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ABSTRACT
Neutrality of some boolean parity fitness landscapes is inves-
tigated in this paper. Compared with some well known con-
tributions on the same issue, we define some new measures
that help characterizing neutral landscapes, we use a new
sampling methodology, which captures some features that
are disregarded by uniform random sampling, and we intro-
duce new genetic operators to define the neighborhood of
tree structures. We compare the fitness landscape induced
by two different sets of functional operators ({nand} and
{xor ; not}). The different characteristics of the neutral
networks seem to justify the different difficulties of these
landscapes for genetic programming.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.2.8 [Software Engineering] Metrics – com-
plexity measures, performance measures

General Terms
Algorithms

Keywords
Genetic Programming, Neutrality, Fitness Landscapes, Even
Parity

1. INTRODUCTION
The role played by neutrality in determining the ability of
evolutionary algorithms to find good quality solutions for
a given problem has been a controversial issue in the last
few years. A good introduction on the role of neutrality has
been done by Reidys and Stadler in [10]. In [13], Toussaint
and Igel claim the necessity of a certain degree of neutrality
in fitness landscapes for self-adaption. In [5], Geard com-
pared the neutrality of some binary landscapes claiming a
relationship between neutrality and performance of genetic
algorithms (GAs). In [2], Collard et al. studied synthetic
neutrality and its effects on the evolvability of GAs. The
study of neutrality for genetic programming (GP) is mainly
due to the work of Yu et al.: in [19], they showed that ar-
tificially introducing neutrality can help Cartesian GP to
navigate some restricted fitness landscapes. These results
have been recently criticized by Collins in [4]. Some other
contributions on the importance of artificially introducing
neutrality into fitness landscapes can be found in [17, 18,
20]. In this paper, we take up a different point of view. First
of all, we study even parity fitness landscapes for standard
tree based GP [7] instead of Cartesian GP. Secondly, instead
of artificially introducing neutrality into the landscapes, we
study them without modifying them, trying to infer some
conclusions on the impact of neutrality on GP performance.
Third, we introduce some new neutrality measures, such as
the average neutrality ratio, the average ∆-fitness of neu-
tral networks and the ratio of some particular solutions con-
tained into the neutral networks (see section 4 for the defi-
nitions of these measures). Fourth, we introduce some new
genetic operators to define neighborhood between trees. Fi-
nally, instead of using a fixed set of functions to build so-
lutions, we compare the landscapes induced by two differ-
ent set of boolean operators ({nand} and {xor ; not}).
Boolean spaces have already been studied, among others,
in [3, 8]. In those contributions, either landscapes of small
size have been studied exhaustively (i.e. taking into account
all the possible solutions) or larger fitness landscapes have
been studied by means of uniform random samplings. The
shape and features of the boolean parity fitness landscapes
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make them hard to study by means of uniform random sam-
plings and thus more sophisticated sampling methodologies
are needed. The first attempt to study them by means of
some well known importance sampling techniques can be
found in [14]. In this paper we define a new, and more ela-
borate, sampling methodology to study even parity fitness
landscapes, but the techniques are general and can be used
for any GP program space.

This paper is structured as follows: in section 2, we give
some definitions that will be useful in the continuation of
the paper. In section 3, we discuss some features of the even
parity fitness landscapes. Section 4 contains an exhaustive
investigation of a reduced size even parity landscape. Our
new sampling technique is described in section 5. In section
6, we present some results on large even parity landscapes.
Finally, in section 7, we offer our conclusions and ideas for
future research.

2. PRELIMINARY DEFINITIONS
Using a landscape metaphor to develop insight about the
workings of a complex system originates with [16]. A simple
definition of fitness landscape in EAs is a plot where the
points in the horizontal plane represent the different indi-
vidual genotypes in a search space (ordered according to a
particular neighborhood relationship) and the points in the
vertical direction represent the fitness of each one of these
individuals [8]. Generally, the neighborhood relationship is
defined in terms of the genetic operators used to traverse
the search space [15, 8, 14]. This can be done easily for
unary genetic operators like mutation, but it is clearly more
difficult if binary or multi-parent operators, like crossover,
are considered. Many formal definitions of fitness landscape
have been given so far (see for instance [12]). In this work,
a fitness landscape is a triple L = (S ,V, f) where S is the
set of all possible solutions, V : S → 2S is a neighborhood
function specifying, for each s ∈ S , the set of its neighbors
V(s), and f : S → IR is the fitness function. Given the set
of variation operators, V can be defined as V(s) = {s′ ∈ S|s′
can be obtained from s by a single variation}. In some cases,
as for the even parity problems, even though the size of the
search space S is huge, f can only assume a limited set of
values. Thus, a large number of solutions have the same
fitness. In this case, we say that the landscape has a high
degree of neutrality [10]. Given a solution s, the subset of
V(s) composed by neighbor solutions that are also neutral
can be defined. Formally, the neutral neighborhood of s is
the set N (s) = {s′ ∈ V(s)|f(s′) = f(s)}. The number of
neutral neighbors of s is called the neutrality degree of s
and the ratio between neutrality degree and cardinality of
V(s) is the neutrality ratio of s. Given these definitions, we
can imagine a fitness landscape as being composed by a set
of (possibly large) plateaus. More formally, a neutral net-
work [11] can be defined as a graph connected component
(S , EN ) where EN = {(s1, s2) ∈ S2|s2 ∈ N (s1)}. The set
of all neutral networks in the fitness landscape will be de-
noted by NN from now on. Replacing each solution with its
neutral network, we can define a fitness landscape by means
of its neutrality graph GNN = (NN, ENN), where ENN is a
relation such that, given two neutral networks N1 and N2:
(N1, N2) ∈ ENN ⇔ ∃s1 ∈ N1, s2 ∈ N2 : s2 ∈ V(s1)\N (s1).
Finally, we define the fitness of a network (or network fit-
ness) as the fitness value shared by all its individuals. A
neutral net with fitness ϕ will be indicated as ϕ-network.

3. THE EVEN PARITY PROBLEM
The goal of the even-k parity problem [7] is to find a boolean
function of k variables that returns True if an even number
of inputs is True and False otherwise. Fitness is computed
as 2k minus the number of hits over the 2k fitness cases
represented by all the possible combinations of the k input
values. Here, all the fitness values will be normalized di-
viding them by 2k. Thus a perfect individual has fitness 0,
while the worst individual has fitness 1. The set of all pos-
sible solutions is composed by all the well–formed trees that
can be built using a function set F and a terminal sym-
bols set T and having a depth smaller or equal than a given
limit. The set T is composed by k variables (where k is
the order of the problem). Two different function sets are
studied in this work: {xor ; not} and {nand}. The first
one is not a generator set (i.e. it is impossible to generate all
the different boolean functions using only this set), but it
easily enables to obtain a perfect solution for the even parity
problem. The second one is a minimal generator set, but it
is difficult (even though not impossible) to build an opti-
mal solution using it (see [9] for a more detailed discussion).
We have chosen to use these function sets because they are
small enough to limit the cardinality of the search space but
also rich enough to represent some perfect solutions. Fur-
thermore, these function sets induce two fitness landscapes
with different difficulties for GP [14]: the landscape induced
by {xor ; not} is easy to search, while the one induced by
{nand} is generally hard. Thus, we can compare the two

landscapes (indicated with L{xor ; not}
(k,h) and L{nand}

(k,h) from now
on, where k is the problem order and h is the prefixed tree
depth limit) to find some interpretations of their different
difficulties.

To define a neighborhood structure based on variation
operators, we have to choose a suitable set of these ope-
rators. Standard crossover or subtree mutation [7] gene-
rate neighborhoods which are too wide and complex to be
studied. In this paper, we consider a simplified version of
the inflate and deflate mutation operators first introduced
in [14, 15] (also called structural mutation operators in those
works): (1) Strict deflate mutation, which transforms a sub-
tree of depth 1 into a randomly selected leaf chosen among
its children. (2) Strict inflate mutation, which transforms a
leaf into a tree of depth 1, rooted in a random operator and
whose children are a random list of variables containing also
the original leaf. (3) Point terminal mutation, that replaces
a leaf with another random terminal symbol. This set of ge-
netic operators (that will be called Strict-Structural, or StSt,
mutation operators from now on) is easy enough to study
and provides enough exploration power to GP. For instance,
StSt mutations present two important properties: (i) each
mutation has an inverse and, (ii) for each pair of solutions,
a sequence of mutations which transforms the first one into
the second exists (see [9] for the formal proof). Thus, the
associated graph (S ,V) of fitness landscape is undirected
(given the (i) property) and connected (given the (ii) pro-
perty) graph.

Some other interesting properties of the even parity fit-
ness landscapes have been discussed, among others, in [8,
3]. First of all, supposing that all fitness values have been
normalized into the range [0, 1], if an expression does not
contain at least an occurrence of each variable, then its fit-
ness value is exactly equal to 0.5. For this reason, the wide



majority of individuals in the even parity landscapes have
fitness 0.5 [14]. Secondly, an expression in the L{xor ; not}

landscape can only have a fitness value equal to 0, 0.5 or 1.
(see for instance [8, 9] for the formal proofs of these prop-
erties). The choice of the StSt mutation operators permits
to define some other properties of the L{xor ; not} landscape:
(a) there is only one neutral network at fitness 0.5 (we call
it the central network), (b) all the other networks are com-
posed by one single individual (we call them the peripheral
networks) and (c) all the peripheral networks are connected
with the central one by one mutation. The proofs of these
properties are omitted for lack of space; they can be found
in [9].

4. EXHAUSTIVEANALYSISOFA“SMALL”
EVEN-PARITY FITNESS LANDSCAPE

The first step of our study is to investigate a fitness land-
scape of small size, in order to be able to exhaustively ge-
nerate all the possible individuals contained in it. We have
built it by considering the even-2 parity problem and trees
with a maximum depth equal to 3. The resulting L{xor ; not}

(2,3)

and L{nand}
(2,3) landscapes both contain at least one perfect

solution. In table 1 some characteristics of these fitness
landscapes are reported. In agreement with the theoreti-

Table 1: Some characteristics of the “small” fitness
landscapes that we have exhaustively studied

L{xor ; not}
(2,3) L{nand}

(2,3)

No. of individuals 5552 1446
No. of optimal solutions 660 8
No. of neutral networks 1389 31
Average network size 3.99 46.64

cal observations presented in section 3, L{xor ; not}
(2,3) has a

large number (1388) of neutral networks at fitness 0 and
1 composed by only one individual and one large (4164 indi-
viduals) central network at fitness 0.5. On the other hand,

L{nand}
(2,3) has smaller size and it has few networks, all of them

medium-sized. Figures 1 and 2 report a graphical repre-
sentation of the neutrality graphs of L{nand}

(2,3) and L{xor ; not}
(2,3)

respectively. Each square represents a neutral network, and

Figure 1: Graphical representation of the neutrality
graph of L{nand}

(2,3) .

its size is proportional to the logarithm of the network size.
The node colour indicates the fitness value of the network
(from 1, black, to 0, white).

Figure 2: Graphical representation of the neutrality
graph of L{xor ; not}

(2,3) .

4.1 Experimental Results
The first parameter that we study is the average neutrality
ratio, r̄. It is defined as the mean of the neutrality ratios
(as defined in section 2) of all the individuals included into
a network. High values r̄ (near to 1) correspond to a large
amount of neutral mutations. Figure 3 presents the scatter-
plot of r̄ against fitness in the two landscapes. In this figure,
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Figure 3: Scatterplot of the average neutrality ratio
in L{nand}

(2,3) (left part) and L{xor ; not}
(2,3) (right part).

as in all the subsequent ones, a gray line is drawn, join-
ing all the average points for each considered fitness value.
This line should help readability. Furthermore, points at
the same coordinates have been slightly displaced, so that
they can be distinguished. In L{xor ; not}

(2,3) , the central net-

work (fitness equal to 0.5) has high values of r̄, while for the
other networks r̄ = 0. Furthermore, the scatterplot is nearly
symmetrical around fitness equal to 0.5. In L{nand}

(2,3) r̄ values
are, on average, larger than 0.2 for some bad fitness values
(fitness equal to 0.75) and smaller than 0.2 for good ones

(fitness equal to 0 and 0.25): in general, in L{nand}
(2,3) networks

with bad fitness seem to be “more neutral” than networks
with good fitness.

The second measure that we study is the average ∆-fitness
of the neutral networks. This measure is the average fitness
gain (positive or negative) achieved after a mutation of the
individuals belonging to the network. Formally, let N be a
neutral network, then its average ∆-fitness can be defined
as:

∆f̄(N) :=
1
|N | ·

X

s∈N

" P
v∈V(s)(f(v) − f(s))

|V(s)|

#

This measure is clearly related to the notions of evolvability



[1] and innovation rate [6]. It also helps to statistically de-
scribe the graph (S ,V). A negative value of ∆f̄ corresponds
to a fitness improvement (because it reduces the error) while
a positive one corresponds to a worsening (because it in-

creases the error). As figure 4 shows, in L{nand}
(2,3) the possible

values of ∆f̄ are included into a narrower range than in
L{xor ; not}

(2,3) . We deduce that in L{nand}
(2,3) mutations cannot
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Figure 4: Scatterplot of the average ∆-fitness in
L{nand}

(2,3) (left part) and L{xor ; not}
(2,3) (right part).

produce large fitness improvements (on average). Thus, to
solve the problem, GP has to find individuals with many
different fitness values. This is not the case for L{xor ; not}

(2,3) ,
where a mutation of an individual contained into the central
network can produce an individual with a fitness equal to 0
(global optimum). Furthermore, in L{nand}

(2,3) good fitness net-

works (fitness equal to 0.25 or 0.5) have positive values of

∆f̄ . In other words, in L{nand}
(2,3) , it is unlikely that mutations

of good individuals generate better offspring.
Now, we present two measures that we have called Non

Improvable (NI) Solutions ratio (rni) and Non Worsenable1

(NW) Solutions ratio (rnw). The first one is defined as the
number of non-improvable solutions, or non-strict local op-
tima (i.e. individuals i which cannot generate offspring j by
applying a StSt mutation such that the fitness of j is bet-
ter than the fitness of i) that are contained into a network
divided by the size of the network. The second one is the
ratio of the individuals i which cannot generate offspring j
(by applying a StSt mutation) such that the fitness of j is
worse than the fitness of i. Figures 5 and 6 present the scat-
terplots of rni and rnw for each fitness value, respectively.
NI solutions ratio is 1 in 0-networks (they are composed

of optimal solutions, so they cannot further improve) and it
is 0 in 1-networks. Analogously, NW solutions ratio is 1 in
1-networks and it is 0 in 0-networks. In L{nand}

(2,3) , there are

some good networks (low fitness) with high rni values. At
fitness 0.25, all the networks have an high value of rni (larger
than 0.6) and 5 of them (over a total of 9 networks) have a
value of rni equal to 1 and thus they are plateaus of non-
strict local optima. We call these networks trap networks,
since their individuals cannot generate better offspring and
thus once GP has reached these networks, it cannot escape
from them by means of a StSt mutation improving fitness.
Trap networks do not exist in L{xor ; not}

(2,3) .

1We are aware that the word “worsenable” does not exist
in the English dictionary. Nevertheless we use it here as a
contrary of “improvable”, i.e. as something that cannot be
worsened.
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Figure 5: Scatterplot of NI solutions ratio in
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Figure 6: Scatterplot of the NW solutions ratio in
L{nand}

(2,3) (left part) and L{xor ; not}
(2,3) (right part).

Finally, we study the NW solutions ratio against NI for
relevant2 fitness values in L{nand}

(2,3) (figure 7) and for all the

possible fitness values in L{xor ; not}
(2,3) (figure 8). In L{xor ; not}

(2,3) ,

NW solutions ratio

NI
 so

lut
ion

s r
at

io

10.750.50.250

1

0.75

0.5

0.25

0

10.750.50.250 10.750.50.250

fitness = 0.25 fitness = 0.50 fitness = 0.75

Figure 7: Scatterplot of the NW solutions ratio vs.
the NI solutions ratio in L{nand}

(2,3) .

all the points are disposed along the segment ((1, 0), (0, 1)).

In L{nand}
(2,3) , the scatterplots are approximately parallel to the

Cartesian axis and networks located at good fitness values
have a large number of NI solutions. Thus, it is unlikely to
mutate their individuals generating better offspring. This is
not the case for L{xor ; not}

(2,3) . This may help explain why the

L{nand}
(2,3) landscape is hard for GP, while L{xor ; not}

(2,3) is easy.

2The scatterplot at fitness values equal to 1 and 0 are not
reported for lack of space. However, they are obviously iden-
tical to the case of L{xor ; not}

(2,3) reported in figure 8.
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5. SAMPLINGMETHODOLOGY
The even parity fitness landscape is a very hard one to
sample. In fact, as the order k of the problem increases,
the percentage of individuals with a fitness equal to 0.5
increases too. In [3, 8] some uniform random samplings
for these spaces have been presented. In [14] some well
known importance sampling techniques such as Metropolis
and Metropolis-Hastings have been used. Even though the
resuls obtained were satisfactory for the purposes of those
works, still the large majority of the individuals had fitness
equal to 0.5 and too few ones with different fitness were
considered. Thus, those samples did not capture some im-
portant characteristics of the fitness landscape, such as the
number and size of the neutral networks at fitness values dif-
ferent from 0.5, the connectivity of optimal solutions to these
networks, etc. In other words, those samplings did not offer
a useful “view” of the fitness landscapes and did not allow
us to completely understand the behavior of GP on them.
In this paper, we present a new methodology to generate
samples containing trees of many (possibly all the) diffe-
rent fitness values and forming connected neutral networks,
if possible. This technique is composed by three steps: we
have called them modified Metropolis, vertical expansion and
horizontal expansion. Modified Metropolis generates a sam-
ple S of individuals. The vertical expansion tries to enrich
S by adding to it some non-neutral neighbors of its individ-
uals. Finally, the horizontal expansion tries to enrich S by
adding to it some neutral neighbors of its individuals.

5.1 Modified Metropolis Sampling
Our sampling methodology has been inspired by the Metro-
polis technique. According to that technique, a solution is
generated at random at the beginning and considered as the
current solution P . Successively, a loop is executed. At each
iteration of that loop, a new solution T is generated at ran-
dom and accepted (and thus inserted into the sample and
considered as the new current solution P ) or rejected accor-
ding to a certain probability distribution. In the Metropolis
technique, the distribution for accepting or rejecting indi-

viduals is equal to αM (f(P ), f(T )) = min
“
1, f(P )

f(T )

”
, where

f is the fitness function. In this way, the Metropolis tech-
nique favors fitter solutions but it does not penalize solutions
at fitness 0.5. In our methodology, we define a probability
distribution α that rewards solutions with a different fitness
than the previously accepted one. In this way, we intend to
reward solutions with a different fitness than 0.5. Let pm be
the minimum probability of accepting a solution, then our

definition of the α function is:

α(f(P ), f(T )) = (1−pm)·log10

„
9 · |f(P )− f(T )|

max(f(P ), 1− f(P ))
+ 1

«
+pm

(1)
In this way, if |f(P ) − f(T )| is equal to 0, the new solu-
tion T gets a small probability (equal to pm) of being ac-
cepted3. On the other hand, the larger the value of |f(P )−
f(T )|, the higher the probability. In particular, if T has the
most different possible fitness value from P , then |f(P ) −
f(T )| =max(f(P ), 1 − f(P )). In that case, the logarithmic
term becomes log10(9+1) = 1, and thus α(f(P ), f(T )) = 1.
We have chosen a logarithmic function because it increases
very quickly for small differences and thus it also rewards
solutions T with a slightly different fitness from P .

5.2 Vertical Expansion
The vertical expansion of our methodology takes as input
the sample S generated by the modified Metropolis algo-
rithm and enriches it by adding some new individuals. In
synthesis, it works as follows: for each individual i ∈ S, L
different neighbors of i are generated by means of L StSt
mutations. Each one of these neighbors can be accepted or
rejected according to the probability distribution expressed
by equation (1). All accepted neighbors are finally inserted
in S which is returned as output of the vertical expansion
phase. Since the value of pm is “small”, there is a “small”
probability of having neutral neighbors in S at the end of
the vertical phase. The goal of the horizontal phase is ba-
sically to add some neutral neighbors to the individuals in
S. The neighbors which have been generated by the verti-
cal expansion phase will represent the “links” (or “bridges”)
between these neutral networks.

5.3 Horizontal Expansion
Let an incomplete neutral network be a sample IN of a neu-
tral network N such that at least one neutral neighbor j of
an individual i ∈ IN exists such that j /∈ IN . The hori-
zontal expansion phase of our sampling technique takes as
arguments the sample S returned by the vertical expansion
phase, the minimum admitted size of an incomplete neutral
network Imax and the maximum size of the sample that has
to be generated Smax. These last two measures are param-
eters of our sampling technique and have to be manually
defined. The horizontal phase returns a new sample S, pos-
sibly enriched by some individuals that form some neutral
networks. It can be defined by the pseudo-code in figure 9,
where rnd(0,1) is a random number generated with uniform
probability from the range (0, 1), iter is a variable contain-
ing the number of iterations that have been executed and
β(f(i), f(j), iter) is defined as follows:

β(f(i), f(j), iter) =

(
1 if f(i) = f(j),

k−iter otherwise

where k is a constant that has to be chosen in such a way
that probability β decreases “quickly enough” with itera-
tions (in this work, k = 4). Horizontal expansion stops
when the sample reaches the maximum size Smax or when
an iteration does not add any new individual. This phase

3If we set pm = 0 and f(P ) is equal to 0.5, then the al-
gorithm is likely to never terminate. Thus, a value of pm

larger than zero, even though “as small as possible”, has to
be used.



iter ← 1;
while (at least one incomplete neutral network exists

in S) and (|S| < Smax) do
N ← set of incomplete networks in S of size

less than Imax;

forall N ∈ N do
forall i ∈ N do

forall j ∈ V(i) do
if (rnd(0,1) < β(f(i), f(j), iter)) and

(|S| < Smax) then
S ← S ∪ {j};

endif
endforall

endforall
endforall
iter← iter + 1;

endwhile
return(S);

Figure 9: The pseudo-code describing the horizontal
expansion of our sampling methodology.

expands the size of neutral networks contained in the sam-
ple, by adding some new neutral neighbors to them. This is
very useful to study neutrality, but it has some bias: for in-
stance, a large neutral network could be represented in our
sample by many smaller ones. It is the case, for instance, of
the central network for the L{xor ; not} landscape. However,
in this particular case, this is not a problem, since we are
aware about the unicity of the central network because of
the theoretical results presented in section 3 (property (a)).
Those theoretical results should contribute to understand
the real shapes of the fitness landscapes under study.

6. ANALYSISOFA“REALISTIC”FITNESS
LANDSCAPEBYMEANSOFSAMPLING

The largest search spaces that we have been able to study
using our computational resources4 correspond to the even-4
parity problems using trees of a maximum depth equal to 8.
We indicate with L{xor ; not}

(4,8) and L{nand}
(4,8) the landscapes us-

ing {xor ; not} and {nand} as function sets respectively.
Both these spaces contain optimal solutions for the even-4
parity. Nevertheless, for L{nand}

(4,8) they are difficult to auto-

matically generate (either by a Metropolis algorithm or by
GP). Thus, in order to sample all the possible fitness values,
one of them has been manually added to the S sample that
has been given as input to the vertical expansion phase. For
the same reason, we have manually added to S an individual
with the worst possible fitness (fitness equal to 1). Table 2
summarizes the parameters used to generate the samples of
the two landscapes. Figure 10 monitors the fitness distri-
butions and shows that our samples have covered the whole
range of possible fitness values for the two landscapes.

In figure 11, we present the average neutrality ratios (r̄).

The ratios calculated over the sample of L{xor ; not}
(4,8) are not

affected by the presence of multiple 0.5-networks (caused
by the bias of our sampling methodology) instead of having
only one central network: all the ratios of these networks are
close to the “large” single one observed for the even-2 parity

4A PC 2.6 GHz with PentiumTM IV Processor, with 512MB
central memory and 30GB hard disk.
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Figure 10: Fitness distribution of the sampled
L{nand}

(4,8) (left part) and L{xor ; not}
(4,8) (right part).
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Figure 11: Scatterplot of the average neutral-
ity ratio in the sampled L{nand}

(4,8) (left part) and

L{xor ; not}
(4,8) (right part).

(figure 3). Furthermore, as for L{nand}
(2,3) (figure 3), also in

L{nand}
(4,8) the networks with good fitness values have a lower r̄

than ones with bad fitness values. The networks with good
fitness in L{nand}

(4,8) seem to be “less neutral” than ones with
bad fitness.

The scatterplot of the average ∆-fitness is shown in fi-
gure 12. In L{xor ; not}

(4,8) this scatterplot reflects the behaviour
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Figure 12: Scatterplot of average ∆-fitness in the
sampled L{nand}

(4,8) (left part) and L{xor ; not}
(4,8) (right part).

observed for the even-2 parity (figure 4), whereas in L{nand}
(4,8)

it varies over a more limited range of values. Our inter-
pretation is that to significantly improve a solution is more
difficult in L{nand}

(4,8) than in L{xor ; not}
(4,8) because the major-

ity of the mutations generate solutions with similar fitness.
Thus the optimum in L{nand}

(4,8) can be found by GP only ge-
nerating individuals of many different fitness values, i.e. GP
cannot perform “large jumps” as in L{xor ; not}

(4,8) .



{xor ; not} {nand}
pm for Modified Metropolis 0.005
pm for vertical expansion 0.00005
k for horizontal expansion 4
Minimal size of an incomplete network 2
Sample size of Modified Metropolis 10 3
L of vertical expansion 100 10
Size of generated sample 14589 30238
No. of networks contained into the sample 898 492

Table 2: Parameters used to sample the L{xor ; not}
(4,8) and L{nand}

(4,8) landscapes for the even-4 parity problem.

The scatterplot of NI and NW solutions (figures 13 and
14 respectively) present some differences with respect to the
ones observed for the landscape studied exhaustively (fi-

gures 5 and 6), expecially for L{nand}
(4,8) . Nevertheless, as in
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Figure 13: Scatterplot of NI solutions ratio in the
sampled L{nand}

(4,8) (left part) and L{xor ; not}
(4,8) (right part).
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Figure 14: Scatterplot of NW solutions ratio in the
sampled L{nand}

(4,8) (left part) and L{xor ; not}
(4,8) (right part).

L{nand}
(2,3) , networks with good fitness contain a large number

of NI solutions, which confirms that, in L{nand}
(4,8) , it is unlikely

to mutate individuals belonging to good fitness neutral net-
works generating better offspring.

Figures 15 and 16 show the mutual correlation between
NW and NI solutions ratios for L{xor ; not}

(4,8) and L{nand}
(4,8) re-

spectively. In the sample of L{xor ; not}
(4,8) , as in L{xor ; not}

(2,3) ,
the 0.5-networks are approximately disposed over the seg-
ment ((0, 1), (1, 0)). In the sample of L{nand}

(4,8) , as in L{nand}
(2,3) ,

the scatterplots of networks with fitness values smaller than
0.5 are approximately parallel to the y-axis and the ones of
networks with larger fitness values are approximately paral-
lel to the x-axis. As for L{nand}

(2,3) (section 4), also in L{nand}
(4,8)
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Figure 15: Scatterplot of NW vs. NI solutions ratio
in the sampled L{xor ; not}

(4,8) .
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networks with good fitness values have a large number of NI
solutions and thus it is unlikely to escape from them mutat-
ing its individuals, which is not the case for L{xor ; not}

(4,8) .



7. CONCLUSIONS AND FUTUREWORK
Some new characteristics of fitness landscapes related to
neutrality have been defined in this paper and studied for
different versions of the boolean parity problem. In parti-
cular, we have defined: (1) the average neutrality ratio of
a neutral network, which quantifies the amount of possi-
ble neutral mutations of its individuals; (2) the average ∆-
fitness of a neutral network, which quantifies the average fit-
ness gain achieved by mutating its individuals; (3) the non-
improvable solutions ratio, which quantifies the amount of
solutions that cannot generate better offspring in a neutral
network; (4) the “non-worsenable” solutions ratio, which
quantifies the amount of solutions that cannot generate worse
offspring in a neutral network. Studying measure (1), we
have observed that networks with bad fitness values seem to
be “more neutral” than networks with good fitness values if
{nand} is used as the set of operators, while this is not the
case if {xor ; not} is used. Studying measures (2), (3) and
(4), we have observed that it is unlikely to improve fitness
mutating individuals of neutral networks with good fitness
values if {nand} is used, which is not the case if we use
{xor ; not}. These results may help explain why the even
parity problem is easy for GP if we use {xor ; not} and
hard if we use {nand}. These results hold both for a “small”
fitness landscape that we have been able to study exhaus-
tively and for a “large” fitness landscape that we have sam-
pled using a new methodology defined in this paper. This
fact may suggest the suitability of our sampling methodol-
ogy for the boolean parity problems. Since our techniques
are general and can be used for any GP program space,
future work includes extending this kind of study to other
problems and possibly defining new measures of problem
hardness based on neutrality. Finally, studying neutrality
induced by inflate and deflate mutations separately may pro-
vide some useful information about bloat.

8. REFERENCES
[1] L. Altenberg. The evolution of evolvability in genetic

programming. In K. Kinnear, editor, Advances in
Genetic Programming, pages 47–74, Cambridge, MA,
1994. The MIT Press.

[2] P. Collard, M. Clergue, and M. Defoin-Platel.
Synthetic neutrality for artificial evolution. In
Artificial Evolution, pages 254–265, 1999.

[3] M. Collins. Counting solutions in reduced boolean
parity. In R. Poli et al, editor, GECCO 2004 Workshop
Proceedings, Seattle, Washington, USA, 2004.

[4] M. Collins. Finding needles in haystacks is harder with
neutrality. In H.-G. Beyer et al., editor, GECCO 2005:
Proceedings of the 2005 conference on Genetic and
evolutionary computation, volume 2, pages 1613–1618,
Washington DC, USA, 25-29 June 2005. ACM Press.

[5] N. Geard. A comparison of neutral landscapes – nk,
nkp and nkq. In Congress on Evolutionary
Computation (CEC’02), Honolulu, Hawaii, USA, 2002.
IEEE Press, Piscataway, NJ.

[6] M. Huynen. Exploring phenotype space through
neutral evolution, 1996.

[7] J. R. Koza. Genetic Programming. The MIT Press,
Cambridge, Massachusetts, 1992.

[8] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer, Berlin, Heidelberg, New York,
Berlin, 2002.

[9] Y. Pirola. Studio della neutralità degli spazi di ricerca
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