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The purpose of this paper is to present a probabilistic proof of the well-known result stating that the time needed by a continuous-time finite birth and death process for going from the left end to the right end of its state space is a sum of independent exponential variables whose parameters are the sign reversed eigenvalues of the underlying generator with a Dirichlet condition at the right end. The exponential variables appear as fastest strong quasi-stationary times for successive dual processes associated to the original absorbed process. As an aftermath, we get an interesting probabilistic representation of the time marginal laws of the process in terms of "local equilibria".

Introduction

The goal of this paper is to give a probabilistic derivation of the law of the time needed by an irreducible continuous time birth and death process on a finite path to go from the left end to the right end. It is known that this distribution is that of a sum of independent exponential variables of parameters the inverse absolute values of the eigenvalues of the underlying generator with a Dirichlet condition imposed at the right end. While this simple statement seems of probabilistic nature, its proof is indirect, via Laplace transforms. The main drawback of the latter method is that it prevents any probabilistic interpretation for the Dirichlet eigenvalues (except for the first one, which corresponds to the asymptotic rate to attain the right end), which is really the motivation for the following study.

More precisely, on the state space 0, N , with N ∈ N * , consider a birth and death process X ≔ (X t ) t≥0 starting from 0 and absorbed at N (this assumption is not restrictive, since we will not be concerned by what happens after the process has reached this point). The simplest way to specify its evolution is through a generator L acting on D, the space of functions defined on 0, N and vanishing at N . Thus

∀ f ∈ D, ∀ x ∈ 0, N -1 , L[f ](x) = b x (f (x + 1) -f (x)) + d x (f (x -1) -f (x))
where (b x ) 0≤x<N and (d x ) 0≤x<N are respectively the birth and death rates. Necessarily d 0 = 0 and we assume that all the other rates are positive, especially d N -1 > 0. To see L as an operator on D, we take by convention L[f ](N ) = 0. It is then well-known that -L is diagonalizable with positive, distinct eigenvalues 0

< λ 1 < λ 2 < • • • < λ N .
Coming back to the process X, we are interested in its absorption time

τ ≔ inf{t ≥ 0 : X t = N }
The next point is the start of our study (see for instance the book of Keilson [12], we give its history at the end of the introduction).

Proposition 1 Assume that X starts from 0, i.e. X 0 = 0. Then the law of τ coincides with that of T 1 + • • • + T N , where the T i , for 1 ≤ i ≤ N , are independent and respectively distributed as exponential laws with parameters λ i (i.e. with mean 1/λ i ).

The corresponding result for discrete time (where exponential laws are replaced by geometric laws for birth and death chains which are monotone and whose associated eigenvalues belong to [0, 1]) is used to build and interpret various stopping times for some irreducible birth and death chains on 0, N in Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF] and as the basic tool for proving a conjecture of Peres on the cut-off phenomena in Diaconis and Saloff-Coste [START_REF] Diaconis | Separation cut-offs for birth and death chains[END_REF].

As announced, our purpose is to give a probabilistic proof of the identity in law contained in Proposition 1, which can serve as a probabilistic interpretation of the Dirichlet eigenvalues λ i , for 1 ≤ i ≤ N .

To proceed, let L ′ be the generator on 0, N whose birth rates are given by (b ′ x ) 0≤x<N ≔ (λ N -x ) 0≤x<N and whose death rates all vanish. Of course, if τ ′ is the absorption time at N for a corresponding Markov process (X ′ t ) t≥0 starting from 0. The law of τ ′ is equal to that of T 1 + • • • + T N as in Proposition 1. Most of our efforts will consist in constructing a coupling (X ′ t , X t ) t≥0 of (X ′ t ) t≥0 and (X t ) t≥0 such that (X ′ t ) t≥0 and (X t ) t≥0 are intertwined in the following sense: there exists a Markovian kernel Λ from 0, N to 0, N , satisfying Λ(x, 0, x ) = 1 for all 0 ≤ x ≤ N , such that for any t ≥ 0, we have a.s.,

L(X t |X ′ s , 0 ≤ s ≤ t) = Λ(X ′ t , •)
where the l.h.s. stands for the conditional law of X t knowing the σ-field generated by (X ′ s ) 0≤s≤t . Let us check rapidly that this property implies that the absorption time τ ′ of (X ′ t ) t≥0 at N is a.s. equal to the absorption time τ of (X t ) t≥0 at N . The equality in law τ = τ ′ follows, so Proposition 1 is proved. Consider for any function f defined on 0, N ,

E[f (X t )] = E[Λ(X ′ t , f )]
so letting t go to infinity, we get that f (N ) = Λ(N, f ) (because both X ′ t and X t are a.s. convergent to N ), which means that Λ(N, •) = δ N . Then using for any t ≥ 0 the relation

P[τ ′ ≤ t, τ ≤ t] = E[½ τ ′ ≤t δ N (X t )] = E[½ τ ′ ≤t E[δ N (X t )|X ′ s , 0 ≤ s ≤ t]] = E[½ τ ′ ≤t Λ(X ′ t , N )] = E[½ τ ′ ≤t Λ(N, N )] = P[τ ′ ≤ t]
it must be that τ ≤ τ ′ a.s. Next for any t ≥ 0 we also have

P[τ ′ > t, τ ≤ t] = E[½ τ ′ >t Λ(X ′ t , N )] = 0
since by our assumption on Λ, we have Λ(x, N ) = 0 for all 0 ≤ x < N . It follows that τ = τ ′ a.s.

The construction of the coupling is quite involved. We will need N + 1 intermediate processes (X (i) t ) t≥0 , for 0 ≤ i ≤ N , which will be appropriately intertwined, generalizing the previous relation, since we will have X (0) = X and X (N ) = X ′ (in law). The probabilistic interpretation of Proposition 1 is encapsulated in the construction of these processes and their intertwining links. In particular the exponential times will appear as exit times under some "initial" quasi-stationary distributions (and the eigenvalues λ i , for 1 ≤ i ≤ N , will be interpreted as first Dirichlet eigenvalues, or exit rates, of the corresponding subdomains). Heuristically the picture is the following: starting from 0, X spends a time T N (distributed as an exponential of parameter λ N , as above) before reaching a "local equilibrium". Next it needs a time T N -1 to go to another local equilibrium etc. Finally it takes a time T 1 to escape from the (N -1) th local equilibrium to be absorbed in N .

This point of view can be extended to times to stationarity. Indeed, let Y be an irreducible birth and death process on 0, N and denote by π its reversible probability. A strong stationary time S is a randomized stopping time such the law of Y S is π and such that S and Y S are independent. Among all such times, some are stochastically smaller or equal to all the other ones and they are called fastest times to stationarity. Their distribution is directly related to the separation distance between the time marginal laws and the equilibrium law. For more information on this subject, we refer to the articles of Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF] and Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] and to the bibliography contained therein. To describe these times in the above continuous time setting when Y starts from 0, Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] introduced a dual birth and death process Y * also starting from 0, whose absorption time in N is a time to stationarity for Y (once these processes have been coupled through an appropriate intertwining relation). This procedure followed similar ideas developed in Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF] for discrete time chains. Since the eigenvalues of the generator of Y (except for the trivial eigenvalue 0) are the same as the eigenvalues of the generator of Y * with a Dirichlet condition at N , Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] deduced via Proposition 1 that the law of S is the convolution of exponential distributions of parameters the non-zero eigenvalues of the inverse generator of Y . We will revisit this result, which enters in the previous heuristic picture, except that in the last step, Y goes from the (N -1) th local equilibrium to the global equilibrium π within time T 1 .

The case of birth and death processes starting from 0 is quite restrictive, but we see it as a step in the direction of a better probabilistic understanding of the relation between the eigenvalues of the generator and the convergence to equilibrium. Matthews [START_REF] Matthews | Strong stationary times and eigenvalues[END_REF] also provides a contribution in this direction. Indeed, note that even the analogous situation in discrete time remains puzzling when the transition matrix admits negative eigenvalues (some mysterious Bernoulli distributions appear, see for instance formula (4.23) in Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF]). We still hope that a probabilistic explanation can be found.

The notion of intertwining appears in an article of Rogers and Pitman [START_REF] Rogers | Markov functions[END_REF]. For other examples of intertwined Markov semi-groups, see the article of Carmona, Petit and Yor [START_REF] Carmona | Beta-gamma random variables and intertwining relations between certain Markov processes[END_REF]. For an equivalent of Proposition 1 for one-dimensional diffusions, see Kent [START_REF] Kent | The spectral decomposition of a diffusion hitting time[END_REF].

The outline of this paper is as follows: in the next section we will recover the construction of the dual process Y * in a more straightforward way than in Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF], by adopting a continuous space inspired formalism for birth and death processes. It is particularly well-adapted to deal with one-dimensional diffusions, but we will not develop the corresponding theory here. In section 3 we will extend these considerations from times to stationarity to times to quasi-stationarity, which will enable us to construct a first dual process X (1) of X (0) = X. In section 4, the iteration of this procedure will lead to the whole familly X (i) , for 1 ≤ i ≤ N , and especially to X ′ = X (N ) . We will discuss the notion of local equilibrium, which is the key to our proof of Proposition 1, but which also leads to a probabilistic representation of the time marginal laws of X. The last section will deal with two illustrative examples.

We have indicated by an empty box the end of the remarks, which should all be skipped at a first reading.

Historical Note:

The earliest appearance of Proposition 1 that we know is in Karlin and McGregor [START_REF] Karlin | Coincidence properties of birth and death processes[END_REF], Equation 45(thanks to Laurent Saloff-Coste for this reference). Their proof is via the orthogonal polynomials associated to the birth and death process. They give an expression for the Laplace transform of the first absorption time which is equivalent to the probabilistic formulation of Proposition 1. The result was used by Keilson [11] who gives an independent proof using complex variables. The topic is developed further in chapter 5 of Keilson [12]. In all these proofs, the exponential variables appear through analysis, without probabilistic motivation. A different proof of Proposition 1 follows from Kent [START_REF] Keilson | Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes[END_REF]. Briefly, Kent considers the first hitting time of N for an irreducible birth and death process started at 0. Let S i , for i ∈ 0, N -1 , be the time spent in state i before N is reached. Kent shows that the vector S = (S 0 , ..., S N -1 ) has the law of Y + Z, with Y and Z independent vectors, distributed as coordinate-wise squares of independent Gaussian vectors V and W , having mean 0 and covariance matrix Σ, with Σ -1 ≔ 2Q. Here Q is the upper N × N block of the matrix associated to L symmetrized by the stationary distribution. In particular, for nonnegative

s i , i ∈ 0, N -1 , E   exp   i∈ 0,N -1 s i S i     = det(Q) det(Q + S)
with S a diagonal matrix with s i in position (i, i). Notice that if all the s i are equal, the right side is invariant under the conjugacy mapping Q → A -1 QA, for any invertible matrix A, so this right side can be taken with Q replaced by a diagonal matrix containing the eigenvalues of the original Q. Since S 0 + • • • + S N -1 is the time until N is reached, we have another proof of Proposition 1. Kent [START_REF] Kent | The appearance of a multivariate exponential distribution in sojourn times for birth-death and diffusion processes[END_REF] passes to the limit and uses the result to give a proof of the Ray-Knight theorem expressing the local time of Brownian motion as the sum of two independent Bessel processes.

2 Times to stationarity for birth and death processes

We will revisit here the reduction to absorption times of times to stationarity for birth and death processes starting from 0. The main point is to introduce a differential formalism which simplifies the approach used by Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] to construct dual processes.

We still consider V ≔ 0, N as state space, but it is also convenient to introduce V -≔ -1, N , V + ≔ 0, N + 1 and V ≔ -1, N + 1 . The spaces F, F -, F + and F respectively stand for the collections of real valued functions defined on the previous sets. We denote by ∂ + the operator from F to F -given by

∀ f ∈ F, ∀ x ∈ V -, ∂ + f (x) ≔ f (x + 1) -f (x)
By restriction, this operator can also be seen to go from F + to F. In a symmetrical way, we consider

∂ -: F → F + (or from F -to F), ∀ f ∈ F, ∀ x ∈ V + , ∂ -f (x) ≔ f (x -1) -f (x)
Next let L be an irreducible birth and death generator on V . We denote by (b x ) 0≤x≤N and (d x ) 0≤x≤N respectively its birth and death rates, which are positive, except for

d 0 = b N = 0. Throughout, let ∀ x ∈ V, π(x) ≔ Z -1 1≤y≤x b y-1 d y
(where Z is the normalizing constant) be the stationary distribution for L. Let u ∈ F and v ∈ F - be the functions defined by

∀ x ∈ V, u(x) ≔ 1 π(x) ∀ x ∈ V -, v(x) ≔ π(x)L(x, x + 1) 
(in particular v(-1) = v(N ) = 0). Then the generator L can be rewritten in the form

L = -u∂ -v∂ + (1) 
In formulas such as (1), the functions u, v act by multiplication, so uf (x) = u(x)f (x) for any x in the underlying set. More rigorously, the operator on the right side of (1) goes from F to F, but it happens that for f ∈ F , -u∂ -v∂ + f does not depend on the values f (-1) and f (N + 1), so there is no ambiguity in interpreting -u∂ -v∂ + as an operator from F to itself.

Remark 2 Formula (1) is reminiscent of the description of generators L associated to onedimensional diffusions with Neumann boundary conditions (without killing),

L = d dm d ds
where m and s are respectively called the speed measure and the scale function (see for instance Theorem 3.12 of the book [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] of Revuz and Yor).

The measure m corresponds to the reversing measure of the diffusion, so that 1/u plays the role of m. But 1/v cannot be interpreted as a scale function, because (1/v(X t )) t≥0 is not a local martingale up to the time X t reaches either 0 or N . By analogy with the diffusion situation, say that s ∈ F is a scale function for L if s is strictly monotone and L[s] = 0 on V ≔ 1, N -1 . The vector space {f ∈ F : L[f ] = 0 on V } is of dimension 2 (because the functions f belonging to it are iteratively determined by their values f (0) and f (1). Also note that the recurrence relation shows that such functions are necessarily monotone) and contains ½. Thus a scale function is determined up to a (one-to-one) affine transformation. One way to see a scale function for L, is to consider a more general expression for this generator:

L = -u∂ -v∂ + w (2)
where a priori, u ∈ F, v ∈ F -and w ∈ F . As in (1), the operator on the right side of (2) goes from F to F, but we will now impose conditions so that it can be reinterpreted as an operator from F to itself. First, the function w cannot vanish on V , otherwise the value of f ∈ F on a point where w vanishes would not intervene in the definition of L[f ]. Let us denote by s the restriction of 1/w on V . Then, considering u∂ -v∂ + w as an operator from F to F, L[s] = 0 on V . So if s is not constant, it is a scale function. Conversely, let us check that if s is a positive scale function, then 1/s can be uniquely extended into a function w ∈ F and we can find u ∈ F and v ∈ F - (unique up to appropriate factors) so that (2) holds. We begin by an analysis. The function u cannot vanish, otherwise L would not be irreducible. This implies that the equality L[½] = 0 is equivalent to

∀ x ∈ V, v(x -1)(w(x) -w(x -1)) = v(x)(w(x + 1) -w(x)) (3) 
Using these relations, expand -u∂ -v∂ + wf on a test function f ∈ F. By comparison with L[f ], we get that for any x ∈ V ,

b x = u(x)v(x -1)w(x -1) d x = u(x)v(x)w(x + 1) (4) 
Coming back to (3), since w is strictly monotone on V , if v was to vanish on some point of V -, one would be led to the conclusion that v vanishes on the whole segment 0, N -1 . But as soon as N ≥ 1, by the last equation of ( 4) for x = 1, we would get that d 1 = 0, which is forbidden by our irreducibility assumption. It follows that v cannot vanish on V -. In the same way, we cannot have w(-1) = w(0) or w(N + 1) = w(N ). So Equation (3) determines v from w and one value of v, say v(0) > 0 (furthermore, v remains positive on 0, N -1 by ( 3)). Since d 0 = b N = 0, d 0 = u(0)v(-1)w(-1) and d N = u(N )V (N )w(N + 1), we must choose w(-1) = w(N + 1) = 0 (and by consequence, the r.h.s. of (2) can be interpreted as an operator from F to itself). Next u is entirely determined by these equations, v and w. To see there exists such a function u, we must check that for any x ∈ V , we have

b x v(x)w(x + 1) = d x v(x -1)w(x -1)
which is equivalent to (with the convention 0

• ∞ = 0) b x 1 w(x) - 1 w(x + 1) = d x 1 w(x -1) - 1 w(x)
This equality is ensured by the fact that the restriction of 1/w to V is a scale function. By symmetry, similar results hold if the role of ∂ -and ∂ + are exchanged.

One feature of the formulation (1) (or more generally of ( 2)) is that it makes it easy to find a "first order" difference operator D (with a "0-order" term) and a birth and death generator L * absorbed in N such that

LD = DL * (5) 
which is our next goal:

Lemma 3 Define D ≔ -1 π ∂ -H and L * ≔ -v H ∂ + 1 π ∂ -H
, where the probability π has been extended to V by π(-1) = 0 = π(N + 1) and where H is the cumulative function of π:

∀ x ∈ V , H(x) ≔ 0≤y≤x π(y)
A priori, D : F -→ F and L * : F → F, but as before these operators can be naturally interpreted as going from F to itself and the dual commutative relation ( 5) is satisfied.

Proof

For f ∈ F -, we compute that

Df (0) = - 1 π(0) ∂ -Hf (0) = - 1 π(0) (H(-1)f (-1) -H(0)f (0)) = f (0)
so Df depends only on the restriction of f to V . Similarly, for f ∈ F, we have

L * f (0) = - v(0) H(0) ∂ -Hf (1) π(1) - ∂ -Hf (0) π(0) = -L(0, 1) H(0)f (0) -H(1)f (1) π(1) - H(-1)f (-1) -H(0)f (0) π(0) = L(0, 1) π(0) π(1) + 1 (f (1) -f (0))
and L * f (N ) = 0, because v(N ) = 0. Thus L * can equally be seen as an operator from F to itself. Furthermore, since L * f (N ) always vanishes, any Markov process generated by L * (for instance in the sense of the corresponding martingale problem) is absorbed at N . Indeed, we check that L * is a birth and death process on V with rates given for any x ∈ V by

b * (x) = v(x)H(x + 1) H(x)π(x + 1) = d(x + 1) H(x + 1) H(x) d * (x) = v(x)H(x -1) H(x)π(x) = b(x) H(x -1) H(x)
Next the formal verification of ( 5) is immediate:

LD = 1 π ∂ -v∂ + 1 π ∂ -H DL * = 1 π ∂ -H v H ∂ + 1 π ∂ -H = 1 π ∂ -v∂ + 1 π ∂ -H
The operator D : F → F is in fact one-to-one. To see this, let us compute its inverse Λ. Let g ∈ F be given, we want to find f ∈ F such that Df = g, namely

∀ x ∈ V, Df (x) = g(x) ⇐⇒ ∀ x ∈ V, ∂ -Hf (x) = -π(x)g(x) ⇐⇒ f (x) = 1 H(x) 0≤y≤x π(x)g(x)
We recover the link Λ considered by Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] in the above case of a birth and death process starting from 0 (or starting from a distribution m 0 such that m 0 /π is nonincreasing, see below):

∀ x ∈ V, Λ(x, g) ≔ 1 H(x) π(½ 0,x g)
It is clear from this expression that Λ can be interpreted as a Markov kernel going from V to V and satisfying the property alluded to in the introduction. Furthermore, we deduce from Lemma 3 that

ΛL = L * Λ (6)
The same relation was deduced by Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF], using the approach of Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF].

Let us denote by (P t ) t≥0 and (P * t ) t≥0 the semigroups associated to L and L * , i.e.

∀ t ≥ 0, P t ≔ exp(tL) P * t ≔ exp(tL * )
¿From [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF], they also satisfy the intertwining relation

∀ t ≥ 0, ΛP t = P * t Λ (7) 
Let m 0 (respectively m * 0 ) be a probability on V . There exists a Markov process (X t ) t≥0 (resp. (X * t ) t≥0 ) with cdlg (right continuous with left hand limits) trajectories, whose initial law L(X 0 ) is m 0 (resp. L(X * 0 ) is m * 0 ) and whose generator is L (resp. L * ). Furthermore uniqueness of these processes holds in law. Assume that

m 0 = m * 0 Λ (8) 
then [START_REF] Diaconis | Separation cut-offs for birth and death chains[END_REF] implies that for any t ≥ 0, we have L(X t ) = L(X * t )Λ. But one can go further, since Fill showed in Theorem 2 of [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] that under the assumptions ( 6) and ( 8), there exists a strong Markovian coupling of (X t ) t≥0 and (X * t ) t≥0 , still denoted by (X t , X * t ) t≥0 , such that

L(X t |X * t ) = Λ(X * t , •) (9) 
where X * t stands for the σ-field generated by (X * s ) 0≤s≤t . Next we define

τ * ≔ inf{t ≥ 0 : X * t = N }
Under the hypotheses ( 6) and ( 8), Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] showed that τ * is a strong stationary time for X. Let us verify this assertion by using only [START_REF] Kac | Random walk and the theory of Brownian motion[END_REF]. We begin by extending this relation to any a.s. finite stopping time T * relative to the filtration (X * t ) t≥0 , namely we have

L(X T * |X * T * ) = Λ(X * T * , •) (10) 
(recall that X * T * is the σ-field generated by (X * T * ∧t ) t≥0 ). We first consider the usual approximation T * n ≔ ⌈nT * ⌉/n of T * , for n ∈ N * , where ⌈t⌉ is the smallest integer larger (or equal) than t. Its advantages are, on one hand that is also a stopping time with respect to (X * t ) t≥0 , and on the other hand that it takes only a countable number of values, the m/n for m ∈ N. Let f ∈ F and G be a bounded mesurable functional on the set of cdlg trajectories from R + to V . This path space is endowed with the σ-field generated by the coordinates, coinciding with the Borel σ-field associated to the Skorokhod topology, which is Polish, so we are ensured of the existence of regular conditional probabilities. We compute that

E[f (X T * n )G((X * T * n ∧t ) t≥0 )] = m∈N E[f (X T * n )G((X * T * n ∧t ) t≥0 )½ T * n =m/n ] = m∈N E[E[f (X m/n )|X * m/n ]G((X * (m/n)∧t ) t≥0 )½ T * n =m/n ] = m∈N E[Λ[f ](X * m/n )G((X * (m/n)∧t ) t≥0 )½ T * n =m/n ] = E[Λ[f ](X * T * n )G((X * T * n ∧t ) t≥0 )]
The validity of these relations for any f and G as above is equivalent to [START_REF] Karlin | Coincidence properties of birth and death processes[END_REF], where T * is replaced by

T * n . But we remark that X T * n , X * T *
n and (X * T * n ∧t ) t≥0 are a.s. convergent to X T * , X * T * and (X * T * ∧t ) t≥0 , when n goes to infinity, so for a continuous function G, we get

E[f (X T * )G((X * T * ∧t ) t≥0 )] = E[Λ[f ](X * T * )G((X * T * ∧t ) t≥0 )]
and this is sufficient to be able to conclude [START_REF] Karlin | Coincidence properties of birth and death processes[END_REF].

We can now check that τ * and X τ * are independent and that X τ * is distributed as π. Given f ∈ F and g a bounded mesurable mapping from R + to R, since τ * is an a.s. finite stopping time which is measurable with respect to X * τ * , we compute that

E[f (X τ * )g(τ * )] = E[E[f (X τ * )|X * τ * ]g(τ * )] = E[Λ(f )(X * τ * )g(τ * )] = Λ(f )(N )E[g(τ * )] = π(f )E[g(τ * )]
which is the announced result (the identity Λ(N, •) = π comes from the definition of Λ but as in the introduction, it could be deduced from ( 9) by letting t going to infinity). It remains to check that τ * is a randomized stopping time for (X t ) t≥0 , namely that it is a stopping time with respect to a filtration of the kind (σ(U, X s : 0 ≤ s ≤ t)) t≥0 , where U is "random noise" independent from X ≔ (X t ) t≥0 . This is equivalent to

L(τ |X τ * ) = L(τ |X) (where X τ * ≔ (X t∧τ * ) t≥0
), which itself means that for any bounded mesurable function g : R + → R and any bounded mesurable functional G on the set of cdlg trajectories from R + to V , we have

E[E[g(τ * )|X τ * ]G(X)] = E[g(τ * )G(X)] (11) 
Via the monotone class theorem, we can restrict to functions G of the form

G(X) = G 1 (X τ * )G 2 (X τ * ,+ ) (12)
where X τ * ,+ ≔ (X τ * +t ) t≥0 . Using the strong Markov property of (X t , X * t ) t≥0 , we compute that

E[g(τ * )G 1 (X τ * )G 2 (X τ * ,+ )] = E[g(τ * )G 1 (X τ * )E[G 2 (X τ * ,+ )|(X t , X * t ) 0≤t≤τ * ]] = E[g(τ * )G 1 (X τ * )E[G 2 (X τ * ,+ )|(X τ * , X * τ * )]] = E[g(τ * )G 1 (X τ * )E[G 2 (X τ * ,+ )|(X τ * , N )]] = E[g(τ * )G 1 (X τ * )E[G 2 (X τ * ,+ )|X τ * ]] We note that the random variable G 1 (X τ * )E[G 2 (X τ * ,+ )|X τ * ]
is measurable with respect to X τ * , so the last expectation can be rewritten as

E[E[g(τ * )|X τ * ]G 1 (X τ * )E[G 2 (X τ * ,+ )|X τ * ]] = E[E[g(τ * )|X τ * ]G 1 (X τ * )E[G 2 (X τ * ,+ )|(X t , X * t ) 0≤t≤τ * ]] = E[E[g(τ * )|X τ * ]G 1 (X τ * )G 2 (X τ * ,+ )]
This is just [START_REF] Keilson | Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes[END_REF] when G is given by (12). It follows a posteriori that in the above expressions we

could have replaced E[G 2 (X τ * ,+ )|X τ * ] by E[G 2 (X τ * ,+ )|X τ * ],
since the strong Markov property is satisfied by X with respect to randomized stopping times.

Remark 4 Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] (see his equation (2.12)) noticed another property of his coupling, which can be rewritten (again through the monotone class theorem) as

∀ t ≥ 0, L((X t+s ) s≥0 |X t , X * t ) = L((X t+s ) s≥0 |X t ) (13) 
(note that the l.h.s also coincides with L((

X t+s ) s≥0 |X u , X * u : 0 ≤ u ≤ t)).
Similarly to what we have done before, this identity can be extended to stopping times with respect to the filtration (X * t ) t≥0 . Then the above computation shows that all such stopping times are indeed randomized stopping times for X. We did not need [START_REF] Kent | The spectral decomposition of a diffusion hitting time[END_REF] to get this property for τ * , because it has a particular feature: X * τ * is deterministic. We remark that among all stopping times for X * , τ * is the smallest one such that X τ * is distributed as π. Indeed, consider such an a.s. finite stopping time T * , since we have L(

X T * ) = L(X * T * )Λ and that Λ(x, N ) = 0 for x ∈ 0, N -1 , it appears that L(X T * ) = π implies L(X * T * ) = δ N .
Of course the fact that τ * is a fastest time to stationarity is a priori asking for more: namely that τ * is stochastically smaller than all other strong stationary times. We will not prove this and refer again to Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF], because we don't want to enter here into the relationship between strong stationary times and separation distance.

To finish this section, let us give a heuristic hint at why one would like to find D and L * such that (5) is satisfied. It is better to work with semigroups acting on densities rather than on functions (this point of view will also implicitly underlie the method of next section). Let ( P * t ) t≥0 be the semigroup (positive but non-Markovian) defined by

∀ t ≥ 0, ∀ f, g ∈ F, π(f P * t [g]) = π(g P * t [f ])
The probabilistic interpretation is that if L(X * 0 ) admits f as density with respect to π, then P * t [f ] is the density of L(X * t ) with respect to π. Using the same definition with (P t ) t≥0 , we find that ( P t ) t≥0 = (P t ) t≥0 , because π is reversible with respect to this semigroup. Since we have

∀ t ≥ 0, P t D = DP * t
we also get that

∀ t ≥ 0, D P t = P * t D (14) 
with D ≔ -H π ∂ + (with the convention that Df (N ) = -Hf π (N ) for any f ∈ F), which is a "first order" difference operator without "0-order" term. Denote again m 0 = L(X 0 ), m * 0 = L(X * 0 ) and assume that m 0 = m * 0 Λ, X and X * are intertwined as before. Then the relation ( 14) can be extended to stopping times T * with respect to X * :

D dL(X T * ) dπ = dL(X * T * ) dπ ( 15 
)
where d • /dπ denotes the Radon-Nikodym derivative with respect to π. This can be considered as an extension of ( 14), because m * 0 can also be recognized as the measure admitting D dL(X 0 ) dπ as density with respect to π: for any f ∈ F, we have

π D dm 0 dπ f = π dm 0 dπ D[f ] = m 0 (Df ) = m * 0 (f )
Notice that D[dm 0 /dπ] is nonnegative if and only if dm 0 /dπ is nonincreasing, which is also equivalent to the fact that m 0 can be written as m * 0 Λ, for some probability m * 0 on V . In view of the expression of D, D dL(X T * ) dπ = 0 on 0, N -1 is equivalent to X T * being distributed as π, namely that T * is a stationary time (at least if we know a priori that it is a randomized stopping time for X, see the above remark). By [START_REF] Lovász | Mixing times[END_REF], this is trivially satisfied if we take T * = τ * . Next we remark that ( 14) is equivalent to

D L = L * D
where L * is the (non-Markovian) generator of ( P * t ) t≥0 and L = L by reversibility. Coming back to functions, the last identity is equivalent to [START_REF] Diaconis | Group representations in probability and statistics[END_REF], and this serves as the promised justification. We believe that this approach should be investigated more thoroughly, first for general initial condition m 0 .

The passage from operators on functions to operators on densities is formally very simple if we consider densities with respect to the counting measure λ on V . Indeed, ∂ + and ∂ -are adjoint with respect to λ if we put an appropriate Dirichlet boundary condition: consider D, the subspace of functions f ∈ F satisfying f (-1) = 0 and f (N + 1) = 0. Then we have

∀ f, g ∈ D, λ(f ∂ -g) = λ(g∂ + f )
and thus with the previous tilded notations,

∂ -= 1 π ∂ + π ∂ + = 1 π ∂ -π
interpreted as operators on domain D. That is why in the description of D we had to put a Dirichlet condition at the right end of V .

In particular if m 0 = δ 0 , ( 8) is satisfied with m * 0 = δ 0 . In this case Proposition 1 shows that τ * is distributed as a convolution of exponential distributions of parameters the eigenvalues (λ * i ) 1≤i≤N of -L * seen as an operator from {f ∈ F : f (N ) = 0} to itself. By Equation ( 6), these eigenvalues coincide with those of the restriction of -L on {f ∈ F : Λ

[f ](N ) = 0} = {f ∈ F : π(f ) = 0}, i.e.
with the positive eigenvalues of -L.

Times to quasi-stationarity

After having introduced the notion of strong quasi-stationary times, we will extend the dual construction of the previous section to them. To do so, our first step will work in the opposite direction: we shall extract a recurrent Markov process from an absorbing one.

For simplicity, we will be working in the setting of birth and death processes starting from 0 and absorbed at N . ¿From now on, L will be a generator as in the introduction, going from D(L) ≔ {f ∈ F : f (N ) = 0} into itself. Again X ≔ (X t ) t≥0 designates any Markov process on V admitting L as generator. The distribution of X is determined by its initial law L(X 0 ). We are mainly concerned by the case L(X 0 ) = δ 0 , but there is another interesting initial law, the quasi-stationary law ρ. To define it, let L be the adjoint operator of L with respect to λ, the counting measure on 0, N -1 :

∀ f, g ∈ D(L), λ(f Lg) = λ(g Lf )
The operator -L has the same spectrum λ 1 < λ 2 < • • • < λ N as -L. So let ψ be an eigenfunction of -L associated to λ 1 . A standard application of Perron-Frobenius theorem shows that ψ has a constant (strict) sign on 0, N -1 , so ρ ≔ ψ/λ(ψ) is a probability which does not vanish on 0, N -1 .

The next result is classical (see for instance the book [START_REF] Aldous | Reversible Markov chains and random walks on graphs[END_REF] of Aldous and Fill), but it will be very important for us, since all of our exponential variables will be created from it, so we include a proof.

Lemma 5 Assume that L(X 0 ) = ρ, then

τ ≔ inf{t ≥ 0 : X t = N }
is distributed as an exponential variable of parameter λ 1 .

Proof

Let (P t ) t≥0 ≔ (exp(tL)) t≥0 (respectively ( P t ) t≥0 ≔ (exp(t L)) t≥0 ) be the semigroup associated to L (resp. L). For any f ∈ D(L), we have

∀ t ≥ 0, ∀ x ∈ V, P t [f ](x) = E x [f (X t )]
where the subscript x indicates that X starts from x. So, if m 0 = L(X 0 ) is such that m 0 (N ) = 0, we get for any t ≥ 0,

E[f (X t )] = x∈ 0,N -1 m 0 (x)E x [f (X t )] = λ(m 0 P t [f ]) = λ( P t [m 0 ]f ) But if m 0 = ρ, we have by definition P t [ρ] = exp(-λ 1 t)ρ, so E[f (X t )] = exp(-λ 1 t)λ(ρf ) = exp(-λ 1 t)ρ(f ) (16) 
In particular for f = ½ 0,N -1 and any t ≥ 0,

P[τ > t] = E[½ 0,N -1 (X t )] = exp(-λ 1 t)ρ( 0, N -1 ) = exp(-λ 1 t)
Since this is true for any t ≥ 0, it follows that τ is distributed as an exponential variable of parameter λ 1 .

¿From [START_REF] Matthews | Strong stationary times and eigenvalues[END_REF], we deduce that for any t ≥ 0,

L(X t ) = exp(-λ 1 t)ρ + (1 -exp(-λ 1 t))δ N if L(X 0 ) = ρ.
This justifies the name of quasi-stationary distribution for ρ. Seneta [START_REF] Seneta | Quasi-stationary distributions and time-reversion in genetics. (With discussion)[END_REF] is a useful reference for quasi-stationarity.

Coming back to the case where X starts from 0, we say that an a.s. finite randomized stopping time S for X is a strong quasi-stationary time, if S and X S are independent and X S is distributed as ρ (note in particular that we must have S < τ ). It is furthermore called a fastest time to quasi-stationarity if it is stochastically smaller than any other strong quasi-stationary time.

Our next goal is to construct a dual process X * on 0, N -1 , whose absorption time in N -1 is a strong quasi-stationary time (and even a fastest time to quasi-stationarity as it will appear later on, see Remark 14) for X, once X and X * are appropriately intertwined. To continue, we first need to deduce from L an irreducible generator L on 0, N -1 .

Lemma 6 Let ϕ 1 be an eigenfunction of L associated to -λ 1 and define the operator

L : F( 0, N -1 ) → F( 0, N -1 ) f → L[ϕ 1 f ] + λ 1 ϕ 1 f
where F( 0, N -1 ) is the vector space of real functions defined on 0, N -1 (in the above formula, we also naturally identify it with D(L), extending functions by 0 at N , or in the reverse way, taking restriction to 0, N -1 ). Then L is an irreducible birth and death generator whose reversible probability is ρ.

Proof

If we identify L with its matrix ( L(x, y)) x,y∈ 0,N -1 , it follows from our assumption on the birth and death rates of L that

∀ x, y ∈ 0, N -1 , |x -y| = 1 ⇒ L(x, y) > 0 |x -y| > 1 ⇒ L(x, y) = 0
So to check that L is an irreducible birth and death generator L on 0, N -1 , it is sufficient to verify that L[½ 0,N -1 ] = 0 on 0, N -1 , but this is a direct consequence of the definition of ϕ 1 .

The probability ρ will be invariant for L, if and only if for any f ∈ F( 0, N -1 ), we have ρ( L[f ]) = 0, and we compute

ρ( L[f ]) = ρ(L[ϕ 1 f ]) + λ 1 ρ(ϕ 1 f ) = -λ 1 ρ(ϕ 1 f ) + λ 1 ρ(ϕ 1 f ) = 0
The second equality comes from the fact that for any g ∈ D(L) and any t ≥ 0, we have ρ(P t (g)) = exp(-λ 1 t)ρ(g), so by differentiating at t = 0, we get ρ(L[g]) = -λ 1 ρ(g).

The probability ρ is indeed reversible, as it is always the case for an invariant measure associated to a finite birth and death generator.

As a consequence, we obtain the following expression for L.

Lemma 7 There exists a unique function v ∈ F( -1, N -1 such that seen as an operator on F( 0, N -1 ), L can be rewritten

L = -λ 1 - 1 ρ ∂ -v∂ + 1 ϕ 1
where 1/ρ is seen as an element of F( 0, N -1 ) and 1/ϕ 1 has been extended as a function from F( -1, N ) by making it vanish on {-1, N }. The latter convention is not really necessary, because we must have v(-1) = v(N -1) = 0. Furthermore v is positive on 0, N -2 .

Proof

It follows from (1) and the previous lemma that there exists a unique function v ∈ F( -1, N -1 ) such that

L = - 1 ρ ∂ -v∂ +
and v satisfies the properties stated above. Transposing this expression to L, we get the claimed result.

The advantage of this formulation is that it makes it easy to find a "first order" difference operator D and a "second order" difference operator L * such that a dual commutation relation is satisfied:

Lemma 8 Define D ≔ -1 ρ ∂ -R and L * ≔ -λ 1 -v R ∂ + 1 ϕ 1 ρ ∂ -R,
where R is the cumulative function of ρ:

∀ x ∈ -1, N , R(x) ≔ 0≤y≤x ρ(y)
Since v(N -1) = 0, the function 1 ϕ 1 ρ need not be defined at N and the operators D : F( -1, N -1 ) → F( 0, N -1 ) and L * : F( -1, N ) → F( 0, N -1 ), can be naturally interpreted as going from F( 0, N -1 ) to itself. Then we have

LD = DL * (17) 
Furthermore, the restriction of

L * to D N -1 ≔ {f ∈ F( 0, N -1 ) : f (N -1) = 0} is a Markov generator absorbed at N -1.

Proof

The first assertions are immediate to check. Concerning [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF], it is equivalent to verify that

1 ρ ∂ -v∂ + 1 ϕ 1 • D = D • v R ∂ + 1 ϕ 1 ρ ∂ -R
This is true, because both sides are equal to

1 ρ ∂ -v∂ + 1 ϕ 1 ρ ∂ -R
So the only point which needs some care is the last sentence of Lemma 8. First the image of

D N -1 by L * is included in D N -1 : let f ∈ D N -1 , we compute that L * [f ](N -1) = -λ 1 f (N -1) - v(N -1) R(N -1) ∂ + 1 ϕ 1 ρ ∂ -Rf (N -1) = 0 because v(N -1) = 0.
Next by definition of L * and the fact that R, ϕ 1 and ρ (respectively v) are positive on 0, N -1 (resp. 0, N -2 ) we already see that

∀ x, y ∈ 0, N -1 , |x -y| = 1 ⇒ L * (x, y) > 0 |x -y| > 1 ⇒ L * (x, y) = 0
so to conclude that the restriction of L * to D N -1 is a Markov generator, it remains to check that L * [½ 0,N -1 ] = 0 on 0, N -2 . But using that ∂ -R = -ρ on 0, N -1 , this property can be rewritten

∀ x ∈ 0, N -2 , v R ∂ + 1 ϕ 1 ρ ∂ -R (x) = -λ 1 ⇐⇒ ∀ x ∈ 0, N -2 , v R ∂ + 1 ϕ 1 (x) = λ 1 ⇐⇒ ∀ x ∈ 0, N -2 , v(x) ∂ + 1 ϕ 1 (x) = λ 1 R(x)
We note that the last equality is satisfied if we consider it at x = -1, both sides being equal to zero. So taking differences with respect to ∂ -, we get

∀ x ∈ 0, N -2 , L * [½ 0,N -1 ](x) = 0 ⇐⇒ ∀ x ∈ 0, N -2 , ∂ -v∂ + 1 ϕ 1 (x) = λ 1 ∂ -R(x) ⇐⇒ ∀ x ∈ 0, N -2 , ∂ -v∂ + 1 ϕ 1 (x) = -λ 1 ρ(x) ⇐⇒ ∀ x ∈ 0, N -2 , 1 ρ ∂ -v∂ + 1 ϕ 1 (x) = -λ 1 ⇐⇒ ∀ x ∈ 0, N -2 , L[½ 0,N -1 ](x) = 0
which is satisfied, since the restrictions of L[½ 0,N -1 ] and L[½ 0,N ] to 0, N -2 coincide and L[½ 0,N ] vanishes on 0, N .

To follow the development presented in the previous section, we will have to be more careful with the domains of the operators. First, D : F( 0, N -1 ) → F( 0, N -1 ) is one-to-one and its inverse is Markovian and given by

∀ f ∈ F( 0, N -1 ), ∀ x ∈ 0, N -1 , Λ(x, f ) ≔ 1 R(x) ρ(½ 0,x f )
So we deduce from ( 17) that we have on F( 0, N -1 ),

ΛL = L * Λ ( 18 
)
and as a consequence,

∀ t ≥ 0, Λ exp(tL) = exp(tL * )Λ
But the semigroup (exp(tL * )) t≥0 is Markovian only if we restrict it to D N -1 . So for the previous formula to be useful for intertwining, we need to slightly change the point of view on the Markov processes associated to L and L * . More precisely, let

S N -1 ≔ {f ∈ F( 0, N -1 ) : ρ(f ) = 0}
so that the image of S N -1 by Λ is D N -1 . We now see the operators Λ : S N -1 → D N -1 and D : D N -1 → S N -1 as inverses of each other. Let Ľ be the irreducible (but non-reversible) Markov generator on 0, N -1 whose jump rates are given by

∀ x = y ∈ 0, N -1 , Ľ(x, y) =    L(x, y) , if y = x + 1 L(N -1, N )ρ(y) , if x = N -1 0 , otherwise
Then ρ is the invariant probability associated to Ľ. This can be computed directly, but it is clearer from a probabilistic point of view: the Markov process corresponding to Ľ, instead of jumping from N -1 to N (as the Markov process associated to L), redistributes itself according to the quasi-stationary distribution. In particular Ľ can be seen as an operator from S N -1 to S N -1 . We also observe that on S N -1 , L and Ľ coincide, so we deduce from [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] the following commutative diagram

S N -1 Ľ ----→ S N -1 Λ   Λ   D N -1 L * ----→ D N -1 (19) 
By definition, Ľ is a Markov generator on 0, N -1 , so in particular we have Ľ[½ 0,N -1 ] = 0. Let us consider Ľ * the operator which coincides with L * on D N -1 and which satisfies Ľ * [½ 0,N -1 ] = 0 (in view of the proof of Lemma 8, this amounts to just replacing the entry

L * (N -1, N -1) = -λ 1 by Ľ * (N -1, N -1) = 0). It appears that Ľ * : F( 0, N -1 ) → F( 0, N -1 ) is a Markovian generator on 0, N -1 absorbed at N -1. Since Λ(½ 0,N -1 ) = ½ 0,N -1 , we get that ΛL[½ 0,N -1 ] = 0 = L * Λ[½ 0,N -1 ]
, so Diagram ( 19) can be extended to

F( 0, N -1 ) Ľ ----→ F( 0, N -1 ) Λ   Λ   F( 0, N -1 ) Ľ * ----→ F( 0, N -1 )
and it follows that for any t ≥ 0,

F( 0, N -1 ) exp(t Ľ) -----→ F( 0, N -1 ) Λ   Λ   F( 0, N -1 ) exp(t Ľ * ) -----→ F( 0, N -1 )
which is an intertwining relation between "true" Markovian semigroups.

Next let ( Xt ) t≥0 (respectively ( X * t ) t≥0 ) be a Markov process starting from 0 with generator Ľ (resp. Ľ * ). Since their initial conditions m0 = δ 0 = m * 0 satisfy m * 0 Λ = m0 , again we can use Theorem 2 of Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF] to get a strong Markovian coupling of ( Xt ) t≥0 and ( X * t ) t≥0 , still denoted by ( Xt , X * t ) t≥0 , such that for any t ≥ 0, a.s.,

L( Xt | X * t , 0 ≤ s ≤ t) = Λ( X * t , •) (20) 
Now the situation has been reduced to that of the previous section. So

τ * ≔ inf{t ≥ 0 : X * t = N -1}
is a strong stationary time for X. Furthermore, since Λ satisfies

∀ x ∈ 0, N -1 , Λ(x, 0, x ) = 1
it follows from (20) that we have a.s.

∀ t ≥ 0, Xt ≤ X * t thus τ * ≤ τ ≔ inf{t ≥ 0 : Xt = N -1}.
But up to time τ , X and X (recall that it is a Markov process starting from 0 and whose generator is L) have the same law, so we have proven the following result:

Proposition 9 For a birth and death process starting at 0 and first absorbed at N , there exists a quasi-stationary time S for X.

Remark 10

The above arguments can be extended to the case where m 0 the initial distribution of X 0 satisfies that m 0 /ρ is non-increasing on V (implying in particular that m 0 (N ) = 0). If we assume that m 0 /ρ is increasing, there is no quasi-stationary time for X. Indeed, observe that the mapping 0, N -

1 ∋ x → E x [τ ] is decreasing, so we get that E m 0 [τ ] < E ρ [τ ] = 1/λ 1 .
But if there exists a strong quasi-stationary times S, then τ is stochastically larger (or equal) than an exponential variable of parameter λ 1 (see the argument below this remark), in contradiction with the above bound. We wonder about a necessary and sufficient condition in terms of m 0 for the existence of a quasistationary time for X Let us define

T 1 ≔ inf{t ≥ 0 : X S+t = N }
By the strong Markov property applied to the randomized stopping time S, T 1 depends on (X S∧t ) t≥0 only through X S and is thus independent of S, by the definition of a strong quasistationary time. Furthermore, the strong Markov property and Lemma 5 imply that T 1 is distributed as an exponential variable of parameter λ 1 . So, writing

τ = S + T 1
is the first step in the iterative proof of Proposition 1. Indeed, by the above characterization of S, it is the absorption time τ * of the birth and death process X * starting from 0, so Proposition 1 is proven if we verify that the eigenvalues of -L * :

D N -1 → D N -1 are exactly λ 2 < λ 3 < • • • < λ N .
By [START_REF] Miclo | Sur les problèmes de sortie discrets inhomogènes[END_REF], the eigenvalues of -L * : D N -1 → D N -1 are exactly those of Ľ : S N -1 → S N -1 , which also coincide with those of L : S N -1 → S N -1 . But the vector spaces Vect(ϕ 1 ) and S N -1 are both stable by L : D N → D N (with the obvious notation D N = {f ∈ F : f (N ) = 0}) and Vect(ϕ 1 ) is the eigenspace associated to the eigenvalue -λ 1 , so necessarily the eigenvalues of

-L : S N -1 → S N -1 are the λ 2 < λ 3 < • • • < λ N .
Nevertheless, the particular intertwining relation mentioned in the introduction contains more information, that is why we will construct it in the next section.

Intertwining processes

We now slightly modify the intertwining described in last section, so that it can be iterated.

More precisely, we begin by extending the operator L * defined in Lemma 8 on F( 0, N -1 ), identified with D N , into an operator, still denoted L * , on F, by imposing that L * [½ V ] = 0. ¿From a matrix point of view, this operation amounts to adding to (L * (x, y)) x,y∈ 0,N -1 an N th column and an N th row, whose entries are all zero, except for the entry (N -1, N ) which is equal to λ 1 . Of course L * is now a Markov generator on V which is absorbed at N . Next we extend Λ into a Markov kernel on V , by taking

Λ(N, •) ≔ δ N (•)
It is not difficult to check that this is in fact the only possible choice if we want this kernel to coincide on 0, N -1 with the previous one and so that we have a dual commutative relation on F,

ΛL = L * Λ (21) 
With the above interpretation, this is an intertwining relation between true Markov generators, contrary to the one (18) considered in last section. So by Theorem 2 of Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF], if m 0 and m * 0 are two probabilities on V satisfying m 0 = m * 0 Λ, we can construct a Markov process (X t , X * t ) t≥0 such that:

• the process (X t ) t≥0 is Markovian with generator L and initial distribution m 0 • the process (X * t ) t≥0 is Markovian with generator L * and initial distribution m * 0

• for any t ≥ 0, we have a.s., L(X t |X * s , 0 ≤ s ≤ t) = Λ(X * t , •). By definition, the Markov kernel Λ satisfies

∀ x ∈ 0, N -1 , Λ(x, 0, x ) = 1 Λ(N, {N }) = 1
Thus, by the arguments given in the introduction, we get that a.s. τ = τ * , where as usual,

τ = inf{t ≥ 0 : X t = N } τ * = inf{t ≥ 0 : X * t = N }
This property allows other extensions of [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]. Assume for instance that we are given M ∈ N and L a Markov generator on 0, N + M such that

∀ x, y ∈ 0, N + M , L(x, y) = L(x, y) , if x ∈ 0, N -1 and y ∈ 0, N 0 , if x ∈ N, N + M and y ∈ 0, N -1
Of course, we must have L(x, y) = 0 for x ∈ 0, N -1 and y ∈ N + 1, N + M , but the entries of ( L(x, y)) (x,y)∈ N,N +M 2 are free, as long as L remains a Markov generator. Next, let L * be the Markov generator defined on 0, N + M by

∀ x, y ∈ 0, N + M , L * (x, y) =    L * (x, y) , if x ∈ 0, N -1 and y ∈ 0, N L(x, y) , if x ∈ N, N + M and y ∈ N, N + M 0 , otherwise
and let Λ be the Markov transition matrix defined on 0, N + M which coincides with the previous one on 0, N and which satisfies Λ(x, •) ≔ δ x for x ∈ N, N + M . Then it is immediate to check that we still have

ΛL = L * Λ (22) 
So if m 0 and m * 0 are two probabilities on 0, N + M such that m 0 = m * 0 Λ, then we can find a Markov process (X t , X * t ) t≥0 such that, as before, the process (X t ) t≥0 is Markovian with generator L and initial distribution m 0 , the process (X * t ) t≥0 is Markovian with generator L * and initial distribution m * 0 and for any t ≥ 0, we have a.s.,

L(X t |X * s , 0 ≤ s ≤ t) = Λ(X * t , •) (23) 
Indeed, this can be deduced from the previous construction (corresponding to M = 0): assume for instance that m * 0 ( 0, N -1 ) = 1, then we use the previous coupling up to the time τ = τ * and after this time, X and X * stick together. Similarly, if X * 0 ≥ N , we take X = X * . This direct construction can also be used as an alternative to the matrix verification of ( 22): first consider x ∈ 0, N -1 and let m * 0 = δ x and m 0 = Λ(x, •). Taking into account [START_REF] Seneta | Quasi-stationary distributions and time-reversion in genetics. (With discussion)[END_REF], we get for any t ≥ 0 and any function f ∈ F( 0, N + M ),

y∈V Λ(x, y)E y [f (X t )] = E x [Λ(X * t , f )]
and thus by differentiation with respect to t at 0 + , we recover ( 22) on 0, N -1 . To get it on N, N + M , we use that for x ∈ N, N + M , for any t ≥ 0 and any function f ∈ F( 0, N + M ),

E x [f (X t )] = E x [f (X * t )]
With all these preliminaries, we can now construct iteratively the generators L (i) of the processes X (i) mentioned in the introduction, for i ∈ 0, N . We start with L (0) = L. Next we assume that for some i ∈ 0, N -1 , we have constructed a birth and death generator L (i) on V such that:

• The corresponding birth and death rates (b

(i)
x ) 0≤x<N and (d

(i) x ) 0≤x<N satisfy b (i) x = λ N -x for N -i ≤ x < N , d (i) 
x = 0 for N -i < x ≤ N and are positive otherwise.

• λ i+1 , λ i+2 , ..., λ N are the eigenvalues of the operator

F( 0, N -i -1 ) ∋ f → (-L (i) [ f ](x)) x∈ 0,N -i ∈ F( 0, N -i -1 )
where f is the function from F which coincides with f on 0, N -i -1 and which vanishes on N -i, N (so the above operator is just the restriction of -L (i) on 0, N -i with a Dirichlet boundary condition on N -i).

• There is a Markov kernel Λ(i) from V to V such that

∀ x ∈ 0, N -1 , Λ(i) (x, 0, x ) = 1 Λ(i) (N, {N }) = 1
(such a kernel will be called appropriate in the sequel) and serves as a link between L (i) and L on F:

Λ(i) L = L (i) Λ(i) (24) 
(for definiteness, we can take Λ(0) = Id, the identity kernel). We now construct L (i+1) and Λ(i+1) . We begin by considering the restriction of L (i) on 0, N -i with a Dirichlet boundary condition on N -i. Applying the construction of the previous section, we get a dual operator L (i) * on F( 0, N -i -1 ) and a Markov kernel Λ (i) on 0, N -i -1 such that on F( 0, N -i -1 ),

Λ (i) L (i) = L (i) * Λ (i) Note that Λ (i) satisfies ∀ x ∈ 0, N -i -1 , Λ (i) (x, 0, x ) = 1
and that the restriction of -L (i) * to {f ∈ F( 0, N -i-1 ) : f (N -i-1) = 0} has λ i+2 , λ i+3 , ..., λ N as eigenvalues.

Next the considerations of the beginning of this section enable us to extend, on one hand, L (i) * into a birth and death generator L (i+1) on V and on the other hand, Λ (i) into a Markov kernel on V , again denoted Λ (i) , such that we have on F,

Λ (i) L (i) = L (i+1) Λ (i) (25) 
Furthermore L (i+1) has the required form and Λ (i) satisfies

∀ x ∈ 0, N -i -1 , Λ (i) (x, 0, x ) = 1 ∀ x ∈ N -i, N , Λ (i) (x, {x}) = 1
This pseudo-commutation relation enables us to construct (X (N ) , X (N -1) , X (N -2) ), by resorting one more time to Theorem 2 of Fill [START_REF] Allen | Time to stationarity for a continuous-time Markov chain[END_REF]. This procedure can obviously be iterated, by considering for 2 ≤ i ≤ N -1, the Markov kernel Λ (N,N -i) from V i+1 to V defined by

∀ (x N , x N -1 , • • • , x N -i ) ∈ V i+1 , ∀ x N -i-1 ∈ V, Λ (N,N -i) ((x N , x N -1 , • • • , x N -i ), x N -i-1 ) ≔ Λ (N -i-1) (x N -i , x N -i-1 )
Nevertheless, we think the most interesting intertwined process remains (X (N ) , X). Let us consider for i ∈ 0, N , the probability π i = Λ(N) (i, •), in particular we have π 0 = δ 0 and π N = δ N . It can be shown that for i ∈ 1, N -1 , the support of π i is 0, i and that π i is decreasing on this discrete interval. Essentially, this comes from the fact that the quasi-stationary distribution ρ considered in section 3 is decreasing on 0, N -1 (see for instance Miclo [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF]) and the iterative definitions of the Markov kernels used to intertwine the previous generators. On a picture, the evolution of π i when i goes from 0 to N -1 looks like an avalanche going from the left to the right. Next define for i ∈ 0, N ,

τ (N ) i ≔ min{t ≥ 0 : X (N ) t = i}
As in section 3, we can prove that all these variables are strong randomized stopping times for X (the adjective strong refer to the fact that the position reached at the randomized stopping time is independent of this time) and by definition we have that for any i ∈ 0, N , X τ (N) i is distributed as π i . In some sense, this distribution is kept for some random time, since we have for any t ≥ 0,

L(X t |τ (N ) i ≤ t < τ (N ) i+1 ) = π i (26) 
Indeed, this an immediate consequence of the equality {τ i ≤ t < τ i+1 } = {X (N ) t = i}. The property (26) leads us to call the π i , for i ∈ 0, N -1 , local equilibria. In the same spirit, we deduce the following probabilistic representation of the time marginal of X.

Theorem 12 For any t ≥ 0, we get

L(X t ) = i∈V P[T N + • • • + T N -i+1 ≤ t < T N + • • • + T N -i ]π i
where the (T i ) i∈ 1,N are independent exponential variables of respective parameters the (λ i ) i∈ 1,N and with the conventions that T N + T N +1 = 0 and T 0 = +∞. This formula can be rewritten in terms of the left eigendecomposition of L, even if the latter description is less meaningful from a probabilistic point of view. Let us recall the next well-known result.

Lemma 13 For any i ∈ 1, N , we have

P[T N + • • • + T N -i+1 > t] = j∈ N -i+1,N k∈ N -i+1,N \{j} 1 - λ k λ j -1 exp(-λ j t)
One simple way to deduce this result is through an iteration with respect to i ∈ 1, N , starting from i = 1. Thus we get for any t ≥ 0,

L(X t ) = i∈V (P[T N + • • • + T N -i+1 ≤ t] -P[T N + • • • + T N -i ≤ t])π i = i∈ 1,N P[T N + • • • + T N -i+1 ≤ t](π i -π i-1 ) = i∈ 1,N (1 -P[T N + • • • + T N -i+1 > t])(π i -π i-1 ) = π N - i∈ 1,N P[T N + • • • + T N -i+1 > t](π i -π i-1 ) = δ N - i∈ 1,N j∈ N -i+1,N k∈ N -i+1,N \{j} 1 - λ k λ j -1 exp(-λ j t)(π i -π i-1 ) = δ N - j∈ 1,N   i∈ N -j+1,N k∈ N -i+1,N \{j} 1 - λ k λ j -1 (π i -π i-1 )   exp(-λ j t)
It follows that for any j ∈ 1, N , the signed measure

µ j ≔ i∈ N -j+1,N k∈ N -i+1,N \{j} 1 - λ k λ j -1 (π i -π i-1 ) (27) 
is an eigenvector of L seen as an operator acting on the left (namely on measures). The normalisation of these vectors is such that we have

δ 0 = π N - j∈ 1,N µ j (28) 
Conversely, (27) can be inverted and the (π i ) i∈ 1,N can be expressed in terms of the eigenmeasures (µ i ) i∈ 1,N satisfying (28). One aftermath of these considerations is that the parameters of the independent exponential variables (T i ) i∈ 1,N and the probabilities (π i ) i∈ 1,N appearing in Theorem 12 are uniquely determined (in particular, the former are necessarily the inverse of the eigenvalues of the underlying generator with a Dirichlet condition at N ).

Coming back to Theorem 12, we see that the time marginal laws of the process always belong to the convex hull generated by the (π i ) i∈ 1,N . Furthermore, if the quotients λ i+1 /λ i , for i ∈ 1, N -1 , are very large, the trajectory R + ∋ t → L(X t ) has a tendency to be close to π i at time 1/λ i , where it stays for a period of the same order, before going directly in direction of π i+1 , etc. This is generically the case for the Metropolis algorithms at small temperature, at least for the eigenvalues which vanish exponentially fast (cf. Miclo [START_REF] Miclo | Comportement de spectres d'opérateurs de Schrödinger à basse température[END_REF]). Furthermore, for those eigenvalues, the time T i and τ

(N ) i are equivalent and are supposedly also close to the exit times associated to certain cycles, which are known to be almost exponential variables with eigenvalues as parameters (see for instance Miclo [START_REF] Miclo | Sur les problèmes de sortie discrets inhomogènes[END_REF]). Thus it would seem that asymptotically at small temperature, the previous random stopping times become "true" stopping time and get a "spatial" interpretation.

These observations lead us to believe that some of the behaviors we have displayed for birth and death processes starting from 0 could be extended to more general situations and this could led to a better understanding of metastability.

Remark 14 Since τ (N ) N

is the absorption time for X at N , it is the fastest strong stopping time such that X τ (N) N is distributed according to δ N . One can deduce from this property that for any i ∈ 1, N , τ (N ) i is a fastest strong stopping time such that X τ (N) i is distributed according to π i and even better: let τ ′ be another such strong stopping time and define τ ′′ ≔ inf{t ≥ 0 : X τ ′ +t = N } By the strong Markov property, we get that τ ′′ is independent from τ ′ and that it has the same law as τ

(N ) N -τ (N ) i . But τ ′ + τ ′′ is also distributed as τ (N )
N , so it follows that τ ′ has the same law as τ (N ) i . In particular, there is only one possible law for the strong quasi-stationary time considered in section 3 (this is a difference with strong stationary times: if T is such a time, then T + t is also a strong stationary time, for any fixed t ≥ 0). This can be extended to the exponential times τ

(N ) i+1 -τ (N ) i
, for i ∈ 0, N -1 : if X 0 is distributed according to π i , the law of a strong stopping time τ such that X τ is distributed according to π i+1 is necessarily an exponential variable with parameter N -i.

Examples

This short section contains two illustrative examples, the first is the Ehrenfest urn, where independent exponential variables show up naturally inside a fastest strong stationary time. The second concerns the continuous time random walk on a segment, absorbed at the right end.

Example 15: The continuous time version of the Ehrenfest urn

This is the birth and death process on V ≔ 0, N whose generator is given by

∀ x, y ∈ V, L(x, y) ≔        x , if y = x -1 N -x , if y = x + 1 -z∈V \{x} L(x, z) , if y = x 0 , otherwise
There is a traditional probabilistic way to construct a corresponding Markov process X starting from 0. We start by defining a Markov process Y on the hypercube {0, 1} V . Given a configuration on this state space, we attach to each site of V an exponential clock of parameter 2 (each of them being independent from the others). When the first clock rings, say at site i ∈ V , we flip a fair coin and the i th coordinate is changed or allowed to stay the same as the coin comes up heads or tails. The construction goes on in the same way, starting from the (new or not new with probability 1/2) configuration obtained and we end up with a {0, 1} V -valued Markov process Y . If Y starts from the configuration where all spins are 0, X can be obtained by counting the number of spins equal to 1 in Y . Let τ the first time all coordinates have seen their respective clocks ring at least once. This randomized stopping time τ can clearly be written as a sum of exponential variables (T i ) i∈ 0,N of parameters (2i) i∈ 0,N . Indeed, the first time T N a clock rings is a minimum of N independent exponential variables of parameter 2, so it is an exponential variable of parameter 2N . Next, by the loss of memory property of exponential variables, we wait a new time T N -1 for a clock from the other N -1 sites to ring, so this is an exponential variable of parameter 2(N -1), which is independent from T N . Etc., until the last site has finally had its clock ring. This takes time T 1 since the last-but-one site has seen its own clock ringing.

Using the same probabilistic arguments as in Example 4.38 of Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF] (see also their Example 3.2 and Remark 2.39), in continuous time instead of discrete time, it can be shown that τ is a fastest strong stationary time for X. But from the above considerations (in particular section 2), we know that τ is a sum of independent exponential variables whose parameters are (λ i ) i∈ 1,N , the positive eigenvalues of -L. As "there is only one way to write a sum of independent exponential variables as a sum of independent exponential variables", it follows that we necessarily have

∀ i ∈ 1, N , λ i = 2i
This example can be seen as an entirely probabilistic computation of eigenvalues. Of course there are more classical ways to deduce them (see for instance Kac [9] or Diaconis [START_REF] Diaconis | Group representations in probability and statistics[END_REF]).

There are many other examples where natural fastest strong times to stationarity have been constructed, see the original papers of Aldous and Diaconis [START_REF] Aldous | Shuffling cards and stopping times[END_REF][START_REF] Aldous | Strong uniform times and finite random walks[END_REF], Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF], Pak [START_REF] Pak | Random walks on groups: strong uniform time approach[END_REF] or Lovasz and Winkler [START_REF] Lovász | Mixing times[END_REF]. The theory of the present paper shows that at least in the case of birth and death processes starting from one end of their state space, these times are sums of exponential variables.

The next example goes in the reverse direction and takes advantage of a known eigen-decomposition to compute an absorption time. To do so, we consider L the generator of the usual continuous time nearest neighbor random walk on Z/(4N Z) (with rates 1). One verifies at once that if f ∈ F(Z/(4N Z)) is an even function such that f (N ) = 0, then L[f ] coincide with L[f ] on 0, N -1 , where in the last expression, f has been identified with its restriction to 0, N -1 . But the eigenvalues of L are the 2(1 -cos(2πk/(4N ))) with associated (complex-valued) eigenfunction Z/(4N Z) ∋ x → exp(2πikx/(4N )), for k ∈ 0, 4N -1 . Since the eigenvalues associated to k and N -k coincide, it appears that the eigenvalues of L are the 2(1 -cos(2πk/(4N ))), for k ∈ 0, 2N -1 , their multiplicity is 2 and the corresponding eigenspace is generated by the two mappings Z/(4N Z) ∋ x → sin(2πkx/(4N )) and Z/(4N Z) ∋ x → cos(2πkx/(4N )). The latter function is odd and for k odd, it vanishes at N . So as announced, its restriction to 0, N -1 is an eigenfunction for L, and since we get N -1 of them in this way, we have in fact exhibited all of them.

We also remark that the quasi-stationary distribution ρ is proportional to the measure mϕ 1 on 0, N -1 , where m ≔ (m(x)) x∈ 0,N -1 is given by m(0) = 2 and m(x) = 1 for x ∈ 1, N -1 . This follows from the fact that if we see m as a column vector, then the matrix m t Lm is symmetrical.

Example 16 :

 16 Continuous time nearest neighbor random walkConsider the birth and death process X on V , starting from 0, absorbed at N with generator given by∀ x, y ∈ V, L(x, y) x = 0 and y = 1 1 , if x ∈ 1, N -1 and |y -x| = 1 -z∈V \{x} L(x, z) , if y = x 0 , otherwiseThen the time needed to go from 0 to N is distributed as a sum of independent exponential variables with parameters (2(1 -cos(2π(2n -1)/4N ))) n∈ 1,N . Indeed, it is sufficient to show that the eigenvalues of the opposite of the sub-Markovian generator L ≔ (L(x, y)) x,y∈ 0,N -1 on 0, N -1 are the λ n ≔ 2(1 -cos(2π(2n + 1)/4N )), for n ∈ 1, N (namely that the latter are the Dirichlet eigenvalues of -L). Let us also check that the corresponding eigenfunctions are given by ϕ n : 0, N -1 ∋ x → cos(2π(2n -1)x/4N )
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So Λ(i+1) = Λ (i) Λ(i) is an appropriate kernel and we get from (24) and (25) that

Thus the iterative step is completed.

At the end of this procedure, we get the announced generator L (N ) , described by

which is intertwined with L by an appropriate kernel Λ(N) . In particular we can find a coupling (X (N ) , X) of X (N ) , a Markov process starting from 0 and generated by L (N ) and X, a Markov process starting from 0 and generated by L, satisfying for all t ≥ 0, a.s.

As explained in the introduction, Proposition 1 follows at once from the existence of such a process.

But one can construct more intertwined processes. For 0 ≤ i ≤ N , let us denote by X (i) a Markov process starting from 0 and generated by L (i) . Then from (25), for any 0 ≤ i < j ≤ N , we can find a coupling (X (j) , X (i) ) such that for all t ≥ 0, a.s.

L(X

where Λ (j,i) = Λ (j-1) Λ (j-2) • • • Λ (i) . This Markov kernel satisfies

One can even go further and couple all the processes X (i) , for 0 ≤ i ≤ N , into a "big" Markov process:

Proposition 11 There exists a Markov process (X

t ) t≥0 , such that for all i ∈ 0, N -1 and all t ≥ 0, we have a.s.

L(X

Furthermore, in this formula, the path valued finite sequence 0, N ∋ n → X (N -n) is in fact Markovian (and by consequence, 0, N ∋ n → X (n) is equally a Markov chain).

Proof

We begin with the Markov process (X (N ) , X (N -1) ) constructed as above and call L (N,N -1) its generator. Then we consider the Markov kernel Λ (N,N -1) from V 2 to V defined by

Taking into account that for functions depending only on the x N -1 variable, L (N,N -1) coincides with L (N -1) , (25) implies that Λ (N,N -1) L (N -2) = L (N,N -1) Λ (N,N -1)