picg−1(C), 4Θ)+, we obtain that one of the

two eigenspaces H1(Sym2G)± is contained in the kernel ker D̃G, hence give base points for the
theta map. We now compute as in [Hi] using the Atiyah-Bott-fixed-point formula

h1(Sym2G)+ = g − 1, h1(Sym2G)− = 2g + 1.

One can work out that H1(Sym2G)+ ⊂ ker D̃G. Hence any Ee with non-zero e ∈ H1(Sym2G)+

is a semi-stable rank-4 vector bundle without theta divisor.
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3. Proof of Theorem 1.2

3.1. The 16 base points Eκ. We first show that the set-theoretical support of B4 consists of
16 stable vector bundles Eκ, which are canonically labelled by the theta-characteristics of C.

We note that B4 6= ∅ by Theorem 1.1. We consider a vector bundle E ∈ B4. Since r(C) = 4,
we deduce that E is stable. We introduce E ′ = E∗ ⊗ K. Then µ(E ′) = 2 and since E ∈ B4,
we obtain that h0(E ′ ⊗ λ−1) = h1(E ⊗ λ) = h0(E ⊗ λ) > 0 for any λ ∈ Pic1(C). In particular
for any x ∈ C we have h0(E ′ ⊗ OC(−x)) > 0. On the other hand stability of E implies that
h0(E) = h1(E ′) = 0. Hence h0(E ′) = 4 by Riemann-Roch. Thus we obtain that the evaluation
map of global sections

OC ⊗ H0(E ′)
ev
−→ E ′

is not of maximal rank. Let us denote by I := im ev the subsheaf of E ′ given by the image of
ev. Then clearly h0(I) = 4. The cases rk I ≤ 2 are easily ruled out using stability of E ′. Hence
we conclude that rk I = 3. We then consider the natural exact sequence

(4) 0 −→ L−1 −→ OC ⊗ H0(E ′)
ev
−→ I −→ 0,

where L is the line bundle such that L−1 := ker ev.

Proposition 3.1. We have h0(I∗) = 0.

Proof. Suppose on the contrary that there exists a non-zero map I → OC . Its kernel S ⊂ I is
a rank-2 subsheaf of E ′ and by stability of E ′ we obtain µ(S) < µ(E ′) = 2, hence deg S ≤ 3.
Moreover h0(S) ≥ h0(I) − 1 = 3.

Assume that deg S = 3. Then S is stable and S can be written as an extension

0 −→ µ −→ S −→ ν −→ 0,

with deg µ = 1 and deg ν = 2. The condition h0(S) ≥ 3 then implies that µ = OC(x) for some
x ∈ C, ν = K and that the extension has to be split, i.e., S = K ⊕ OC(x). This contradicts
stability of S.

The assumption deg S ≤ 2 similarly leads to a contradiction. We leave the details to the
reader. �

Now we take the cohomology of the dual of the exact sequence (4) and we obtain — using
h0(I∗) = 0 — an inclusion H0(E ′)∗ ⊂ H0(L). Hence h0(L) ≥ 4, which implies deg L ≥ 5. On
the other hand deg L = deg I and by stability of E ′, we have µ(I) < 2, i.e., deg L ≤ 5. So we can
conclude that deg L = 5, that H0(E ′)∗ = H0(L) and that I = EL, where EL is the evaluation
bundle associated to L defined in (1).

Moreover the subsheaf EL ⊂ E ′ is of maximal degree, hence EL is a subbundle of E ′ and we
have an exact sequence

0 −→ EL −→ E ′ −→ K4L−1 −→ 0,

with extension class e ∈ Ext1(K4L−1, EL) = H1(EL ⊗ K−4L) = H0(E∗
L ⊗ K5L−1)∗. Using

Riemann-Roch and stability of EL one shows that

h0(E∗
L ⊗ K5L−1) = 7, h0(E∗

L ⊗ K5L−1(−x)) = 4, h0(E∗
L ⊗ K5L−1(−x − y)) = 1
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for general points x, y ∈ C. In that case we denote by µx,y ∈ PH0(E∗
L ⊗ K5L−1) the point

determined by the 1-dimensional subspace H0(E∗
L ⊗ K5L−1(−x − y)). We also denote by

S ⊂ PH0(E∗
L ⊗ K5L−1)

the linear span of the points µx,y when x and y vary in C and by He ⊂ PH0(E∗
L ⊗K5L−1) the

hyperplane determined by the non-zero class e.

By the same argument as in the proof of Theorem 1.1 one shows that µx,y ∈ He if and only
if h0(E ′ ⊗ K−4L(x + y)) > 0. Since we assume E ∈ B4, we obtain

S ⊂ He.

We consider a general point x ∈ C such that h0(E∗
L⊗K5L−1(−x)) = 4 and denote for simplicity

A := E∗
L ⊗ K5L−1(−x).

Then A is stable with µ(A) = 7
3
. We consider the evaluation map of global sections

evA : OC ⊗ H0(A) −→ A

and consider the set SA of points p ∈ C for which (evA)p is not surjective, i.e.

SA = {p ∈ C | h0(A(−p)) ≥ 2}.

Then we have the following

Lemma 3.2. We assume that x is general.

(1) If L2 6= K5, then the set SA consists of the 2 distinct points p1, p2 determined by OC(p1+
p2) = K4L−1(−x).

(2) If L2 = K5, then the set SA consists of the 2 distinct points p1, p2 introduced in (1) and
the conjugate σ(x) of x under the hyperelliptic involution σ.

Proof. Given a point p ∈ C, we tensorize the exact sequence (1) with K5L−1(−x− p) and take
cohomology:

0 −→ H0(A(−p)) −→ H0(L) ⊗ H0(K5L−1(−x − p)) −→ H0(K5(−x − p)) −→ · · ·

We note that h0(K5L−1(−x − p)) = 2. We distinguish two cases.

(a) The pencil |K5L−1(−x − p)| has a base-point, i.e. there exists a point q ∈ C such that
K5L−1(−x − p) = K(q), or equivalently K4L−1(−x) = OC(p + q). Since x is general, we have
h0(K4L−1(−x)) = 1, which determines p and q, i.e., {p, q} = {p1, p2}. In this case |K5L−1(−x−
p)| = |K(q)| = |K| and h0(A(−p)) = h0(K−1L) = 2. This shows that p1, p2 ∈ SA.

(b) The pencil |K5L−1(−x− p)| is base-point-free. By the base-point-free-pencil-trick, we have
H0(A(−p)) ∼= H0(L2K−5(x + p)). Since deg L2K−5(x + p) = 2, we have h0(L2K−5(x + p)) = 2
if and only if L2K−5(x + p) = K, or equivalently OC(p) = K6L−2(−x). If K6L−2 6= K, then
for general x ∈ C the line bundle K6L−2(−x) is not of the form OC(p). If K6L−2 = K, then
for any x ∈ C, K6L−2(−x) = OC(σ(x)), which implies that σ(x) ∈ SA.

This shows the lemma. �

Proposition 3.3. If L2 6= K5, then S = PH0(E∗
L ⊗ K5L−1).



7 Version July 23, 2007

Proof. We consider a general point x ∈ C and the rank-3 bundle A. Let B ⊂ A denote the
subsheaf given by the image of evA. By Lemma 3.2 (1) we have deg B = deg A−2 = 5. Moreover
H0(B) = H0(A) and there is an exact sequence

(5) 0 −→ M−1 −→ OC ⊗ H0(B)
evA−→ B −→ 0,

with M ∈ Pic5(C). It follows that the rational map

φx : C 99K PH0(B) = PH0(A) = P
3, y 7→ µx,y

factorizes through
C

ϕM−→ |M |∗ −→ PH0(B),

where ϕM is the morphism given by the linear system |M | and the second map is linear and
identifies with the projectivization of the dual of δ, which is given by the long exact sequence
obtained from (5) by dualizing and taking cohomology:

0 −→ H0(B∗) −→ H0(B)∗
δ

−→ H0(M) −→ H1(B∗) −→ · · ·

We obtain that the linear span of im φx is non-degenerate if and only if h0(B∗) = 0.

We now show that h0(B∗) = 0. Suppose on the contrary that there exists a non-zero map
B → OC . Its kernel S ⊂ B is a rank-2 subsheaf of A with deg S ≥ deg B = 5, hence µ(S) ≥ 5

2
,

which contradicts stability of A — recall that µ(A) = 7
3
.

This shows that im φx spans PH0(A) ⊂ PH0(E∗
L ⊗ K5L−1) for general x ∈ C. We now take

2 general points x, x′ ∈ C and deduce from dim H0(A) ∩ H0(A′) = dim H0(E∗
L ⊗ K5L−1(−x −

x′)) = 1 that the linear span of the union PH0(A) ∩ PH0(A′) equals the full space PH0(E∗
L ⊗

K5L−1). This shows the proposition. �

We deduce from the proposition that the line bundle L satisfies the relation L2 = K5, i.e.

L = K2κ

for some theta-characteristic κ of C. In that case the extension space H0(EL ⊗K5L−1)∗ equals
H0(E∗

L ⊗ L)∗ and we have the exact sequence (3). As already noticed in section 2.1 we have a
natural inclusion Λ2H0(L) ⊂ H0(E∗

L ⊗ L). More precisely we can show

Proposition 3.4. The linear span S equals

S = PΛ2H0(L) ⊂ PH0(E∗
L ⊗ L).

Proof. Using the standard exact sequences and the base-point-free-pencil-trick, one easily works
out that for general points x, y ∈ C

µx,y = PΛ2H0(L(−x − y)) ⊂ PΛ2H0(L) ⊂ PH0(E∗
L ⊗ L).

This implies that S ⊂ PΛ2H0(L). In order to show equality one chooses 4 general points xi ∈ C

such that their images C → |L|∗ = P3 linearly span the P3. We denote by si ∈ H0(L) the global
section vanishing on the points xj for j 6= i and not vanishing on xi. Then one checks that for
any choice of the indices i, j, k, l such that {i, j, k, l} = {1, 2, 3, 4} one has si ∧ sj = µxk,xl

. Since
the 6 tensors si ∧ sj are a basis of Λ2H0(L), we obtain equality. �

The hyperplane S = PΛ2H0(L) ⊂ PH0(E∗
L⊗L) determines a unique (up to a scalar) non-zero

extension class e ∈ H0(E∗
L ⊗ L)∗ by S = He, which in turn determines a unique stable vector

bundle E ∈ B4, which we will denote by Eκ.

This shows that B4 is of dimension 0 and of cardinality 16.
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3.2. The Raynaud bundles. In this subsection we recall the construction of the Raynaud
bundles introduced in [R] as Fourier-Mukai transforms. We refer to [Hi] section 9.2 for the
details and the proofs.

The rank-4 vector bundle OJ (2Θ) ⊗ H0(J,OJ(2Θ))∗ over J admits a canonical J [2]-lineari-
zation and descends therefore under the duplication map [2] : J → J , i.e., there exists a rank-4
vector bundle M over J such that

[2]∗M ∼= OJ (2Θ) ⊗ H0(J,OJ(2Θ))∗.

Proposition 3.5. For any theta-characteristic κ of C there exists an isomorphism

ξκ : M
∼

−→ M∗ ⊗OJ(Θκ).

Moreover if κ is even (resp. odd), then ξκ is symmetric (resp. skew-symmetric).

Let γκ : C → J be the Abel-Jacobi map defined by γκ(p) = κ−1(p). We define the Raynaud
bundle

Rκ := γ∗
κM ⊗ κ−1.

Then by [R] the bundle Rκ ∈ B4. Since γ∗
κOJ (Θκ) = K we see that the isomorphism ξκ

induces an orthogonal (resp. symplectic) structure on the bundle Rκ, if κ is even (resp. odd).
In particular the bundle Rκ is self-dual, i.e., Rκ = R∗

κ. The pull-back γ∗
κ(ξ

′
κ) for a theta-

characteristic κ′ = κα with α ∈ J [2] gives an isomorphism

Rκ
∼

−→ R∗
κ ⊗ α,

hence a non-zero section in H0(Λ2Rκ⊗α) (resp. H0(Sym2Rκ⊗α)) if h0(κα) = 1 (resp. h0(κα) =
0). We deduce that there are isomorphisms

(6) Λ2Rκ =
⊕

α∈S(κ)

α, Sym2Rκ =
⊕

α∈J [2]\S(κ)

α.

In particular the 16 bundles Rκ are non-isomorphic. Each Rκ is invariant under tensor product
with J [2]. The isomorphisms (6) can be used to prove the relation

(7) Rκ ⊗ β = Rκβ2 , ∀β ∈ J [4].

3.3. Symplectic and orthogonal bundles. In this subsection we give a third construc-
tion of the bundles in B4 as symplectic and orthogonal extension bundles. Let κ be a theta-
characteristic.

If κ is odd, then κ = OC(w) for some Weierstrass point w ∈ C. The construction outlined
in section 2.2 gives a unique symplectic bundle Ee ∈ B4 with e ∈ H1(Sym2G)+. We denote this
bundle by Vκ.

If κ is even, there is an analogue construction, which we briefly outline for the convenience
of the reader. The proofs are similar to those given in [Hi]. Using the Atiyah-Bott-fixed-point
formula one observes that among all non-trivial extensions

0 −→ κ−1 −→ G −→ OC −→ 0,

there are 2 extensions (up to scalar), which are σ-invariant. We take one of them. Then any
non-zero class e ∈ H1(Λ2G) = H1(κ−1) determines an orthogonal bundle Ee, which fits in the
exact sequence

(8) 0 −→ G −→ Ee −→ G∗ −→ 0.
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The composite map

DG : PH1(Λ2G) −→ M4
θ

−→ |4Θ|, e 7→ θ(Ee)

is the projectivization of a linear map

D̃G : H1(Λ2G) −→ H0(Pic1(C), 4Θ).

Moreover im D̃G ⊂ H0(Pic1(C), 4Θ)−, which can be seen as follows. By [Se] Thm 2 the second
Stiefel-Whitney class w2(Ee) of an orthogonal bundle Ee is given by the parity of h0(Ee ⊗ κ′)
for any theta-characteristic κ′. This parity can be computed by taking the cohomology of the
exact sequence (8) tensorized with κ′ and taking into account that the coboundary map is skew-
symmetric. One obtains that w2(Ee) 6= 0 and one can conclude the above-mentioned inclusion
by [B3] Lemma 1.4.

We now observe that by the Atiyah-Bott-fixed-point-formula h1(Λ2G)+ = h1(Λ2G)− = 1. By
the argument given in section 2.2 we conclude that one of the two eigenspaces H1(Λ2G)± is

contained in the kernel ker D̃G. We denote the corresponding bundle Ee by Vκ ∈ B4.

3.4. Three descriptions of the same bundle.

Proposition 3.6. For any theta-characteristic κ the three bundles Eκ, Rκ and Vκ coincide.

Proof. If κ is odd, this was worked out in detail in [Hi] section 8 and Theorem 29. If κ is even,
the proofs are similar. �

This proposition shows all assertions of Theorem 1.2 except reducedness of B4.

3.5. Reducedness of B4. We start with a description of the space of global sections H0(M4,L).

Proposition 3.7. For any theta-characteristic κ there is a section sκ ∈ H0(M4,L) with zero
divisor

∆κ := Zero(sκ) = {E ∈ M4 | h0(Λ2E ⊗ κ) > 0}.

The 16 sections sκ form a basis of H0(M4,L).

Proof. The Dynkin index of the second fundamental representation ρ : sl4(C) → End(Λ2C4)
equals 2 (see e.g. [LS] Proposition 2.6). Moreover the bundle Λ2E ⊗ κ admits a K-valued non-
degenerate quadratic form, which allows to construct the Pfaffian divisor sκ, which is a section
of L (see [LS]). The space H0(M4,L) is a representation of level 2 of the Heisenberg group
Heis(2), which is a central extension of J [2] by C∗. One can work out that the sections sκ

generate the 16 one-dimensional character spaces for the Heis(2)-action on H0(M4,L). This
shows that the sections sκ are linearly independent. �

Since Eκ ∈ B4, we have Eκ ∈ ∆κ′ for any theta-characteristic κ′. By the deformation theory
of determinant and Pfaffian divisors (see e.g. [L], [LS]) the point Eκ ∈ M4 is a smooth point
of the divisor ∆κ′ ⊂ M4 if and only if the following two conditions hold

(1) h0(Λ2Eκ ⊗ κ′) = 2,
(2) the natural linear form

Φκ′ : TEκ
M4 = H1(End0(Eκ)) −→ Λ2H0(Λ2Eκ ⊗ κ′)∗

is non-zero.
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Moreover if these two conditions holds, then TEκ
∆κ′ = ker Φκ′ . The map Φκ′ is built up as

follows: the exceptional isomorphism of Lie algebras sl4
∼= so6 induces a natural vector bundle

isomorphism

(9) End0(Eκ)
∼

−→ Λ2(Λ2Eκ).

Then Φκ′ is the dual of the linear map given by the wedge product of global sections

Λ2H0(Λ2Eκ ⊗ κ′) −→ H0(Λ2(Λ2Eκ) ⊗ K) = H0(End0(Eκ) ⊗ K).

Proposition 3.8. The 0-dimensional scheme B4 is reduced.

Proof. Since Eκ is a smooth point of M4 and dim TEκ
M4 = 15, it is sufficient to show that for

any theta-characteristic κ′ 6= κ the divisor ∆κ′ is smooth at Eκ and that the 15 hyperplanes
ker Φκ′ ⊂ TEκ

M4 are linearly independent: using the isomorphism (6) we obtain that for κ′ 6= κ

h0(Λ2Eκ ⊗ κ′) = ♯S(κ) ∩ S(κ′) = 2

and using the isomorphism (9) we obtain that

End0(Eκ) =
⊕

α∈J [2]\{0}

α.

On the other hand one easily sees that if γ, δ ∈ J [2] are the two 2-torsion points in the
intersection S(κ)∩S(κ′), then κ′ = κγδ, hence Λ2H0(Λ2Eκ⊗κ′) ∼= H0(Kγδ). This implies that
the linear form

Φκ′ :
⊕

α∈J [2]\{0}

H1(α) −→ H0(Kγδ)∗ = H1(β)

is projection onto the direct summand H1(β), where β = κ−1κ′ ∈ J [2]. This description of the
linear forms Φκ′ clearly shows that they are non-zero and linearly independent. �

This completes the proof of Theorem 1.2.

4. Proof of Corollary 1.3

Since by Theorem 1.2 B4 is a reduced 0-dimensional scheme of length 16, the degree of the
theta map θ is given by the formula

deg θ + 16 = c15,

where c15
15!

is the leading coefficient of the Hilbert polynomial

P (n) = χ(M4,L
n) =

c15

15!
n15 + lower degree terms.

In order to compute the polynomial P we write

(10) P (X) =
15∑

k=0

αkQk(X), with Qk(X) =
1

k!
(X + 7)(X + 6) · · · (X + 8 − k)

and Q0(X) = 1. Note that deg Qk = k and that c15 = α15. The canonical bundle of M4 equals
L−8. By the Grauert-Riemenschneider vanishing theorem we obtain that hi(M4,L

n) = 0 for
any i ≥ 1 and n ≥ −7. Hence P (n) = h0(M4,L

n) for n ≥ −7. Moreover P (n) = 0 for
n = −7,−6, . . . ,−1 and P (0) = 1. The values P (n) for n = 1, 2, . . . , 8 can be computed by the
Verlinde formula and with the use of MAPLE. They are given in the following table.
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n 1 2 3 4 5 6 7 8
P (n) 16 140 896 4680 21024 83628 300080 984539

Using the expression (10) of P one straightforwardly deduces the coefficients αk by increasing
induction on k: αk = 0 for k = 0, 1, . . . , 6 and the values αk for k = 7, . . . , 15 are given in the
following table.

k 7 8 9 10 11 12 13 14 15
αk 1 8 32 96 214 328 324 184 46

Hence deg θ = α15 − 16 = 30.
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